IS2150/TEL2810 Introduction to Security

Homework 3 Sample Solution

Question 1: Section 2.6 Exercises 1 and 2

1.
a
alicerec bobre cynavre
Alice ox r
Bab I 0X
Cyndy r w OrWX
a.
alicerc bobre cynadyvre
Alice 0x I I
EBob 0x
Cyndy I w OrWX

2. In these answers, », w, x, a. {. m, and o represent the read. write, execute, append. list, modify,
and own rights, respectively.
a. The key observation 1s that anyone can delete the rights, not p. So:
command delete all rights(p, g, &)
delete r in Alg, s5];

delete w in Alg, s5];
delete x in Alg, 5];
delete a in Alg, s5];
delete I in Alg, =];
delete m in Alg, 5] ;
delete o in Alg, 5] ;

and;
b. Here, we must condition the command on the presence of rights that p has over s:
command delete all rights(p, g, =)
if m © A[p, s] then
delete r in A[g, 5];
delete w in A[g, 5];
delete x in A[g, 5];

delete z in A[g, s5];
delete 1 in Alg, =];
delete m in Alg, s];
delete o in Alg, s];

aend;

c. This one 1s trickier. We cannot test for the absense of rights directly, so we build a
surrogate object z. The 1dea 1s that A[g. z] will contain the right o if g does not have o
rights over s, and will contain the right m 1f ¢ has o rights over 5. So, we need some
auxiliary commands:
command make aux okjectig, =z

create object z=;
enter o in Alg, =z];
end;
command fixup aux cbject (g, s, =)
if o € Alg, s] then
delete o in Alg, z];
enter m in Alg, =2];
end;
MNow we write the command to delete the rights 1f p has m nights over s and ¢ does not have
o rights over 5. The last econdition 1s logically equivalent to g having o nghts over z:
command prelim delete all rightsip, g, s, Z)
if m & A[p, =] and o € A[g, z] then

delete r in Alg, =];
delete w in Alg, s];
delete x in Alg, s];
delete z in Alg, s5];
delete 1 in Alg, =];
delete m in Alg, =];
delete o in Alg, s];

aend;

Finally, we create the actual delete command:

command delete all rights(p, g, s, =z)
make aux cobject (g, =z):
fixup aux cbjectiqg, s, z2);
prelim delete all rights(p, g9, s, 2Z);
destroy object z;

end;

Question 1: Section 3.5 Exercise 1

First, note that the sequence of commands used 1s of minimal length, and that we are ignoring
delete and destroy operations. These mean that every command must add a right to the
matrix. Otherwise, the command can be deleted from the sequence without affecting the final
state of the matrix, contradicting the assumption that the command sequence 1s of minimal

length.
Consider two constructions on a system with objects o and o;. In construction M, we create

two subjects, 51 and 5. We then add a set of nghts o to A[sq. o). and a set of nights p to A[s.
05]. Some command ¢ then performs a test to see if right 7 1s mn A[5y. o1] and a (possibly differ-
ent) right " 1s in A[s,. 0;]. In construction N, we create one subject, 51. We then add the set of
rights o to A[sq. o1] and the set of ights p to A[sq. ;] (where o and p are the same as 1 con-
struction M). Consider the command ¢, which tests to see if nght » 1s in 4[5y, 04] and right »~
1s in A[sq. 07] (where and » " are as in construction M). The claim 1s that commands ¢ and ¢
both execute the same primitive operation.

To see this. consider the conditional 1n ¢ that checks whether " 15 1n A[s5. ;). and compare 1t
to the conditional in ¢ " that checks if #* 15 1n A[s5y. 0;]. By the construction. the two entries
contain all elements of " Note that A[s;. 0;] may contain additional nights (specifically. those
in A[sy, 07] from construction M), but the conditional tests for the presence of rights. Hence ¢

executes the primitive operations in the body of the conditional 1f. and only if. ¢ does.
This also answers the question about whether the result holds if one could test for the absence
of rights. Suppose the set of rights 1n A[s;. o;] 1 construction M 1s a proper subset of the set

of rights in A[sy, 07] 1n construction . This means there 1s at least one nght n 4[5y, 05] 1n
construction V that 1s not m A[s2, 0,] in construction M. Hence a test for the absence of that
right in 4[5,. 07] n construction N will succeed. but a test for the absence of that nght mn A[sq.
0] 1n construction M will fail. So, the result does not hold if one could test for the absence of

rights.

Question 2: Exercise on Lattice
S=1{11, 12, 13,21, 22, 23, 31, 32, 33}

The relation < over set S is partial order, as it is reflexive (e.g., 11511), anti-symmetric (e.g., 11512 but 12£11),

and transitive (e.g., 11512, 12532, and 11<532). However, it is not a total order because not every pair of elements

are comparable (e.g., 13%32 and 32413, i.e., the relation is not applying to 13 and 32 either way).

/33\

13/ \22/ \31
NSNS
N

1

It’s also a lattice. Because in addition to being partial order (reflexive, anti-symmetric, and transitive), every two
elements have a greatest lower bound and least upper bound.

Question 3: Section 4.8 Exercise 3, 4, 5, and 6

3.

(a) Assume that the system has no integrity controls. This is true. If a system lacks integrity, then data can
be changed without restraint. So, anyone can change another user’s authentication information, allowing
them access to that user’s account—and allowing them to see any data for that user or, by generalizing this
in the obvious way, any user on the system. If some integrity controls work, then the ability of the system
to provide confidentiality depends on the effectiveness of the integrity controls and their use to protect
critical information.

b. Assume that the system has no confidentiality controls. If there is no confidentiality, then all
authentication information will be available. Unless authentication mechanisms do not use secret
information (for example, biometrics or positions), any user can authenticate as another user. Hence there is
no integrity. Now suppose authentication information does not rely on confidentiality. Can the data in a file
be kept confidential? To do so, either the user must be prevented from reading the file (for which there are
no controls) or from reading the data in the file (for example, by cryptography). In the latter case, if the data
is encrypted on the system, the key must be available, and as there is no confidentiality, the key can be
read. If the data is not encrypted on the system, then the data cannot be used on the system but will remain
confidential. So, the answer is that the system cannot provide integrity. But if data is protected when placed
on the system, it will remain protected as long as confidentiality mechanisms were applied to the data itself
(and not to the containing object) and the mechanisms to undo them are not on the system.

The problem with the cryptographer’s claim is how to protect the keys. At some point, the cryptographic
keys must be available to encipher, decipher, or validate the integrity of data. If the keys are kept in
memory, they must be protected, either by other cryptographic keys (which require similar protection) or
by non-cryptographic access control mechanisms. If the keys are kept off-line (for example, in a smart card
or a dongle), access to the external unit must be protected either by cryptographic keys (which require the
protection discussed earlier) or non-cryptographic access control. By a simple process of induction, or
reductio ad absurdam, non-cryptographic based access control mechanisms must be used at some point,
refuting the cryptographer’s claim.

Classify each of the following as an example of a mandatory, discretionary, or originator controlled policy,
or a combination thereof. Justify your answers.

1. The file access control mechanisms of the UNIX operating system
discretionary access control
Since users can assign and modify permissions that they possess, access control is discretionary.

2. A system in which no memorandum can be distributed without the author's consent
originator access control
This would be originator access control. This is because if I am the author of the memorandum I am
the one who can say my information can be distributed, no one else can.

3. A military facility in which only generals can enter a particular room
mandatory access control
The system controls access and an individual cannot change that. There is a somewhat tricky scenario
though that could possibly make this discretionary; if there is an owner of the ‘military facility' and this
person also had the ability to promote military personnel to 'general'. In this way the facility owner
could grant access to their facility.

4. A university registrar's office, in which a faculty member can see the grades of a particular student
provided that the student has given written permission for the faculty member to see them.

discretionary access control
Here the student grants the permission to the faculty to see the grades. If he doesn’t grant permission to
a particular faculty member, that faculty member can’t see the grades.

This is a combination of an originator controlled access control policy and a discretionary access
control policy. The originator, which is the registrar, controls dissemination of the data, but the student
also has some control, and allows access to the individual record based upon the identity of the faculty
member.

Question 4: Section 5.5 Exercise 2, 4, 5, and 6

2.

Given the security levels TOP SECRET, SECRET, CONFIDENTIAL, and UNCLASSIFIED
(ordered from highest to lowest), and the categories A, B, and C, specify what type of access
(read, write, both, or neither) is allowed in each of the following situations. Assume that
discretionary access controls allow anyone access unless otherwise specified.

Simple security property says that a subject can write to object if subject compartment
dominates object compartment. *-property says that subject can write to object if object
compartment dominates subject compartment. Let (L,C) and (L’, C*) be compartments
for different entities. ((L,C) dominates (L’,C’) < L’ < L and C’ ¢ C) is the principle we
are going to apply to specify what type of access that the following sentences have.

a. Paul, cleared for (TOP SECRET, { A, C }), wants to access a document classified
(SECRET, { B, C }).
Paul cannot read and cannot write to the document because Paul’s clearance level does
not dominate document’s classification level and vice versa.

b. Anna, cleared for (CONFIDENTIAL, { C }), wants to access a document classified
(CONFIDENTIAL, {B }).
Anna cannot read and cannot write to the document because Anna Paul’s clearance
level does not dominate document’s classification level and vice versa.

c. Jesse, cleared for (SECRET, { C }), wants to access a document classified
(CONFIDENTIAL, { C }).
Jesse can read document because Jesse Paul’s clearance level dominates document ’s
classification level, but Jesse cannot write to the document because document’s
classification level does not dominate Jesse’s clearance level.

d. Sammi, cleared for (TOP SECRET, { A, C }), wants to access a document classified
(CONFIDENTIAL, {A }).
Sammi can read document because Sammi Paul’s clearance level dominates document’s
classification level, but Sammi cannot write to the document because document’s
classification level does not dominate Jesse’s clearance level.

e. Robin, who has no clearances (and so works at the UNCLASSIFIED level), wants to
access a document classified (CONFIDENTIAL, { B }).
Robin cannot read document because Jesse Paul’s clearance level does not dominate
document’s classification level, but Robin can write to the document because
document’s classification level dominates Jesse’s clearance level.

4.

In the DG/UX system, the virus prevention region is below the user region to prevent any user
programs from altering (writing) code or data in a region that contains system or site executa-
bles. For example, if a user loads and executes a program in the user region, that program can-
not alter system executables because of the rule forbidding writes down. Hence computer
viruses can spread only within the user region. Note that the DG/UX system disallows writes
up, so the computer virus at the user region could not alter executables or other files in the
administrative region. (In a strict implementation of the Bell-LaPadula model, they would be
able to write to information in this region.)

In the DG/UX system, the administrative region is above the user region to prevent the users
from reading information stored at that level. For example, the Identification and Authoriza-
tion database contains sensitive mformation, such as authentication information, that users
should notbe able to see. Note that the DG/UX system also disallows writes up, so users can-
not append to or alter information in this region. (In a strict implementation of the Bell-L.aPad-
ula model, they would be able to write to information in this region.)

The three properties are the *-property. the simple security condition, and the discretionary
security property. The *-property bars writing down; as raising the classification of an object
effectively writes up, raising the classification does not violate any property.

The simple security condition bars reading up. Raising the classification makes the object
once available to a particular compartment no longer available. So, until the information in
that object is changed, a lower-level subject is aware of the contents of a higher-level object. If
you interpret the siunple security property as barring any knowledge of what is in a higher-
level object, this is a violation of the simple security condition. However, the lower-level sub-
ject cannot know whether a higher-level subject has changed that object. So the simple secu-
rity condition is not violated if you interpret it to mean that an actual read must occur. (This is
the customary interpretation, by the way.) An implementation observation: if access is
checked only at opens (as it 1s with the UNIX operating system), a violation may arise when
an open file is reclassified upwards. The process having the file open can still read it. If that
process is at a lower level, each read violates the simple security condition.

The discretionary security property does not affect reading or writing at different levels.

Question 5:

Mappings:

S = {Sla S2, 83, S4}
O0=S
R = {own, end, A, B, C, ko, ki, ks, k3}

Also, each transition function input/output in TM maps to corresponding commands in a protection system.

Initial state given:

S| Sy S3 Sq
1 2 3 4 Sy A, ko own
‘A|A‘C|B| $2 A own
S3 C own
State k, S4 B, end

Applying the transition function 8 (ko,A) = (k,,C,R) we get:

1 2 3 4 il i 53 i
‘ C | A ‘ C | B | St C own
Sy Ak, own
S3 C own
State k, sS4 B, end

Applying the transition function 8 (k,,A) = (k;,C,L) we get :

1 2 3 4 S S2 S3 S4
‘C |C ‘C |B | St C k; own
Sy C own
S3 C own
State k; S B, ond

Applying the transition function 8 (k;,C) = (k,,B,R) we get:

1 2 3 4 S1 S2 S3 S4
‘ B | C ‘ C | B | S B own
Sy C, k own
State k S3 C own
ate K Sy B, end

Applying the transition function & (k,,C) = (k;,B,R) and we get :

1 2 3 4 s S5 S5 St
‘ B | B ‘ C | B | S B own
Sp B own
State k; S3 C k own
Sy B, end

Applying the transition function & (k;,C) = (k,,B,R) and we get :

1 2 3 4 51 52 53 84
‘ B | B ‘ B | B St B own
T Sy B own
State k, 83 B own
Sy4 Bs st
end

This is the last state, because no transition function is applicable now; halting state kj is not reached.

