
1

IS 2150 / TEL 2810
Information Security & Privacy

James Joshi
Associate Professor, SIS

Lecture 8

March 20, 2013

Authentication, Identity
Vulnerability Analysis

2

Objectives

 Understand/explain the issues related
to, and utilize the techniques

 Authentication and identification

 Vulnerability analysis/classification

 Techniques

 Taxonomy

3

Authentication and Identity

4

What is Authentication?

 Authentication:
 Binding identity and external entity to subject

 How do we do it?
 Entity knows something (secret)

 Passwords, id numbers

 Entity has something
 Badge, smart card

 Entity is something
 Biometrics: fingerprints or retinal characteristics

 Entity is in someplace
 Source IP, restricted area terminal

5

Authentication System:
Definition

 A: Set of authentication information
 used by entities to prove their identities (e.g., password)

 C: Set of complementary information
 used by system to validate authentication information (e.g.,

hash of a password or the password itself)

 F: Set of complementation functions (to generate C)
 f : A → C
 Generate appropriate c C given a A

 L: set of authentication functions
 l: A C → { true, false }

 verify identity

 S: set of selection functions
 Generate/alter A and C
 e.g., commands to change password

6

Authentication System:
Passwords

 Example: plaintext passwords
 A = C = alphabet*
 f returns argument: f(a) returns a
 l is string equivalence: l(a, b) is true if a = b

 Complementation Function

 Null (return the argument as above)
 requires that c be protected; i.e. password file needs to be

protected

 One-way hash – function such that
 Complementary information c = f(a) easy to compute
 f-1(c) difficult to compute

7

Passwords

 Example: Original Unix
 A password is up to eight characters

 each character could be one of 127 possible characters;

 A contains approx. 6.9 x 1016 passwords

 Password is hashed using one of 4096 functions into a 11
character string

 2 characters pre-pended to indicate the hash function
used

 C contains passwords of size 13 characters, each
character from an alphabet of 64 characters

 Approximately 3.0 x 1023 strings

 Stored in file /etc/passwd (all can read)

8

Authentication System

 Goal: identify the entities correctly

 Approaches to protecting
 Hide enough information so that one of a, c or f

cannot be found

 Make C readable only to root

 Make F unknown

 Prevent access to the authentication functions L

 root cannot log in over the network

9

Attacks on Passwords

 Dictionary attack: Trial and error guessing
 Type 1: attacker knows A, F, C

 Guess g and compute f(g) for each f in F
 Type 2: attacker knows A, l

 l returns True for guess g

 Counter: Difficulty based on |A|, Time
 Probability P of breaking a password
 G be the number of guesses that can be tested in one

time unit
 |A| ≥ TG/P
 Assumptions:

 time constant; all passwords are equally likely

10

Password Selection

 Random
 Depends on the quality of random number generator;
 Size of legal passwords

 8 characters: humans can remember only one

 Pronounceable nonsense

 Based on unit of sound (phoneme)
 Easier to remember

 User selection (proactive selection)

 Controls on allowable
 At least 1 digit, 1 letter, 1 punctuation, 1 control character
 Obscure poem verse

11

Password Selection

 Reusable Passwords susceptible to dictionary
attack (type 1)

 Salting can be used to increase effort needed

 makes the choice of complementation function a function
of randomly selected data

 Random data is different for different user

 Authentication function is chosen on the basis of the salt

 Many Unix systems:
 A salt is randomly chosen from 0..4095

 Complementation function depends on the salt

12

Password Selection

 Password aging
 Change password after some time: based

on expected time to guess a password

 Disallow change to previous n passwords

 Fundamental problem is reusability
 Replay attack is easy

 Solution:
 Authenticate in such a way that the transmitted

password changes each time

13

Authentication Systems:
Challenge-Response

 Pass algorithm

 authenticator sends message m

 subject responds with f(m)

 f is a secret encryption function

 Example: ask for second input based on
some algorithm

14

Authentication Systems:
Challenge-Response

 One-time password: invalidated after use
 f changes after use

 S/Key uses a hash function (MD4/MD5)
 User chooses an initial seed k
 Key generator calculates

 k1 = h(k), k2 = h(k1) …, kn = h(kn-1)

 Passwords used in the order
 p1 = kn, p2 = kn-1, …, pn =k1

 Suppose p1 = kn is intercepted;
 the next password is p2 = kn-1

 Since h(kn-1) = kn, the attacker needs to invert h to determine the
next password

15

Authentication Systems:
Biometrics

 Used for human subject identification based on
physical characteristics that are tough to copy
 Fingerprint (optical scanning)

 Camera’s needed (bulky)

 Voice
 Speaker-verification (identity) or speaker-recognition

(info content)

 Iris/retina patterns (unique for each person)
 Laser beaming is intrusive

 Face recognition
 Facial features can make this difficult

 Keystroke interval/timing/pressure

16

Attacks on Biometrics

 Fake biometrics
 fingerprint “mask”

 copy keystroke pattern

 Fake the interaction between device
and system
 Replay attack

 Requires careful design of entire
authentication system

17

Vulnerability Analysis

18

Vulnerability Analysis

 Vulnerability or security flaw: specific failures
of security controls (procedures, technology
or management)

 Errors in code

 Human violators

 Mismatch between assumptions

 Exploit: Use of vulnerability to violate policy

 Attacker: Attempts to exploit the vulnerability

19

Techniques for Detecting
Vulnerabilities

 System Verification

 Determine preconditions, post-conditions

 Validate that system ensures post-conditions given
preconditions

Can prove the absence of vulnerabilities

 Penetration testing

 Start with system/environment characteristics

 Try to find vulnerabilities

Can not prove the absence of vulnerabilities

20

Types/layers of Penetration
Testing

 Black Box (External Attacker)

 External attacker has no knowledge of target system

 Attacks built on human element – Social Engineering

 System access provided (External Attacker)

 Red team provided with limited access to system

 Goal is to gain normal or elevated access

 Internal attacker

 Red team provided with authorized user access

 Goal is to elevate privilege / violate policy

21

Red Team Approach
Flaw Hypothesis Methodology:

 Information gathering
 Examine design, environment, system functionality

 Flaw hypothesis
 Predict likely vulnerabilities

 Flaw testing
 Determine where vulnerabilities exist

 Flaw generalization
 Attempt to broaden discovered flaws

 Flaw elimination (often not included)
 Suggest means to eliminate flaw

Flaw does

Not exist

Refine with new

understanding

22

Problems with
Penetration Testing

 Nonrigorous

 Dependent on insight (and whim) of testers

 No good way of evaluating when “complete”

 How do we make it systematic?

 Try all classes of likely flaws

 But what are these?

 Vulnerability Classification!

23

Vulnerability Classification

 Goal: describe spectrum of possible flaws

 Enables design to avoid flaws

 Improves coverage of penetration testing

 Helps design/develop intrusion detection

 How do we classify?

 By how they are exploited?

 By where they are found?

 By the nature of the vulnerability?

24

Example flaw: xterm log

 xterm runs as root
 Generates a log file

 Appends to log file if file exists

 Problem: ln /etc/passwd log_file

 Solution
if (access(“log_file”, W_OK) == 0)

If ((fd = open(“log_file”, O_WRONLY|O_APPEND)) < 0) {

- error handling

}

 What can go wrong?

25

Example: Finger Daemon
(exploited by Morris worm)

 finger sends name to fingerd

 fingerd allocates 512 byte buffer on stack

 Places name in buffer

 Retrieves information (local finger) and returns

 Problem: If name > 512 bytes, overwrites
return address

 Exploit: Put code in “name”, pointer to code
in bytes 513+

 Overwrites return address

26

RISOS:Research Into Secure
Operating Systems (7 Classes)

1. Incomplete parameter validation
– E.g., buffer overflow –

2. Inconsistent parameter validation
– Different routines with different formats for same data

3. Implicit sharing of privileged / confidential data
– OS fails to isolate processes and users

4. Asynchronous validation / inadequate serialization
– Race conditions and TOCTTOU flaws

5. Inadequate identification /authentication / authorization
– Trojan horse; accounts without passwords

6. Violable prohibition / limit
– Improper handling of bounds conditions (e.g., in memory allocation)

7. Exploitable logic error
– Incorrect error handling, incorrect resource allocations etc.

27

Protection Analysis Model
Classes

 Pattern-directed protection evaluation

 Methodology for finding vulnerabilities

 Applied to several operating systems

 Discovered previously unknown vulnerabilities

 Resulted in two-level hierarchy of
vulnerability classes

 Ten classes in all

28

PA flaw classes

1. Improper protection domain initialization and enforcement
a. domain: Improper choice of initial protection domain
b. exposed representations: Improper isolation of

implementation detail (Covert channels)
c. consistency of data over time: Improper change
d. naming: Improper naming (two objects with same name)
e. residuals: Improper deallocation or deletion

2. Improper validation validation of operands, queue
management dependencies:

3. Improper synchronization
a. interrupted atomic operations: Improper indivisibility
b. serialization: Improper sequencing

4. Improper choice of operand or operation critical operator
selection errors

29

NRL Taxonomy

 Three classification schemes
 How did it enter

 When was it “created”

 Where is it

Genesis
Intentional

Malicious Nonmalicious

Trapdoor Trojan horse Logic/time bomb Covert channel Other

Timing Storage Nonreplicating Replicating

30

NRL Taxonomy (Genesis)

Inadvertent

 Validation error (Incomplete/Inconsistent)

 Domain error (including object re-use, residuals, and

exposed representation errors

 Serialization/aliasing (including TCTTOU errors)

 Boundary conditions violation (including resource

exhaustion and violable constraint errors)

 Other exploitable logic error

31

NRL Taxonomy:
Time

Time of

introduction

Development Maintenance Operation

Requirement

specification

design

Source code Object code

32

NRL Taxonomy:
Location

Location

Software Hardware

Operating

System
Application Support

Privileged

Utilities

Unprivileged

Utilities

System

initialization
Memory Management

Process management

/ scheduling
Device management

File Management
Identification /

Authentication

Other /

Unknown

33

Aslam’s Model

 Attempts to classify faults
unambiguously

 Decision procedure to classify
faults

 Coding Faults

 Synchronization errors
 Timing window

 Improper serialization

 Condition validation errors
 Bounds not checked

 Access rights ignored

 Input not validated

 Authentication / Identification
failure

 Emergent Faults

 Configuration errors
 Wrong install location

 Wrong configuration
information

 Wrong permissions

 Environment Faults

34

Common Vulnerabilities and
Exposures (cve.mitre.org)

 Captures specific
vulnerabilities

 Standard name

 Cross-reference to
CERT, etc.

 Entry has three
parts

 Unique ID

 Description

 References

Name CVE-1999-0965

Description Race condition in
xterm allows local
users to modify
arbitrary files via
the logging option.

References

•CERT:CA-93.17

•XF:xterm

