Access Control Model
Foundational Results
Objective

- Understand the basic results of the HRU model
 - Safety issue
 - Turing machine
 - Undecidability
Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components

- Protection state (P)
 - A subset of the above values that deals with protection (determines if system state is secure)

- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands
Protection System

- Subject \((S: \text{set of all subjects})\)
 - e.g. users, processes, agents, etc.
- Object \((O: \text{set of all objects})\)
 - e.g. processes, files, devices
- Right \((R: \text{set of all rights})\)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix \(A: \ a[s, o] \subseteq R\)
- Set of Protection States: \((S, O, A)\)
 - Initial state \(X_0 = (S_0, O_0, A_0)\)
State Transitions

\(X_i \vdash_{\tau_{i+1}} X_{i+1} \): upon transition \(\tau_{i+1} \), the system moves from state \(X_i \) to \(X_{i+1} \)

\(X \vdash^* Y \): the system moves from state \(X \) to \(Y \) after a set of transitions

\(X_i \vdash c_{i+1} (p_{i+1,1}, p_{i+1,2}, \ldots, p_{i+1,m}) X_{i+1} \): state transition upon a command

For every command there is a sequence of state transition operations
Primitive commands (HRU)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create subject s</td>
<td>Creates new row, column in ACM; s does not exist prior to this</td>
</tr>
<tr>
<td>Create object o</td>
<td>Creates new column in ACM; o does not exist prior to this</td>
</tr>
<tr>
<td>Enter r into $a[s, o]$</td>
<td>Adds r right for subject s over object o</td>
</tr>
<tr>
<td></td>
<td>Ineffective if r is already there</td>
</tr>
<tr>
<td>Delete r from $a[s, o]$</td>
<td>Removes r right from subject s over object o</td>
</tr>
<tr>
<td>Destroy subject s</td>
<td>Deletes row, column from ACM;</td>
</tr>
<tr>
<td>Destroy object o</td>
<td>Deletes column from ACM</td>
</tr>
</tbody>
</table>
Primitive commands (HRU)

Create subject s

Creates new row, column in ACM;
s does not exist prior to this

Precondition: $s \notin S$

Postconditions:

$S' = S \cup \{s\}$, $O' = O \cup \{s\}$

$(\forall y \in O')[a'[s, y] = \emptyset]$ (row entries for s)

$(\forall x \in S')[a'[x, s] = \emptyset]$ (column entries for s)

$(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Primitive commands (HRU)

Enter r into $a[s, o]$ Adds r right for subject s over object o
Ineffective if r is already there

Precondition: $s \in S$, $o \in O$
Postconditions:
$S' = S$, $O' = O$

$a'[s, o] = a[s, o] \cup \{r\}$
$(\forall x \in S')(\forall y \in O')$
$[(x, y) \neq (s, o) \rightarrow a'[x, y] = a[x, y]]$
System commands

- [Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

 Command $create_file(p, f)$

 Create object f

 Enter own into $a[p, f]$

 Enter r into $a[p, f]$

 Enter w into $a[p, f]$

 End
System commands

- Process p creates a new process q

 Command *spawn_process*(p, q)

 Create subject q;
 Enter own into a[p,q]
 Enter r into a[p,q]
 Enter w into a[p,q]
 Enter r into a[q,p]
 Enter w into a[q,p]

 End

Parent and child can signal each other
System commands

- Defined commands can be used to update ACM

 Command *make_owner*(p, f)

 Enter *own* into a[p,f]

 End

- Mono-operational:

 Command invokes only one primitive
Conditional Commands

- Mono-operational + mono-conditional

Command $grant_read_file(p, f, q)$

If own in $a[p,f]$
Then
 Enter r into $a[q,f]$
End
Conditional Commands

- Mono-operational + biconditional

Command grant_read_file(p, f, q)

If r in a[p, f] and c in a[p, f]

Then

Enter r into a[q, f]

End

- Why not “OR”??
Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being “secure”
- Is there a generic algorithm that allows us to determine whether a computer system is secure?
What is a secure system?

- **A simple definition**
 - A secure system doesn’t allow violations of a security policy

- **Alternative view: based on distribution of rights**
 - **Leakage of rights**: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in an element of A.

 A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r
What is a secure system?

- Safety of a system with initial protection state X_o
 - Safe with respect to r: System is safe with respect to r if r can never be leaked
 - Else it is called unsafe with respect to right r.

Safety Problem: \textit{formally}

- Given
 - Initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_0[s, o]$

- Can we reach a state X_n where
 - $\exists s, o$ such that $A_n[s, o]$ includes a right r not in $A_0[s, o]$?
 - If so, the system is not safe
 - But is “safe” secure?
Undecidable Problems

- **Decidable Problem**
 - A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.

- **Undecidable Problem**
 - A problem that cannot be solved for all cases by any algorithm whatsoever
Decidability Results (Harrison, Ruzzo, Ullman)

- **Theorem:**
 - Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.
Decidability Results
(Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands \(k \) to leak
 - Delete/destroy: Can’t leak (or be detected)
 - Create/enter: new subjects/objects “equal”, so treat all new subjects as one
 - No test for absence
 - Tests on \(A[s_1, o_1] \) and \(A[s_2, o_2] \) have same result as the same tests on \(A[s_1, o_1] \) and \(A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2] \)

- If \(n \) rights leak possible, must be able to leak \(k = n(|S_0|+1)(|O_0|+1)+1 \) commands

- Enumerate all possible states to decide
Decidability Results

(Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof – need to know Turing machines and halting problem
The **halting problem**: Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).
Turing Machine & Safety problem

- Theorem:
 - It is undecidable if a given state of a given protection system is safe for a given generic right

- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)

- TM is an abstract model of computer
 - Alan Turing in 1936
Turing Machine

- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state

Current state is k
Current symbol is C
Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - In state k, symbol m on tape location is replaced by symbol m',
 - Head moves one cell to the left, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state
Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state.

Current state is k
Current symbol is C
TM2Safety Reduction

Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_i has $A \Rightarrow s_i$ has A rights on itself
- Cell $s_k \Rightarrow s_k$ has end rights on itself
- State p, head at $s_i \Rightarrow s_i$ has p rights on itself
- Distinguished Right own:
 - s_i owns s_i+1 for $1 \leq i < k$

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td></td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td>C k</td>
<td>own</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
<td>D end</td>
</tr>
</tbody>
</table>
Command Mapping
(Left move)

\[\delta(k, C) = (k_1, X, L) \]

If head is not in leftmost command \(c_{k,C}(s_i, s_{i-1}) \)
if own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_p, s_i] \)
then
- delete \(k \) from \(A[s_p, s_i] \);
- delete \(C \) from \(A[s_p, s_i] \);
- enter \(X \) into \(A[s_p, s_i] \);
- enter \(k_1 \) into \(A[s_{i-1}, s_{i-1}] \);
End
Command Mapping
(Left move)

\[\delta(k, C) = (k_1, X, L) \]

If head is not in leftmost command \(c_{k,C}(s_i, s_{i-1}) \)

if own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_j] \) and \(C \) in \(a[s_p, s_i] \)

then

- delete \(k \) from \(A[s_p, s_i] \);
- delete \(C \) from \(A[s_p, s_i] \);
- enter \(X \) into \(A[s_p, s_i] \);
- enter \(k_1 \) into \(A[s_{i-1}, s_{i-1}] \);

End

If head is in leftmost both \(s_i \) and \(s_{i-1} \) are \(s_1 \)
Command Mapping
(Right move)

\[\delta(k, C) = (k_1, X, R) \]

Command \[c_{k,C}(s_i, s_{i+1}) \]

if *own* in \[a[s_{i'}, s_{i+1}] \] and *k* in \[a[s_i, s_i'] \] and *C* in \[a[s_{i'}, s_i] \]

then
- delete *k* from \[A[s_{i'}, s_i] \];
- delete *C* from \[A[s_i, s_i'] \];
- enter *X* into \[A[s_{i'}, s_i] \];
- enter \[k_1 \] into \[A[s_{i+1}, s_{i+1}] \];

end

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td></td>
<td>C</td>
<td>(k)</td>
<td>own</td>
</tr>
<tr>
<td>(s_4)</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

Current state is \(k \)
Current symbol is \(C \)
Command Mapping (Right move)

\[\delta(k, C) = (k_1, X, R) \]

Command Mapping

\[
c_{k,C}(s_i, s_{i+1})
\]

if own in \(a[s_{\hat{i}}, s_{i+1}]\) **and k in** \(a[s_{\hat{i}}, s_i]\) **and C in** \(a[s_{\hat{i}}, s_i]\) **then**

- delete **k from** \(A[s_{\hat{i}}, s_i]\);
- delete **C from** \(A[s_{\hat{i}}, s_i]\);
- enter **X into** \(A[s_{\hat{i}}, s_i]\);
- enter \(k_1\) **into** \(A[s_{i+1}, s_{i+1}]\);

end

- \(s_1\) \(A\) own
- \(s_2\) \(B\) own
- \(s_3\) \(X\) own
- \(s_4\) \(D\ k_1\) end

Current state is \(k_1\)
Current symbol is \(C\)
head

\[\delta(k, C) = (k_1, X, R) \]
Command Mapping
(Rightmost move)

\[\delta(k_1, D) = (k_2, Y, R) \] at end becomes

command crightmost\(_{k,C}(s_i, s_{i+1})\)
if end in \(a[s_i, s_i]\) and \(k_1\) in \(a[s_i, s_i]\) and \(D\) in \(a[s_i, s_i]\)
then
- delete end from \(a[s_i, s_i]\);
- create subject \(s_{i+1}\);
- enter own into \(a[s_i, s_i, s_{i+1}]\);
- enter end into \(a[s_i, s_i, s_{i+1}]\);
- delete \(k_1\) from \(a[s_i, s_i]\);
- delete \(D\) from \(a[s_i, s_i]\);
- enter \(Y\) into \(a[s_i, s_i]\);
- enter \(k_2\) into \(A[s_i, s_i]\);
end

\[\delta(k_1, C) = (k_2, Y, R) \]
$$\delta(k_1, D) = (k_2, Y, R)$$ at end becomes

command crightmost_{k,C}(s_i,s_{i+1})
if end in a[s_i,s_{i}] and k_1 in a[s_i,s_{i}] and D
in a[s_i,s_{i}]
then
delete end from a[s_i,s_{i}];
create subject s_{i+1};
enter own into a[s_i,s_{i+1}];
enter end into a[s_{i+1}, s_{i+1}];
delete k_1 from a[s_i,s_{i}];
delete D from a[s_i,s_{i}];
enter Y into a[s_i,s_{i}];
enter k_2 into A[s_i,s_{i}];
end
Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM

- If TM enters state q_f, then right has leaked

- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached

- Conclusion: safety question undecidable
Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE.

- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right:
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity.

- The safety question for biconditional monotonic protection systems is undecidable.

- The safety question for monoconditional, monotonic protection systems is decidable.

- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.