Some useful Information

Chinese Wall Rules

CW-Simple Security Condition: S can read O if and only if any of the following holds.

- There is an object O' such that S has accessed O' and CD(O') = CD(O).
- o For all objects O', O' ∈ $PR(S) \Rightarrow COI(O') \neq COI(O)$.
- O is a sanitized object.

 $(O' \in PR(s) \text{ indicates } O' \text{ has been previously read by } s)$

CW-*-Property: A subject S may write to an object O if and only if both of the following conditions hold.

- The CW-simple security condition permits S to read O.
- For all unsanitized objects O', S can read $O' \Rightarrow CD(O') = CD(O)$.

Clark-Wilson Certification and Enforcement Rules

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different) valid state.

Enforcement rule 1 (ER1): The system must maintain the certified relations, and must ensure that only TPs certified to run on a CDI manipulate that CDI.

Enforcement rule 2 (ER2): The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of the associated user. If the user is not associated with a particular TP and CDI, then the TP cannot access that CDI on behalf of that user.

Certification rule 3 (CR3): The allowed relations must meet the requirements imposed by the principle of separation of duty.

Enforcement rule 3 (ER3): The system must authenticate each user attempting to execute a TP.

Certification rule 4 (CR4): All TPs must append enough information to reconstruct the operation to an append-only CDI.

Certification rule 5 (CR5): Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.

Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an entity associated with that TP, may ever have execute permission with respect to that entity.

Core RBAC

Permissions = $2^{\text{Operations x Objects}}$

UA ⊆ Users x Roles PA ⊆ Permissions x Roles assigned_users: Roles → 2Users assigned_permissions: Roles → 2Permissions Op(p): set of operations associated with permission p Ob(p): set of objects associated with permission p $user_sessions$: Users → 2^{Sessions} session_user: Sessions → Users session_roles: Sessions → 2^{Roles} $session_roles(s) = \{r \mid (session_user(s), r) \in UA)\}$ avail_session_perms: Sessions → 2^{Permissions}

RBAC with general Role hierarchy

authorized_users: Roles $\rightarrow 2^{\text{Users}}$ • authorized_users(r) = {u | r' \ge r & (r', u) \in UA} (Note that for any role $r \ge r$ - so all role assigned to r are also authorized to r) authorized_permissions: Roles $\rightarrow 2$ Permissions • authorized_permissions(r) = {p | r \ge r' & (p, r') \in PA} RH \subseteq Roles x Roles is a partial order, called the inheritance relation & written as \ge . $(r_1 \ge r_2) \rightarrow authorized_users(r_1) \subseteq authorized_users(r_2) &$

authorized_permissions(r_2) \subseteq authorized_permissions(r_1)

Static SoD

 $SSD \subseteq 2^{Roles} \ge N$

In absence of hierarchy Collection of pairs (RS, n) where RS is a role set, $n \ge 2$; for all (RS, n) \in SSD, for all $t \in RS$: $|t| \ge n \to \bigcap_{r \in t} assigned_users(r) = \emptyset$ In presence of hierarchy Collection of pairs (RS, n) where RS is a role set, $n \ge 2$; for all (RS, n) \in SSD, for all $t \in RS$: $|t| \ge n \to \bigcap_{r \in t} authorized_uers(r) = \emptyset$