IS 2150 / TEL 2810 Introduction to Security

James Joshi AssociateProfessor, SIS

Lecture 10 Nov 23, 2010

Intrusion Detection, Firewalls & VPN Auditing System

Intrusion Detection

Intrusion Detection/Response

Denning:

- Systems under attack fail to meet one or more of the following characteristics
 - 1. Actions of users/processes conform to statistically predictable patterns
 - 2. Actions of users/processes do not include sequences of commands to subvert security policy
 - 3. Actions of processes conform to specifications describing allowable actions

Intrusion Detection

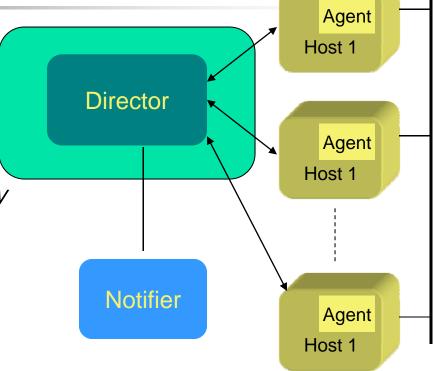
- Idea:
 - Attack can be discovered by one of the above being violated
- Practical goals of intrusion detection systems:
 - Detect a wide variety of intrusions (known + unknown)
 - Detect in a timely fashion
 - Present analysis in a useful manner
 - Need to monitor many components; proper interfaces needed
 - Be (sufficiently) accurate
 - Minimize false positives and false negatives

- Compare system characteristics with expected values
 - Threshold metric: statistics deviate / threshold
 - E.g., Number of failed logins
 - Statistical moments: mean/standard deviation
 - Number of user events in a system
 - Time periods of user activity
 - Resource usages profiles
 - Markov model: based on state, expected likelihood of transition to new states
 - If a low probability event occurs then it is considered suspicious

- Does sequence of instructions violate security policy?
 - Problem: How do we know all violating sequences?
- Solution: capture known violating sequences
 - Generate a rule set for an intrusion signature
- Alternate solution: State-transition approach
 - Known "bad" state transition from attack
 - Capture when transition has occurred (user → root)

Specification Modeling

- Does sequence of instructions violate system specification?
 - What is the system specification?
- Need to formally specify operations of potentially critical code
 - trusted code
- Verify post-conditions met



IDS Systems

- Anomaly Detection
 - Intrusion Detection Expert System (IDES) successor is NIDES
 - Network Security MonitorNSM
- Misuse Detection
 - Intrusion Detection In Our Time- IDIOT (colored Petri-nets)
 - USTAT?
 - ASAX (Rule-based)
- Hybrid
 - NADIR (Los Alamos)
 - Haystack (Air force, adaptive)
 - Hyperview (uses neural network)
 - Distributed IDS (Haystack + NSM)

- Similar to Audit system
 - Log events
 - Analyze log
- Difference:
 - happens real-time timely fashion
- (Distributed) IDS idea:
 - Agent generates log
 - Director analyzes logs
 - May be adaptive
 - Notifier decides how to handle result
 - GrIDS displays attacks in progress

Where is the Agent?

- Host based IDS
 - watches events on the host
 - Often uses existing audit logs
- Network-based IDS
 - Packet sniffing
 - Firewall logs

IDS Problem

- IDS useless unless accurate
 - Significant fraction of intrusions detected
 - Significant number of alarms correspond to intrusions
- Goal is
 - Reduce false positives
 - Reports an attack, but no attack underway
 - Reduce false negatives
 - An attack occurs but IDS fails to report

Intrusion Response

- Incident Prevention
 - Stop attack before it succeeds
 - Measures to detect attacker
 - Example: Jailing (also Honepots)
- Intrusion handling
 - Preparation for detecting attacks
 - Identification of an attack
 - Contain attack
 - Eradicate attack
 - Recover to secure state
 - Follow-up to the attack Punish attacker

Containment

- Passive monitoring
 - Track intruder actions
 - Eases recovery and punishment
- Constraining access
 - Downgrade attacker privileges
 - Protect sensitive information
 - Why not just pull the plug

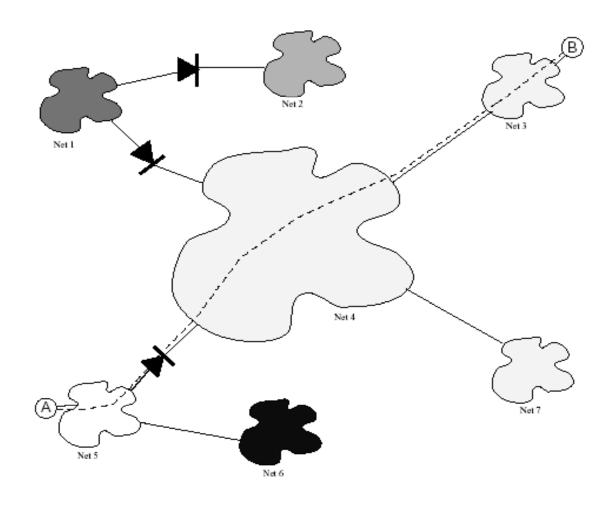
Eradication

- Terminate network connection
- Terminate processes
- Block future attacks
 - Close ports
 - Disallow specific IP addresses
 - Wrappers around attacked applications

Follow-Up

- Legal action
 - Trace through network
- Cut off resources
 - Notify ISP of action
- Counterattack
 - Is this a good idea?

Firewalls & VPN



What is a VPN?

- A network that supports a closed community of authorized users
 - Use the public Internet as part of the virtual private network
- There is traffic isolation
 - Contents, Services, Resources secure
- Provide security!
 - Confidentiality and integrity of data
 - User authentication
 - Network access control
- IPSec can be used

Tunneling in VPN

Perimeter Defense

- Organization system consists of a network of many host machines –
 - the system is as secure as the weakest link
- Use perimeter defense
 - Define a border and use gatekeeper (firewall)
- If host machines are scattered and need to use public network, use encryption
 - Virtual Private Networks (VPNs)

Perimeter Defense

- Is it adequate?
 - Locating and securing all perimeter points is quite difficult
 - Less effective for large border
 - Inspecting/ensuring that remote connections are adequately protected is difficult
 - Insiders attack is often the most damaging

- Total isolation of networked systems is undesirable
 - Use firewalls to achieve selective border control
- Firewall
 - Is a configuration of machines and software
 - Limits network access
 - "for free" inside many devices

Alternate:

a firewall is a host that mediates access to a network, allowing and disallowing certain type of access based on a configured security policy

What Firewalls can't do

- They are not a panacea
 - Only adds to defense in depth
 - Can provide false sense of security
- Cannot prevent insider attack
- Firewalls act at a particular layer

The Development of Firewalls First Generation

Packet filtering firewalls

- are simple networking devices that filter packets by examining every incoming and outgoing packet header
- Can selectively filter packets based on values in the packet header, accepting or rejecting packets as needed
 - IP address, type of packet, port request, and/or other elements

Packet Filtering Example Rules

Source Address	Destination Address	Service Port	Action
10.10.x.x	172.16.126.x	Any	Deny
192.168.x.x	10.10.x.x	Any	Deny
172.16.121.1	10.10.10.22	FTP	Allow
10.10.x.x	X.X.X.X	HTTP	Allow
X.X.X.X	10.10.10.25	HTTP	Allow
X.X.X.X	10.10.10.x	Any	Deny

Notes: These rules apply to a network at 10.10.x.x.

This table uses special, nonroutable IP addresses in the rules for this example. In reality, a firewall that connects to a public network will use real address ranges.

- Application-level firewalls
 - often consists of dedicated computers kept separate from the first filtering router (edge router)
 - Commonly used in conjunction with a second or internal filtering router - or proxy server
 - Proxy server, rather than the Web server, is exposed to outside world from within a network segment called the demilitarized zone (DMZ),
- Implemented for specific protocols

- Stateful inspection firewalls,
 - keep track of each network connection established between internal and external systems
 - state and context of each packet exchanged (who / when)
 - can restrict incoming packets by matching with requests from internal hosts
 - Non-matching packets it uses ACL rights to determine whether to allow the packet to pass

- A fourth-generation firewall, or dynamic packet filtering firewall,
 - allows only a particular packet with a specific source, destination, and port address to pass through the firewall
 - understands how the protocol functions, and by opening and closing pathways in the firewall
 - an intermediate form,
 - between traditional static packet filters and application proxies

Firewall Architectures

- For each type
 - can be implemented in a number of architectural configurations
- Four architectural implementations of firewalls are especially common:
 - Packet filtering routers
 - Screened-host firewalls
 - Dual-homed host firewalls
 - Screened-subnet firewalls

Packet Filtering Routers

- Most organizations with an Internet connection
 - use a router between their internal networks and the external service provider
 - Routers configured to block packets that the organization does not allow into the network
- Limitation
 - lacks auditing and strong authentication
 - complexity of the access control lists used to filter the packets can grow to the point of degrading network performance

Packet Filtering Router/Firewall

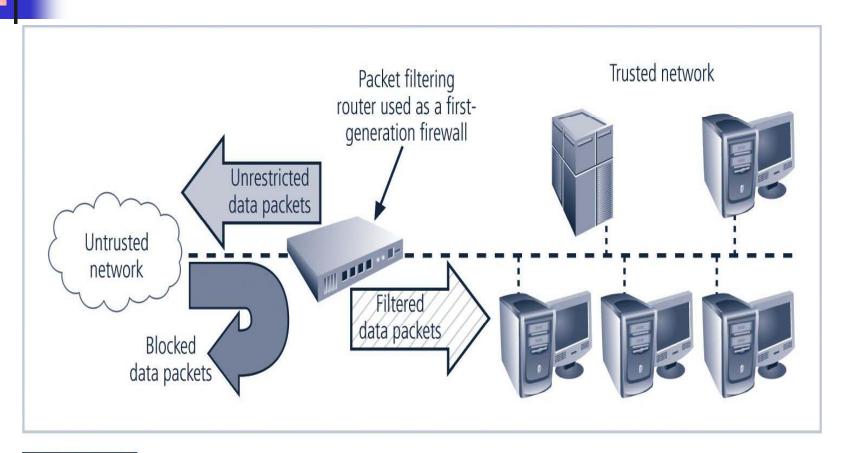


FIGURE 9-5 Packet Filtering Firewall

Screened-host firewall systems

- combine packet filtering router with a separate, dedicated firewall such as an application proxy server
- Helps minimize network traffic and load on the internal proxy
- Application proxy examines an application layer protocol, such as HTTP, and performs the proxy services
- This separate host, which is often referred to as a bastion host, represents a single, rich target for external attacks, and should be very thoroughly secured

Screened-Host Firewall

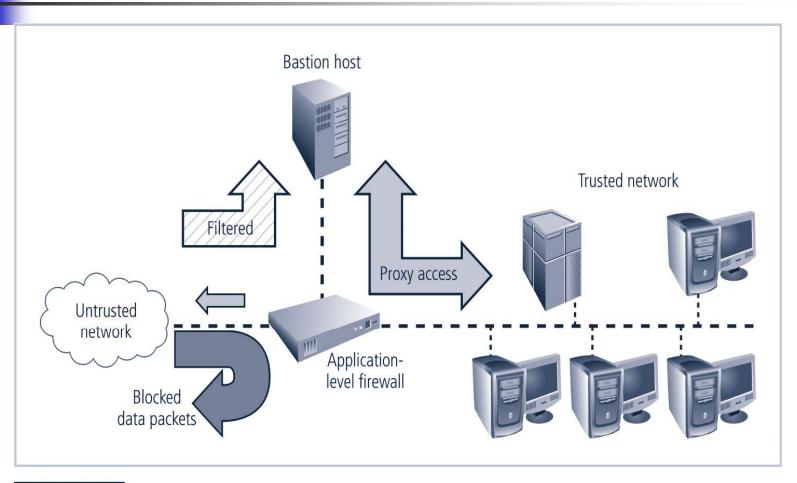
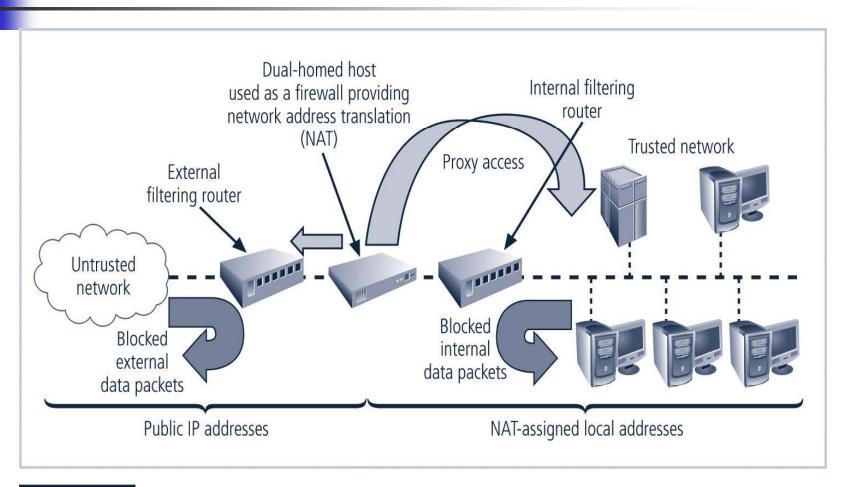
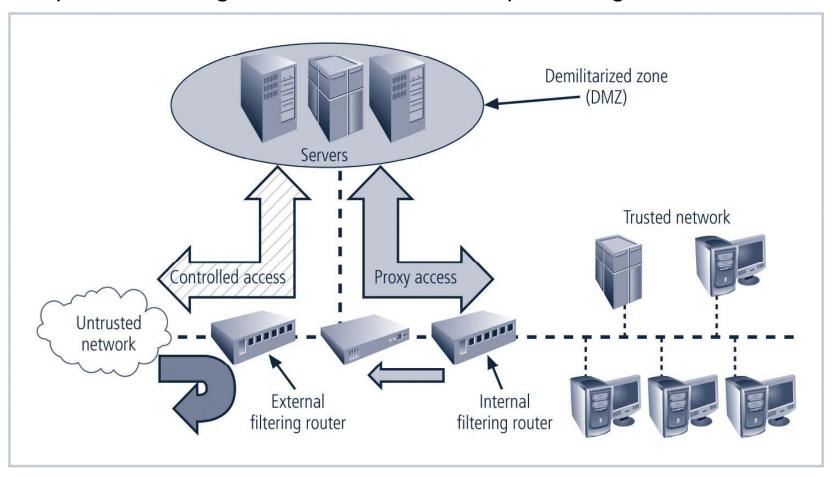


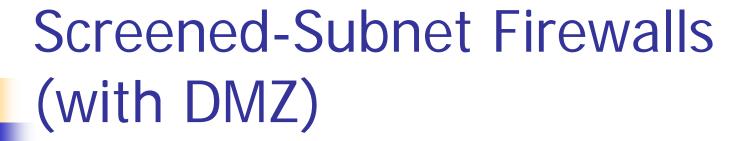
FIGURE 9-6 Screened-Host Firewall


Dual-Homed Host Firewalls

- In this configuration, the bastion host contains two network interfaces:
 - One connected to external network
 - One connected to internal network, requiring all traffic to travel through the firewall to move between the internal and external networks
- Network-address translation (NAT) is often implemented with this architecture
 - Converts external IP addresses to special ranges of internal IP addresses

Dual-Homed Host Firewalls (Continued)


- These special, non-routable addresses consist of three different ranges:
 - 10.x.x.x ,> 16.5 million usable addresses
 - 192.168.x.x ,> 65,500 addresses
 - 172.16.0.x 172.16.15.x ,> 4000 usable addresses


Figure 9-7 Dual-Homed Host Firewall

Screened-Subnet Firewalls (with DMZ)

consists of one or more internal bastion hosts located behind a packet filtering router, with each host protecting the trusted network

First general model

- uses two filtering routers, with one or more dual-homed bastion hosts between them
- Second general model shows connections are routed as follows:
 - Connections from the outside or untrusted network are routed through an external filtering router
 - Connections from the outside or untrusted network are routed into—and then out of—a routing firewall to the separate network segment known as the DMZ
 - Connections into the trusted internal network are allowed only from the DMZ bastion host servers

Auditing

What is Auditing?

- Auditing systems
 - Logging
 - Audit analysis
- Key issues
 - What to log?
 - What do you audit?
- Goals/uses
 - User accountability
 - Damage assessment
 - Determine causes of security violations
 - Describe security state for monitoring critical problems
 - Evaluate effectiveness of protection mechanisms

Audit System Structure

- Logger
 - Records information, usually controlled by parameters
- Analyzer
 - Logs may come from multiple systems, or a single system
 - May lead to changes in logging
 - May lead to a report of an event
- Notifier
 - Informs analyst, other entities of results of analysis
 - May reconfigure logging and/or analysis on basis of results
 - May take some action

Example: Windows NT

- Different logs for different types of events
 - System event logs record system crashes, component failures, and other system events
 - Application event logs record events that applications request be recorded
 - Security event log records security-critical events such as logging in and out, system file accesses, and other events
- Logs are binary; use event viewer to see them
- If log full, can have system shut down, logging disabled, or logs overwritten

Windows NT Sample Entry

Date: 2/12/2000 Source: Security

Time: 13:03 Category: Detailed Tracking

Type: Success EventID: 592

User: WINDSOR\Administrator

Computer: WINDSOR

Description:

A new process has been created:

New Process ID: 2216594592

Image File Name:

\Program Files\Internet Explorer\IEXPLORE.EXE

Creator Process ID: 2217918496
User Name: Administrator
FDomain: WINDSOR
Logon ID: (0x0,0x14B4c4)

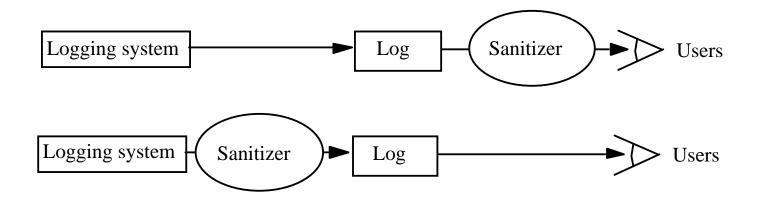
[would be in graphical format]

Designing an Audit System

- Goals determine what is logged
 - Idea: auditors want to detect violations of policy, which provides a set of constraints that the set of possible actions must satisfy
 - So, audit functions that may violate the constraints
- Constraint p_i : $action \Rightarrow condition$

Implementation Issues

- Show non-secure or find violations?
 - Former requires logging initial state and changes
- Defining violations
 - Does "write" include "append" and "create directory"?
- Multiple names for one object
 - Logging goes by *object* and not name
 - Representations can affect this
- Syntactic issues
 - Correct grammar unambiguous semantics



Log Sanitization

- U set of users, P policy defining set of information
 C(U) that U cannot see; log sanitized when all information in C(U) deleted from log
- Two types of P
 - C(U) can't leave site
 - People inside site are trusted and information not sensitive to them
 - C(U) can't leave system
 - People inside site not trusted or (more commonly) information sensitive to them
 - Don't log this sensitive information

Logging Organization

- Top prevents information from leaving site
 - Users' privacy not protected from system administrators, other administrative personnel
- Bottom prevents information from leaving system
 - Data simply not recorded, or data scrambled before recording (Cryptography)

Reconstruction

- Anonymizing sanitizer cannot be undone
- Pseudonymizing sanitizer can be undone
- Importance
 - Suppose security analysis requires access to information that was sanitized?

- Key: sanitization must preserve properties needed for security analysis
- If new properties added (because analysis changes), may have to resanitize information
 - This requires pseudonymous sanitization or the original log

- Company wants to keep its IP addresses secret, but wants a consultant to analyze logs for an address scanning attack
 - Connections to port 25 on IP addresses 10.163.5.10,
 10.163.5.11, 10.163.5.12, 10.163.5.13, 10.163.5.14,
 - Sanitize with random IP addresses
 - Cannot see sweep through consecutive IP addresses
 - Sanitize with sequential IP addresses
 - Can see sweep through consecutive IP addresses