Access Control Model

Foundational Results
Objective

- Understand the basic results of the HRU model
 - Safety issue
 - Turing machine
 - Undecidability
Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components

- Protection state (P)
 - A system state that is considered secure

- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands
Protection System

- **Subject** (S: set of all subjects)
 - Eg.: users, processes, agents, etc.
- **Object** (O: set of all objects)
 - Eg.: Processes, files, devices
- **Right** (R: set of all rights)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix A: $a[s, o] \subseteq R$
- **Set of Protection States**: (S, O, A)
 - Initial state $X_0 = (S_0, O_0, A_0)$
State Transitions

\(X_i \vdash_{\tau_{i+1}} X_{i+1}\) : upon transition \(\tau_{i+1}\), the system moves from state \(X_i\) to \(X_{i+1}\)

\(X \vdash^* Y\) : the system moves from state \(X\) to \(Y\) after a set of transitions

\(X_i \vdash c_{i+1} (p_{i+1,1}, p_{i+1,2}, \ldots, p_{i+1,m}) X_{i+1}\) : state transition upon a command

For every command there is a sequence of state transition operations
Primitive commands (HRU)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create subject s</td>
<td>Creates new row, column in ACM; s does not exist prior to this</td>
</tr>
<tr>
<td>Create object o</td>
<td>Creates new column in ACM; o does not exist prior to this</td>
</tr>
<tr>
<td>Enter r into $a[s, o]$</td>
<td>Adds r right for subject s over object o; Ineffective if r is already there</td>
</tr>
<tr>
<td>Delete r from $a[s, o]$</td>
<td>Removes r right from subject s over object o</td>
</tr>
<tr>
<td>Destroy subject s</td>
<td>Deletes row, column from ACM;</td>
</tr>
<tr>
<td>Destroy object o</td>
<td>Deletes column from ACM</td>
</tr>
</tbody>
</table>
Primitive commands (HRU)

Create subject s

- Creates new row, column in ACM;
- s does not exist prior to this

Precondition: $s \notin S$

Postconditions:

\[S' = S \cup \{ s \}, \quad O' = O \cup \{ s \} \]

\[
(\forall y \in O')[a'[s, y] = \emptyset] \quad \text{(row entries for s)}
\]

\[
(\forall x \in S')[a'[x, s] = \emptyset] \quad \text{(column entries for s)}
\]

\[
(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
\]
Primitive commands (HRU)

Enter r into $a[s, o]$ Adds r right for subject s over object o
Ineffective if r is already there

Precondition: $s \in S, o \in O$
Postconditions:
$S' = S, O' = O$

$$a'[s, o] = a[s, o] \cup \{ r \}$$

$$(\forall x \in S')(\forall y \in O')$$

$$[(x, y) \neq (s, o) \rightarrow a'[x, y] = a[x, y]]$$
[Unix] process \(p \) creates file \(f \) with owner \textit{read} and \textit{write} \((r, w)\) will be represented by the following:

Command \textit{create_file}(p, f)

Create object \(f \)

Enter \textit{own} into \(a[p,f] \)

Enter \textit{r} into \(a[p,f] \)

Enter \textit{w} into \(a[p,f] \)

End
Process p creates a new process q

Command `spawn_process(p, q)`

Create subject `q`;
Enter `own` into `a[p,q]`
Enter `r` into `a[p,q]`
Enter `w` into `a[p,q]`
Enter `r` into `a[q,p]`
Enter `w` into `a[q,p]`
End

Parent and child can signal each other
System commands

- Defined commands can be used to update ACM

 Command `make_owner(p, f)`

 Enter `own` into `a[p,f]`

 End

- Mono-operational:
 - the command invokes only one primitive
Conditional Commands

- Mono-operational + mono-conditional

Command `grant_read_file(p, f, q)`

If `own` in `a[p,f]`
Then
Enter `r` into `a[q,f]`
End
Conditional Commands

- Mono-operational + biconditional

Command $\text{grant_read_file}(p, f, q)$

If r in $a[p,f]$ and c in $a[p,f]$
Then
 Enter r into $a[q,f]$
End

- Why not “OR”??
Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being “secure”
- Is there a generic algorithm that allows us to determine whether a computer system is secure?
What is a secure system?

- A simple definition
 - A secure system doesn’t allow violations of a security policy
- Alternative view: based on distribution of rights
 - Leakage of rights: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in an element of A.

- A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r
What is a secure system?

- Safety of a system with initial protection state X_0
 - Safe with respect to r: System is *safe with respect to r* if r can never be leaked
 - Else it is called *unsafe with respect to right r*.
Safety Problem:
formally

- Given
 - initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_0[s, o]$

- Can we reach a state X_n where
 - $\exists s, o$ such that $A_n[s, o]$ includes a right r not in $A_0[s, o]$?

 - If so, the system is not safe
 - But is “safe” secure?
Undecidable Problems

- **Decidable Problem**
 - A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.

- **Undecidable Problem**
 - A problem that cannot be solved for all cases by any algorithm whatsoever
Decidability Results
(Harrison, Ruzzo, Ullman)

- **Theorem:**
 - Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.
Decidability Results

(Harrison, Ruzzo, Ullman)

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can’t leak (or be detected)
 - Create/enter: new subjects/objects “equal”, so treat all new subjects as one
 - No test for absence
 - Tests on $A[s_1, o_1]$ and $A[s_2, o_2]$ have same result as the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$

- If n rights leak possible, must be able to leak $k = n(|S_0|+1)(|O_0|+1)+1$ commands

- Enumerate all possible states to decide
Decidability Results

(Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof – need to know Turing machines and halting problem
The **halting problem**: Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).
Turing Machine & Safety problem

- **Theorem:**
 - It is undecidable if a given state of a given protection system is safe for a given generic right

- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)

- TM is an abstract model of computer
 - Alan Turing in 1936
Turing Machine

- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head (‘L’ for left and ‘R’ for right)
 - What is the next state

Current state is k
Current symbol is C
Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - in state k, symbol m on tape location is replaced by symbol m',
 - head moves to left one square, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

Current state is k
Current symbol is C
Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state
Turing Machine

Let $\delta(k, C) = (k_1, X, R)$
where k_1 is the next state

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

Current state is k
Current symbol is C

Let $\delta(k_1, D) = (k_2, Y, L)$
where k_2 is the next state

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

head

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
TM2Safety Reduction

Proof: Reduce TM to safety problem

- Symbols, States \Rightarrow rights
- Tape cell \Rightarrow subject
- Cell s_i has A \Rightarrow s_i has A rights on itself
- Cell s_k \Rightarrow s_k has end rights on itself
- State p, head at s_i \Rightarrow s_i has p rights on itself
- Distinguished Right own:
 - s_i owns s_{i+1} for $1 \leq i < k$

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td></td>
<td>C k</td>
<td>own</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
<td>D end</td>
</tr>
</tbody>
</table>

Current state is k
Current symbol is C
Command Mapping
(Left move)

\[\delta(k, C) = (k, X, L) \]

If head is not in leftmost command \(c_{k,C}(s_i, s_{i-1}) \)
if own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_i] \)
and \(C \) in \(a[s_i, s_i] \)
then
- delete \(k \) from \(A[s_i, s_i] \);
- delete \(C \) from \(A[s_i, s_i] \);
- enter \(X \) into \(A[s_i, s_i] \);
- enter \(k_1 \) into \(A[s_{i-1}, s_{i-1}] \);
End

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(A)</td>
<td>(own)</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>(B)</td>
<td>(own)</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>(C k)</td>
<td>(own)</td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td>(D)</td>
<td>(end)</td>
<td></td>
</tr>
</tbody>
</table>
Command Mapping
(Left move)

\[\delta(k, C) = (k_1, X, L) \]

If head is not in leftmost command

\[c_{k,C}(s_i, s_{i-1}) \]

If own in \(a[s_{i-1}, s_i] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \)
then
- delete \(k \) from \(A[s_i, s_i] \);
- delete \(C \) from \(A[s_i, s_i] \);
- enter \(X \) into \(A[s_i, s_i] \);
- enter \(k_1 \) into \(A[s_{i-1}, s_{i-1}] \);
End

If head is in leftmost both \(s_i, s_{i-1} \) are \(s_1 \)
Command Mapping (Right move)

\[\delta(k, C) = (k_1, X, R) \]

command \(c_{k, C}(s_i, s_{i+1}) \)

if own in \(a[s_i, s_{i+1}] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \) then

- delete \(k \) from \(A[s_i, s_i] \);
- delete \(C \) from \(A[s_i, s_i] \);
- enter \(X \) into \(A[s_i, s_i] \);
- enter \(k_1 \) into \(A[s_{i+1}, s_{i+1}] \);

end

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>A</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>C</td>
<td>(k)</td>
<td>own</td>
</tr>
<tr>
<td>(s_4)</td>
<td>D</td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Command Mapping

(Right move)

\[\delta(k, C) = (k_1, X, R) \]

command \(c_{k, C}(s_i, s_{i+1}) \)

if own in \(a[s_i, s_{i+1}] \) and \(k \) in \(a[s_i, s_i] \) and \(C \) in \(a[s_i, s_i] \) then

- delete \(k \) from \(A[s_i, s_i] \);
- delete \(C \) from \(A[s_i, s_i] \);
- enter \(X \) into \(A[s_i, s_i] \);
- enter \(k_1 \) into \(A[s_{i+1}, s_{i+1}] \);

end

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>A</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>B</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>X</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td>D</td>
<td></td>
<td>k_1 end</td>
</tr>
</tbody>
</table>

Current state is \(k_1 \)

Current symbol is \(C \)

head
Command Mapping (Rightmost move)

\[
\delta(k_1, D) = (k_2, Y, R) \text{ at end becomes }
\]

command crightmost\(_{k_1,C}(s_i, s_{i+1})\)

if end in \(a[s_i, s_i]\) and \(k_1\) in \(a[s_i, s_i]\) and \(D\) in \(a[s_i, s_i]\)
then
delete end from \(a[s_i, s_i]\);
create subject \(s_{i+1}\);
enter own into \(a[s_i, s_{i+1}]\);
enter end into \(a[s_{i+1}, s_{i+1}]\);
delete \(k_1\) from \(a[s_i, s_i]\);
delete \(D\) from \(a[s_i, s_i]\);
enter \(Y\) into \(a[s_i, s_i]\);
enter \(k_2\) into \(A[s_i, s_i]\);
end

\[
\delta(k_1, C) = (k_2, Y, R)
\]
Command Mapping (Rightmost move)

Current state is \(k_1 \)

Current symbol is \(D \)

\[\delta(k_1, D) = (k_2, Y, R) \]

\[\delta(k_1, D) = (k_2, Y, R) \]

command crightmost\(_{k, C} (s_i, s_{i+1})\)

if end in \(a[s_i, s_i] \) and \(k_1 \) in \(a[s_i, s_i] \) and \(D \)
in \(a[s_i, s_i] \)

then

- delete end from \(a[s_i, s_i] \);
- create subject \(s_{i+1} \);
- enter own into \(a[s_i, s_{i+1}] \);
- enter end into \(a[s_{i+1}, s_{i+1}] \);
- delete \(k_1 \) from \(a[s_i, s_i] \);
- delete \(D \) from \(a[s_i, s_i] \);
- enter \(Y \) into \(a[s_i, s_i] \);
- enter \(k_2 \) into \(A[s_i, s_i] \);

end
Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 *end* right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM

- If TM enters state q_f, then right has leaked

- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state \implies halting state in the matrix \implies Halting state reached

- Conclusion: safety question undecidable
Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in \textsc{P-Space}

- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete \texttt{destroy, delete} primitives;
 - The system becomes monotonic as they only increase in size and complexity

- The safety question for biconditional monotonic protection systems is undecidable

- The safety question for monoconditional, monotonic protection systems is decidable

- The safety question for monoconditional protection systems with \texttt{create, enter, delete} (and no \texttt{destroy}) is decidable.