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Objectives 

 Understand/explain/employ the basic 
cryptographic techniques 

 Review the basic number theory used in 
cryptosystems 

 Classical system 

 Public-key system 

 Some crypto analysis 

 Message digest 



3 

Secure Information Transmission 
(network security model) 
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Security of Information Systems 
(Network access model) 

Gate 

Keeper 

Opponent 

 - hackers 

 - software Access Channel Internal 

Security Control 

Data 

Software 

Gatekeeper – firewall or equivalent, password-based login 

 

Internal Security Control – Access control, Logs, audits, virus scans etc. 
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Issues in Network security 

 Distribution of secret information to enable secure exchange of 
information 

 

 Effect of communication protocols needs to be considered 

 

 Encryption if used cleverly and correctly, can provide several of 
the security services  

 

 Physical and logical placement of security mechanisms 

 

 Countermeasures need to be considered  
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Cryptology 

CRYPTOLOGY 

CRYPTOGRAPHY CRYPTANALYSIS 

Private Key 

(Secret Key) 
Public Key 

Block Cipher Stream Cipher Integer Factorization 

Discrete Logarithm 
Encipher, encrypt 

Decipher, decrypt 
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Elementary Number Theory 

 Natural numbers N = {1,2,3,…} 

 Whole numbers W = {0,1,2,3, …} 

 Integers Z = {…,-2,-1,0,1,2,3, …} 

 Divisors 
 A number b is said to divide a if a = mb for 

some m  where a, b, m  Z 
 

 We write this as b | a 
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Divisors 

 Some common properties 
 If a | 1,  a = +1 or –1 

 If a|b and b|a then a = +b or –b 

 Any b  Z  divides 0 if b  0 

 If b|g and b|h then b|(mg + nh) where b,m,n,g,h  Z 
 

 Examples:  
 The positive divisors of 42 are ? 

 3|6 and 3|21 => 3|21m+6n for m,n  Z 
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Prime Numbers 

 An integer p is said to be a prime number if its only positive 
divisors are 1 and itself 
 2, 3, 7, 11, .. 

 Any integer can be expressed as a unique product of prime 
numbers raised to positive integral powers 

 Examples 
 7569 = 3 x 3 x 29 x 29 = 32 x 292 

 5886 = 2 x 27 x 109 = 2 x 33 x 109 
 4900 = 72 x 52 x 22 

 100 = ? 
 250 = ? 

 This process is called Prime Factorization 
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Greatest common divisor 
(GCD) 

 Definition: Greatest Common Divisor 

 This is the largest divisor of both a and b 
 

 Given two integers a and b, the positive integer c is 
called their GCD or greatest common divisor if and 
only if 

 c | a and c | b  

 Any divisor of both a and b also divides c 
 

 Notation: gcd(a, b) = c 

 Example: gcd(49,63) = ? 
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Relatively Prime Numbers 

 Two numbers are said to be relatively prime if their 
gcd is 1 

 Example: 63 and 22 are relatively prime 

 How do you determine if two numbers are relatively 
prime? 

 

 Find their GCD or 

 Find their prime factors 

 If they do not have a common prime factor 
other than 1, they are relatively prime 

 Example: 63 = 9 x 7 = 32 x 7 and 22 = 11 x 2 
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The modulo operation 

 What is 27 mod 5? 

 Definition 
 Let a, r, m be integers and let m > 0 

 We write a  r mod m if m divides r – a (or a – r) 
and 0  r < m 

 m is called ? 

 r is called ? 

 Note:a = m.q + r ; what is q ? 
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Modular Arithmetic 

 We say that  a  b mod m if m | a – b 
 Read as: a is congruent to b modulo m 

 m is called the modulus 

 Example: 27  2 mod 5 

 Example: 27  7 mod 5 and 7  2 mod 5 

 a  b mod m => b  a mod m  
 Example: 2  27 mod 5 

 

 We usually consider the smallest positive remainder 
which is called the residue 
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Modulo Operation 

 The modulo operation “reduces” the infinite 
set of integers to a finite set 

 Example: modulo 5 operation 

 We have five sets  

 {…,-10, -5, 0, 5, 10, …} => a  0 mod 5 

 {…,-9,-4,1,6,11,…} => a  1 mod 5 

 {…,-8,-3,2,7,12,…} => a  2 mod 5, etc. 

 The set of residues of integers modulo 5 has 
five elements {0,1,2,3,4} and is denoted Z5. 
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Modulo Operation 

 Properties 

 [(a mod n) + (b mod n)] mod n = (a + b) mod n 

 [(a mod n) - (b mod n)] mod n = (a - b) mod n 

 [(a mod n) × (b mod n)] mod n = (a × b) mod n 

 (-1) mod n = n -1  

 (Using b = q.n + r, with b = -1, q = -1 and r = n-1) 
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Brief History 

 All encryption algorithms from BC till 1976 
were secret key algorithms 

 Also called private key algorithms or symmetric 
key algorithms 

 Julius Caesar used a substitution cipher 

 Widespread use in World War II (enigma) 
 

 Public key algorithms were introduced in 
1976 by Whitfield Diffie and Martin Hellman 
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Cryptosystem 

 (E, D, M, K, C) 
 E set of encryption functions 

e: M  K  C 

 D set of decryption functions 
d: C  K  M 

 M set of plaintexts 

 K set of keys 

 C set of ciphertexts 
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Example 

 Cæsar cipher 

 M = { sequences of letters } 

 K = { i | i is an integer and 0 ≤ i ≤ 25 } 

 E = { Ek | k  K and for all letters m, 

    Ek(m) = (m + k) mod 26 } 

 D = { Dk | k  K and for all letters c, 

    Dk(c) = (26 + c – k) mod 26 } 

 C = M 
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Cæsar cipher 

 Let k = 9, m = “VELVET” (21 4 11 21 4 19) 

 Ek(m)  = (30 13 20 30 13 28) mod 26 

   =“4 13 20 4 13 2” = “ENUENC” 

 Dk(m)  = (26 + c – k) mod 26 

   = (21  30  37 21 30 19) mod 26 

   = “21 4 11 21 4 19” = “VELVET” 

 A B C D E F G H I J K L M 

0 1 2 3 4 5 6 7 8 9 10 11 12 

N O P Q R S T U V W X Y Z 

13 14 15 16 17 18 19 20 21 22 23 24 25 
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Attacks 

 Ciphertext only:  
 adversary has only Y;  

 goal ? 

 Known plaintext:  
 adversary has X, Y;  

 goal ? 

 Chosen plaintext:  
 adversary gets a specific plaintext enciphered;  

 goal ? 
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Classical Cryptography 

Key Source 
Oscar 

Encrypt 

(algorithm) 

Decrypt 

(algorithm) 

Alice Bob 

Secret key K 

Secure Channel 

Plaintext X Ciphertext Y Plaintext X 

Ed  

(Cryptoanalyst) 

X’, K’ 
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Classical Cryptography 

 Sender, receiver share common key 
 Keys may be the same, or trivial to derive 

from one another 

 Sometimes called symmetric cryptography 

 Two basic types 
 Transposition ciphers 

 Substitution ciphers 

 Product ciphers 
 Combinations of the two basic types 
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Classical Cryptography 

 y = Ek(x) :   Ciphertext  Encryption 

 x = Dk(y) :   Plaintext  Decryption 

 k = encryption and decryption key 

 The functions Ek() and Dk() must be 
inverses of one another 

 Ek(Dk(y)) = ? 

 Dk(Ek(x)) = ? 

 Ek(Dk(x)) = ? 
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Transposition Cipher 

 Rearrange letters in plaintext to 
produce ciphertext 

 Example (Rail-Fence Cipher) 
 Plaintext is “HELLO WORLD”    

 Rearrange as 
    HLOOL 

    ELWRD 

 Ciphertext is HLOOL ELWRD 
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Attacking the Cipher 

 Anagramming 

 If 1-gram frequencies match English 
frequencies, but other n-gram frequencies 
do not, probably transposition 

 

 Rearrange letters to form n-grams with 
highest frequencies 
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Example 

 Ciphertext: HLOOLELWRD  

 Frequencies of 2-grams beginning with H 
 HE   0.0305 

 HO   0.0043 

 HL, HW, HR, HD < 0.0010 

 Frequencies of 2-grams ending in H 
 WH  0.0026 

 EH, LH, OH, RH, DH ≤ 0.0002 

 Implies E follows H 
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Example 

 Arrange so that H and E are adjacent 
HE 

LL 

OW 

OR 

LD 

 Read off across, then down, to get 
original plaintext 
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Substitution Ciphers 

 Change characters in plaintext to 
produce ciphertext 

 Example (Cæsar cipher) 
 Plaintext is HELLO WORLD;  

 Key is 3, usually written as letter ‘D’ 

 Ciphertext is KHOOR ZRUOG 
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Attacking the Cipher 

 Brute Force: Exhaustive search 

 If the key space is small enough, try all 
possible keys until you find the right one 

 Cæsar cipher has 26 possible keys 

 Statistical analysis 

 Compare to 1-gram model of English 
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Statistical Attack 

 Ciphertext is KHOOR ZRUOG  

 Compute frequency of each letter in 
ciphertext: 

  G 0.1 H 0.1 K 0.1 O 0.3 

  R 0.2 U 0.1 Z 0.1 

 Apply 1-gram model of English 

 Frequency of characters (1-grams) in 
English is on next slide 



31 

Character Frequencies 
(Denning) 

a 0.080 h 0.060 n 0.070 t 0.090 

b 0.015 i 0.065 o 0.080 u 0.030 

c 0.030 j 0.005 p 0.020 v 0.010 

d 0.040 k 0.005 q 0.002 w 0.015 

e 0.130 l 0.035 r 0.065 x 0.005 

f 0.020 m 0.030 s 0.060 y 0.020 

g 0.015 z 0.002 
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Statistical Analysis 

 f(c) frequency of character c in ciphertext 

 (i): 
 correlation of frequency of letters in ciphertext with 

corresponding letters in English, assuming key is i 

 (i) = 0 ≤ c ≤ 25 f(c)p(c – i)  

 so here, 

 (i) = 0.1p(6 – i) + 0.1p(7 – i) + 0.1p(10 – i) + 0.3p(14 
– i) + 0.2p(17 – i) + 0.1p(20 – i) + 0.1p(25 – i) 
 p(x) is frequency of character x in English 

 Look for maximum correlation! 
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Correlation: (i) for 0 ≤ i ≤ 25 

i (i) i (i) i (i) i (i) 

0 0.0482 7 0.0442 13 0.0520 19 0.0315 

1 0.0364 8 0.0202 14 0.0535 20 0.0302 

2 0.0410 9 0.0267 15 0.0226 21 0.0517 

3 0.0575 10 0.0635 16 0.0322 22 0.0380 

4 0.0252 11 0.0262 17 0.0392 23 0.0370 

5 0.0190 12 0.0325 18 0.0299 24 0.0316 

6 0.0660 25 0.0430 
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The Result 

 Ciphertext is KHOOR ZRUOG   

 Most probable keys, based on : 

 i = 6, (i) = 0.0660 
 plaintext EBIIL TLOLA  (How?) 

 i = 10, (i) = 0.0635 
 plaintext AXEEH PHKEW    (How?) 

 i = 3, (i) = 0.0575 
 plaintext HELLO WORLD    (How?) 

 i = 14, (i) = 0.0535 
 plaintext WTAAD LDGAS 

 Only English phrase is for i = 3 

 That’s the key (3 or ‘D’) 
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Cæsar’s Problem 

 Key is too short 

 Can be found by exhaustive search 

 Statistical frequencies not concealed well 

 They look too much like regular English letters 

 So make it longer 

 Multiple letters in key 

 Idea is to smooth the statistical 
frequencies to make cryptanalysis harder 
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Vigenère Cipher 

 Like Cæsar cipher, but use a phrase 

 Example 
 Message THE BOY HAS THE BALL 

 Key VIG 

 Encipher using Cæsar cipher for each 
letter: 

 key  VIGVIGVIGVIGVIGV 

plain  THEBOYHASTHEBALL 

cipher OPKWWECIYOPKWIRG 
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Relevant Parts of Tableau 

   G   I   V 

A   G   I   V 

B   H   J   W 

E   K   M   Z 

H   N   P   C 

L   R   T   G 

O   U   W   J 

S   Y   A   N 

T   Z   B   O 

Y   E   H   T 

 Tableau with relevant 
rows, columns only 

 Example 
encipherments: 

 key V, letter T: follow 
V column down to T 
row (giving “O”) 

 Key I, letter H: follow I 
column down to H row 
(giving “P”) 
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Useful Terms 

 period: length of key 
 In earlier example, period is 3 

 tableau: table used to encipher and 
decipher 
 Vigènere cipher has key letters on top, 

plaintext letters on the left 

 polyalphabetic: the key has several 
different letters 
 Cæsar cipher is monoalphabetic 
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Attacking the Cipher  

 Key to attacking vigenère cipher  

 determine the key length 

 If the keyword is n, then the cipher consists of n 
monoalphabetic substitution ciphers 

 

 key   VIGVIGVIGVIGVIGV 

plain  THEBOYHASTHEBALL 

cipher OPKWWECIYOPKWIRG 

key   DECEPTIVEDECEPTIVEDECEPTIVE 

plain  WEAREDISCOVEREDSAVEYOURSELF 

cipher ZICVTWQNGRZGVTWAVZHCQYGLMGJ 
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One-Time Pad 

 A Vigenère cipher with a random key at least 
as long as the message 

 

 Provably unbreakable; Why?  
 

 Consider ciphertext DXQR . Equally likely to 
correspond to  
 plaintext DOIT  (key AJIY) and  
 plaintext DONT  (key AJDY) and any other 4 letters 

 

 Warning: keys must be random, or you can 
attack the cipher by trying to regenerate the key 
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Overview of the DES 

 A block cipher: 

 encrypts blocks of 64 bits using a 64 bit key 

 outputs 64 bits of ciphertext 

 A product cipher  

 performs both substitution and transposition 
(permutation) on the bits 

 basic unit is the bit 

 Cipher consists of 16 rounds (iterations) each with a 
round key generated from the user-supplied key 
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DES 
 

 Round keys are 
48 bits each 

 Extracted from 
64 bits 

 Permutation 
applied 

 Deciphering 
involves using 
round keys in 
reverse 
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Encipherment 

input 

IP 

L 
0 R 

0 

 f K 
1 

L 
1  = R 

0 R 
1  = L 

0      f (R 
0 , K 

1 ) 

R 
16  = L 

15    

 
  f (R 

15 , K 
16 ) 

L 
16 

 = R 
15 

IP -1 

output 

32bits 
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The f Function 

R i -1  (32 bits) 

Expansion 

R i -1  (48 bits) 

K i  (48 bits) 

 

S1 S2 S3 S4 S5 S6 S7 S8 

6 bits into each 

Permutation 

32 bits 

4 bits out of each 

S-box 
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Controversy 

 Considered too weak 

 Design to break it using 1999 technology 
published 

 Design decisions not public 

 S-boxes may have backdoors 

 Several other weaknesses found 

 Mainly related to keys 
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DES Modes 

 Electronic Code Book Mode (ECB): 
 Encipher each block independently 

 Cipher Block Chaining Mode (CBC) 
 XOR each block with previous ciphertext block 

 Uses an initialization vector for the first one 

 

init. vector m1 

DES 

c1 

 

m2 

DES 

c2 

sent sent 

… 

… 

… 
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CBC Mode Decryption 

 

init. vector c1 

DES 

m1 

… 

… 

… 

 

c2 

DES 

m2 

 CBC has self healing property 

 If one block of ciphertext is altered, the error 
propagates for at most two blocks 
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Self-Healing Property 

 Initial message 
 3231343336353837 3231343336353837 
3231343336353837 3231343336353837   

 Received as (underlined 4c should be 4b) 
 ef7c4cb2b4ce6f3b f6266e3a97af0e2c 
746ab9a6308f4256 33e60b451b09603d 

 Which decrypts to 
 efca61e19f4836f1 3231333336353837 
3231343336353837 3231343336353837 

 Incorrect bytes underlined; plaintext “heals” 
after 2 blocks 
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Public Key Cryptography 

 Two keys 
 Private key known only to individual 

 Public key available to anyone 

 Idea 
 Confidentiality:  

 encipher using public key,  

 decipher using private key 

 Integrity/authentication:  
 encipher using private key,  

 decipher using public one 
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Requirements 

1. Given the appropriate key, it must be 
computationally easy to encipher or 
decipher a message 

2. It must be computationally infeasible to 
derive the private key from the public key 

3. It must be computationally infeasible to 
determine the private key from a chosen 
plaintext attack 
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Diffie-Hellman 

 Compute a common, shared key 

 Called a symmetric key exchange protocol 

 Based on discrete logarithm problem 

 Given integers n and g and prime number 
p, compute k such that n = gk mod p 

 Solutions known for small p 

 Solutions computationally infeasible as p 
grows large – hence, choose large p 
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Algorithm 

 Constants known to participants 
 prime p; integer g other than 0, 1 or p–1 

 Alice: (private = kA, public = KA) 
 Bob: (private = kB, public = KB) 

 KA = gkA mod p 
 KB = gkB mod p 

 To communicate with Bob,  
 Alice computes SA, B= KB

kA mod p 

 To communicate with Alice,  
 Bob computes SB, A = KA

kB mod p 

 SA, B = SB, A ?  
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Example 

 Assume p = 53 and g = 17 

 Alice chooses kA = 5 

 Then KA = 175 mod 53 = 40 

 Bob chooses kB= 7 

 Then KB= 177 mod 53 = 6 

 Shared key: 

 KB
kA mod p = 65 mod 53 = 38 

 KA
kB mod p = 407 mod 53 = 38 

Exercise: 

 

Let p = 5, g = 3 

kA = 4, kB = 3 

 

KA = ?, KB = ?,  

S = ?, 
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RSA 

 Relies on the difficulty of determining the number of 
numbers relatively prime to a large integer n 

 Totient function (n) 

 Number of + integers less than n and relatively 
prime to n 

 Example: (10) = 4 

 What are the numbers relatively prime to 10? 

 (77) ? 

 (p) ? When p is a prime number 

 (pq) ? When p and q are prime numbers 



55 

Algorithm 

 Choose two large prime numbers p, q 
 Let n = pq; then (n) = (p–1)(q–1) 

 Choose e < n relatively prime to (n). 

 Compute d such that ed mod (n) = 1 
 Public key: (e, n);  

 private key: d (or (d, n)) 

 Encipher: c = me mod n 

 Decipher: m = cd mod n 
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Confidentiality using RSA 

Message 

Source 
Encryption 

Message 

Source 
Decryption 

X Y X 

Alice 

Key Source 

? 

? 

Bob 
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Authentication using RSA 

Message 

Source 
Encryption 

Message 

Source 
Decryption 

X Y X 

Key Source 

Alice 

? 

? 

Bob 
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Confidentiality + 
Authentication 

Message 

Source 
Encryption 

Message 

Source 
Decryption 

X 

Key Source 

Alice 

? ? 

Bob 

Decryption 
Y X 

Encryption 
Y 

? 

? 

Key Source 

Z 



59 

Warnings 

 Encipher message in blocks considerably 
larger than the examples here 

 If 1 character per block, RSA can be broken using 
statistical attacks (just like classical 
cryptosystems) 

 Attacker cannot alter letters, but can rearrange 
them and alter message meaning 

 Example: reverse enciphered message: ON to get NO 
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Cryptographic Checksums 

 Mathematical function to generate a set of k bits 
from a set of n bits (where k ≤ n). 
 k is smaller then n except in unusual circumstances 

 Keyed CC: requires a cryptographic key 

h = CKey(M) 

 Keyless CC: requires no cryptographic key 

 Message Digest or One-way Hash Functions 

h = H(M) 

 Can be used for message authentication 
 Hence, also called Message Authentication Code (MAC) 
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Mathematical characteristics 

 Every bit of the message digest function 
potentially influenced by every bit of the 
function’s input 

 If any given bit of the function’s input is 
changed, every output bit has a 50 percent 
chance of changing 

 Given an input file and its corresponding 
message digest, it should be computationally 
infeasible to find another file with the same 
message digest value 
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Definition 

 Cryptographic checksum function h: AB: 
1. For any x  A, h(x) is easy to compute 

– Makes hardware/software implementation easy 

2. For any y  B, it is computationally infeasible to 
find x  A such that h(x) = y 

– One-way property 

3. It is computationally infeasible to find x, x´ A  
such that x ≠ x´ and h(x) = h(x´) 

4. Alternate form: Given any x  A, it is 
computationally infeasible to find a different x´ 
 A such that h(x) = h(x´). 
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Collisions 

 If x ≠ x´ and h(x) = h(x´), x and x´ are a 
collision 

 Pigeonhole principle: if there are n containers for 
n+1 objects, then at least one container will have 
2 objects in it. 

 Application: suppose n = 5 and k = 3. Then there 
are 32 elements of A and 8 elements of B, so  

 each element of B has at least 4 corresponding elements 
of A 
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Keys 

 Keyed cryptographic checksum: 
requires cryptographic key 
 DES in chaining mode: encipher message, 

use last n bits. Requires a key to encipher, 
so it is a keyed cryptographic checksum. 

 Keyless cryptographic checksum: 
requires no cryptographic key 
 MD5 and SHA-1 are best known; others 

include MD4, HAVAL, and Snefru  
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Message Digest 

 MD2, MD4, MD5 (Ronald Rivest) 
 Produces 128-bit digest;  
 MD2 is probably the most secure, longest to compute (hence rarely used) 
 MD4 is a fast alternative; MD5 is modification of MD4 

 SHA, SHA-1 (Secure Hash Algorithm) 
 Related to MD4; used by NIST’s Digital Signature 
 Produces 160-bit digest 
 SHA-1 may be better 

 SHA-256, SHA-384, SHA-512 
 256-, 384-, 512 hash functions designed to be use with the Advanced 

Encryption Standards (AES) 

 Example: 
 MD5(There is $1500 in the blue bo) = f80b3fde8ecbac1b515960b9058de7a1 
 MD5(There is $1500 in the blue box) = a4a5471a0e019a4a502134d38fb64729 
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Hash Message Authentication  
Code (HMAC) 

 Make keyed cryptographic checksums from keyless 
cryptographic checksums 

 h be keyless cryptographic checksum function that 
takes data in blocks of b bytes and outputs blocks of 
l bytes. k´ is cryptographic key of length b bytes 
(from k) 
 If short, pad with 0s’ to make b bytes; if long, hash to 

length b 

 ipad is 00110110 repeated b times 
 opad is 01011100 repeated b times 
 HMAC-h(k, m) = h(k´  opad || h(k´  ipad || m)) 

  exclusive or, || concatenation 
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Protection Strength 

 Unconditionally Secure 

 Unlimited resources + unlimited time 

 Still the plaintext CANNOT be recovered from the 
ciphertext 

 Computationally Secure 

 Cost of breaking a ciphertext exceeds the value of 
the hidden information 

 The time taken to break the ciphertext exceeds 
the useful lifetime of the information 
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Average time required for 
exhaustive key search  

Key Size 
(bits) 

Number of 
Alternative Keys 

Time required at 
106 Decryption/µs 

32 232 = 4.3 x 109 2.15 milliseconds 

56 256 = 7.2 x 1016 10 hours 

128 2128 = 3.4 x 1038 5.4 x 1018 years 

168 2168 = 3.7 x 1050 5.9 x 1030 years 
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Key Points 

 Two main types of cryptosystems: 
classical and public key 

 Classical cryptosystems encipher and 
decipher using the same key 
 Or one key is easily derived from the other 

 Public key cryptosystems encipher and 
decipher using different keys 
 Computationally infeasible to derive one 

from the other 

 


