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Objective

 Understand the basic results of the HRU 
model

 Saftey issue

 Turing machine

 Undecidability
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Protection System

 State of a system

 Current values of 
 memory locations, registers, secondary storage, etc.

 other system components

 Protection state (P)

 A subset of the above values that deals with protection 
(determines if system state is secure)

 A protection system 

 Captures the conditions for state transition

 Consists of two parts:
 A set of generic rights

 A set of commands
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Protection System

 Subject (S: set of all subjects)
 e.g. users, processes, agents, etc.

 Object (O: set of all objects)
 e.g. processes, files, devices

 Right (R: set of all rights)
 An action/operation that a subject is 

allowed/disallowed on objects

 Access Matrix A: a[s, o] ⊆R

 Set of Protection States: (S, O, A)
 Initial state X0 = (S0, O0, A0)
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State Transitions

Xi Xi+1

i+1

Xi ├i+1 Xi+1 : upon transition i+1, the 
system moves from state Xi to Xi+1

X ├* Y : the system moves from 
state X to Y after a set of transitions X Y

*

Xi Xi+1

ci+1 (pi+1,1, pi+1,2, …, pi+1,m)

Xi ├ ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : 

state transition upon a command
For every command there is a sequence of 
state transition operations
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Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 

s does not exist prior to this

Create object o
Creates new column in ACM

o does not exist prior to this

Enter r into a[s, o]
Adds r right for subject s over object  o

Ineffective if r is already there

Delete r from a[s, o] Removes r right from subject s over object  o

Destroy subject s Deletes row, column from ACM;

Destroy object o Deletes column from ACM
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Primitive commands (HRU)

Create subject s
Creates new row, column in ACM; 

s does not exist prior to this

Precondition: s  S
Postconditions:

S´ = S { s }, O´ = O { s }

(y  O´)[a´[s, y] = ] (row entries for s)
(x  S´)[a´[x, s] = ] (column entries for s)
(x  S)(y  O)[a´[x, y] = a[x, y]]
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Primitive commands (HRU)

Enter r into a[s, o]
Adds r right for subject s over object  o

Ineffective if r is already there

Precondition: s  S, o  O
Postconditions:

S´ = S, O´ = O

a´[s, o] = a[s, o]  { r }
(x  S´)(y  O´) 
[(x, y)(s, o)  a´[x, y] = a[x, y]]
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System commands

 [Unix] process p creates file f with 
owner read and write (r, w) will be 
represented by the following:

Command create_file(p, f)

Create object f

Enter own into a[p,f]

Enter r into a[p,f]

Enter w into a[p,f]

End
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System commands

 Process p creates a new process q
Command spawn_process(p, q)

Create subject q;

Enter own into a[p,q]

Enter r into a[p,q]

Enter w into a[p,q]

Enter r into a[q,p]

Enter w into a[q,p]

End

Parent and child can
signal each other
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System commands

 Defined commands can be used to update 
ACM

Command make_owner(p, f)

Enter own into a[p,f]

End

 Mono-operational: 

 Command invokes only one primitive
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Conditional Commands

 Mono-operational + mono-
conditional

Command grant_read_file(p, f, q)

If own in a[p,f]

Then 

Enter r into a[q,f]

End
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Conditional Commands

 Mono-operational + biconditional

Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]

Then 

Enter r into a[q,f]

End

 Why not “OR”??
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Fundamental questions

 How can we determine that a system is 
secure?

 Need to define what we mean by a system 
being “secure”

 Is there a generic algorithm that allows 
us to determine whether a computer 
system is secure?
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What is a secure system?

 A simple definition
 A secure system doesn‟t allow violations of a security 

policy

 Alternative view: based on distribution of rights 

 Leakage of rights: (unsafe with respect to right r)
 Assume that A representing a secure state does not 

contain a right r in an element of A.

 A right r is said to be leaked, if a sequence of 
operations/commands adds r to an element of A, 
which did not contain r
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What is a secure system?

 Safety of a system with initial protection 
state Xo

 Safe with respect to r:  System is safe with 
respect to r if r can never be leaked

 Else it is called unsafe with respect to right r.
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Safety Problem: 
formally

 Given
 Initial state X0 = (S0, O0, A0)

 Set of primitive commands c

 r is not in A0[s, o]

 Can we reach a state Xn where 
 s,o such that An[s,o] includes a right r not 

in A0[s,o]?

- If so, the system is not safe

- But is “safe” secure?
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Undecidable Problems

 Decidable Problem

 A decision problem can be solved by an 
algorithm that halts on all inputs in a finite 
number of steps. 

 Undecidable Problem

 A problem that cannot be solved for all 
cases by any algorithm whatsoever
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Decidability Results
(Harrison, Ruzzo, Ullman)

 Theorem:

 Given a system where each command consists of 
a single primitive command (mono-operational), 
there exists an algorithm that will determine if a 
protection system with initial state X0 is safe with 
respect to right r.
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Decidability Results
(Harrison, Ruzzo, Ullman)

 Proof:  determine minimum commands k to leak

 Delete/destroy:  Can‟t leak (or be detected)

 Create/enter:  new subjects/objects “equal”, so treat 
all new subjects as one
 No test for absence

 Tests on A[s1, o1] and A[s2, o2] have same result as the same tests 
on A[s1, o1] and A[s1, o2] = A[s1, o2] A[s2, o2]

 If n rights leak possible, must be able to leak k= 
n(|S0|+1)(|O0|+1)+1 commands

 Enumerate all possible states to decide
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Decidability Results
(Harrison, Ruzzo, Ullman)

 It is undecidable if a given state of a 
given protection system is safe for a 
given generic right

 For proof – need to know Turing 
machines and halting problem
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Turing Machine & halting 
problem

 The halting problem: 
 Given a description of an algorithm and a 

description of its initial arguments, 
determine whether the algorithm, when 
executed with these arguments, ever halts 
(the alternative is that it runs forever 
without halting). 
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Turing Machine & Safety 
problem

 Theorem: 

 It is undecidable if a given state of a given 
protection system is safe for a given generic right

 Reduce TM to Safety problem

 If Safety problem is decidable then it implies that 
TM halts (for all inputs) – showing that the halting 
problem is decidable (contradiction)

 TM is an abstract model of computer

 Alan Turing in 1936
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Turing Machine

 TM consists of
 A tape divided into cells; infinite in one 

direction

 A set of tape symbols M
 M contains a special blank symbol b

 A set of states K

 A head that can read and write symbols 

 An action table that tells the machine 
how to transition

 What symbol to write

 How to move the head („L‟ for left and 
„R‟ for right)

 What is the next state

A B C …

head

Current state is k

Current symbol is C

D
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Turing Machine

 Transition function d(k, m) = 
(k , m , L):

 In state k, symbol m on tape 
location is replaced by symbol 
m , 

 Head moves one cell to the 
left, and TM enters state k 

 Halting state is qf

 TM halts when it enters this 
state

A B C …

head

Current state is k

Current symbol is C

D

Let d(k, C) = (k1, X, R)

where k1 is the next state
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Turing Machine

1 2 3 4

Let d(k, C) = (k1, X, R)

where k1 is the next state

A B C …

head

Current state is k

Current symbol is C

D A B ? …

1 2 3 4

head

?

A B ? …

1 2 3 4

head

?

Let d(k1, D) = (k2, Y, L)

where k2 is the next state

?

?
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TM2Safety
Reduction 

Proof:  Reduce TM to safety 
problem 
 Symbols, States  rights

 Tape cell  subject

 Cell si has A  si has A rights on 
itself

 Cell sk  sk has end rights on itself

 State p, head at si  si has p rights 
on itself

 Distinguished Right own:  

 si owns si+1 for 1 ≤ i < k

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4
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Command Mapping
(Left move)

d(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, L)
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Command Mapping
(Left move)

d(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B k1

X

D end

own

own

own

A B X …

1 2 4

head
Current state is k1

Current symbol is D

D

1 2 3 4

d(k, C) = (k1, X, L)

If head is in leftmost both si and si-1 are s1
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Command Mapping
(Right move)

d(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, R)
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Command Mapping
(Right move)

d(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B C …

1 2 4

head

Current state is k1

Current symbol is C

D

1 2 3 4

d(k, C) = (k1, X, R)
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Command Mapping
(Rightmost move)

d(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B X …

1 2 4

head

Current state is k1

Current symbol is C

D

1 2 3 4

d(k1, C) = (k2, Y, R)
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Command Mapping
(Rightmost move)

d(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own

A B X …

1 2 4

head

Current state is k1

Current symbol is D

D

1 2 3 4

d(k1, D) = (k2, Y, R)

b k1end

own

s5

s5
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Rest of Proof

 Protection system exactly simulates a TM
 Exactly 1 end right in ACM
 Only 1 right corresponds to a state
 Thus, at most 1 applicable command in each 

configuration of the TM

 If TM enters state qf, then right has leaked

 If safety question decidable, then represent 
TM as above and determine if qf leaks

 Leaks halting state  halting state in the matrix 
Halting state reached

 Conclusion: safety question undecidable
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Other results

 For protection system without the create primitives, (i.e., delete 
create primitive); the safety question is complete in P-SPACE

 It is undecidable whether a given configuration of a given 
monotonic protection system is safe for a given generic right
 Delete destroy, delete primitives; 
 The system becomes monotonic as they only increase in size 

and complexity

 The safety question for biconditional monotonic protection 
systems is undecidable

 The safety question for monoconditional, monotonic protection 
systems is decidable

 The safety question for monoconditional protection systems 
with create, enter, delete (and no destroy) is decidable.


