Some useful Information
Mapping of Turing machine to protection system

· All Tape Symbols, States
(rights

· Tape cell

(subject

· Cell si has A

(si has A rights on itself

· Cell sl

(sl has end rights on itself (l represent the rightmost cell visited)
· State k, head at si
(si has k rights on itself (k is the current state)
· Distinguished right own: si owns si+1 for 1 ≤ i < l (last cell)
Bell-Lapadula Rules

Let L(S) = ls be the security clearance of subject S, and let L(O) = lo be the security classification of object O. For all security classifications li, i = 0, ..., k – 1, li < li+1.
Simple Security Condition, Preliminary Version: S can read O if and only if lo ≤ ls and S has discretionary read access to O.

*-Property (Star Property), Preliminary Version: S can write O if and only if ls ≤ lo and S has discretionary write access to O.
Biba Rules
Biba’s Model: Strict Integrity Policy (dual of Bell-LaPadula)

· s can read o (i(s) ≤ i(o)

(no read-down)

· s can write o (i(o) ≤ i(s)

(no write-up)

· s1 can execute s2 (i(s2) ≤ i(s1)

Low-Water-Mark Policy

· s can write o (i(o) ≤ i(s)

(prevents writing to higher level)
· s reads o (i’(s) = min(i(s), i(o))
(drops subject’s level)

· s1 can execute s2 (i(s2) ≤ i(s1)
(prevents executing higher level objects)
Chinese Wall Rules

CW-Simple Security Condition: S can read O if and only if any of the following holds.
· There is an object O' such that S has accessed O' and CD(O') = CD(O).

· For all objects O', O' (PR(S) (COI(O') ≠ COI(O).

· O is a sanitized object.

(O’ (PR(s) indicates O’ has been previously read by s)

CW-*-Property: A subject S may write to an object O if and only if both of the following conditions hold.
· The CW-simple security condition permits S to read O.
· For all unsanitized objects O', S can read O' (CD(O') = CD(O).
Clark-Wilson Certification and Enforcement Rules

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different) valid state.
Enforcement rule 1 (ER1): The system must maintain the certified relations, and must ensure that only TPs certified to run on a CDI manipulate that CDI.

Enforcement rule 2 (ER2): The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of the associated user. If the user is not associated with a particular TP and CDI, then the TP cannot access that CDI on behalf of that user.

Certification rule 3 (CR3): The allowed relations must meet the requirements imposed by the principle of separation of duty.

Enforcement rule 3 (ER3): The system must authenticate each user attempting to execute a TP.
Certification rule 4 (CR4): All TPs must append enough information to reconstruct the operation to an append-only CDI.

Certification rule 5 (CR5): Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.

Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an entity associated with that TP, may ever have execute permission with respect to that entity.
Core RBAC

Permissions = 2Operations x Objects

UA ((Users x Roles

PA (Permissions x Roles

assigned_users: Roles (2Users

assigned_permissions: Roles (2Permissions

Op(p): set of operations associated with permission p

Ob(p): set of objects associated with permission p
user_sessions: Users (2Sessions
session_user: Sessions (Users

session_roles: Sessions (2Roles
session_roles(s) = {r | (session_user(s), r) (UA)}

avail_session_perms: Sessions (2Permissions
RBAC with general Role hierarchy

authorized_users: Roles(2Users
· authorized_users(r) = {u | r’ ≥ r &(r’, u) (UA}

(Note that for any role r ≥ r – so all role assigned to r are also authorized to r)
authorized_permissions: Roles(2Permissions

· authorized_permissions(r) = {p | r ≥ r’ &(p, r’) (PA}

RH (Roles x Roles is a partial order, called the inheritance relation & written as ≥.

(r1 ≥ r2) (authorized_users(r1) (authorized_users(r2) &

authorized_permisssions(r2) (authorized_permisssions(r1)

Static SoD

SSD (2Roles x N

In absence of hierarchy

Collection of pairs (RS, n) where RS is a role set, n ≥ 2;

for all (RS, n) (SSD, for all t (RS: |t| ≥ n (∩r(t assigned_users(r)= (

In presence of hierarchy

Collection of pairs (RS, n) where RS is a role set, n ≥ 2;

for all (RS, n) (SSD, for all t (RS: |t| ≥ n (∩r(t authorized_uers(r)= (

Lipner’s Requiements

1. Users will not write their own programs, but will use existing production programs and databases.

2. Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.

3. A special process must be followed to install a program from the development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and the system logs that are generated.

