
Some useful Information

Chinese Wall Rules

CW-Simple Security Condition: S can read O if and only if any of the following holds.
o There is an object O' such that S has accessed O' and CD(O') = CD(O).
o For all objects O', O'  PR(S)  COI(O') ≠ COI(O).
o O is a sanitized object.
(O’  PR(s) indicates O’ has been previously read by s)

CW-*-Property: A subject S may write to an object O if and only if both of the following conditions hold.
o The CW-simple security condition permits S to read O.
o For all unsanitized objects O', S can read O'  CD(O') = CD(O).

Clark-Wilson Certification and Enforcement Rules

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in a valid state.
Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different)
valid state.
Enforcement rule 1 (ER1): The system must maintain the certified relations, and must ensure that only TPs certified to run on a CDI
manipulate that CDI.
Enforcement rule 2 (ER2): The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of
the associated user. If the user is not associated with a particular TP and CDI, then the TP cannot access that CDI on behalf of that user.
Certification rule 3 (CR3): The allowed relations must meet the requirements imposed by the principle of separation of duty.
Enforcement rule 3 (ER3): The system must authenticate each user attempting to execute a TP.
Certification rule 4 (CR4): All TPs must append enough information to reconstruct the operation to an append-only CDI.
Certification rule 5 (CR5): Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all
possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.
Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an
entity associated with that TP, may ever have execute permission with respect to that entity.

Core RBAC

Permissions = 2Operations x Objects

UA  Users x Roles
PA  Permissions x Roles
assigned_users: Roles  2Users
assigned_permissions: Roles  2Permissions
Op(p): set of operations associated with permission p
Ob(p): set of objects associated with permission p
user_sessions: Users  2Sessions
session_user: Sessions  Users
session_roles: Sessions  2Roles

session_roles(s) = {r | (session_user(s), r)  UA)}
avail_session_perms: Sessions  2Permissions

RBAC with general Role hierarchy

authorized_users: Roles 2Users
 authorized_users(r) = {u | r’ ≥ r &(r’, u)  UA}
(Note that for any role r ≥ r – so all role assigned to r are also authorized to r)

authorized_permissions: Roles 2Permissions
 authorized_permissions(r) = {p | r ≥ r’ &(p, r’)  PA}

RH  Roles x Roles is a partial order, called the inheritance relation & written as ≥.
(r1 ≥ r2)  authorized_users(r1)  authorized_users(r2) &
authorized_permisssions(r2)  authorized_permisssions(r1)

Static SoD

SSD  2Roles x N
In absence of hierarchy

Collection of pairs (RS, n) where RS is a role set, n ≥ 2;
for all (RS, n)  SSD, for all t  RS: |t| ≥ n  ∩rt assigned_users(r)= 

In presence of hierarchy
Collection of pairs (RS, n) where RS is a role set, n ≥ 2;
for all (RS, n)  SSD, for all t  RS: |t| ≥ n  ∩rt authorized_uers(r)= 

