
X-GTRBAC Admin: A Decentralized
Administration Model for Enterprise-Wide
Access Control

RAFAE BHATTI, BASIT SHAFIQ, ELISA BERTINO, and ARIF GHAFOOR
Purdue University
and
JAMES B. D. JOSHI
University of Pittsburgh

The modern enterprise spans several functional units or administrative domains with diverse
authorization requirements. Access control policies in an enterprise environment typically express
these requirements as authorization constraints. While desirable for access control, constraints can
lead to conflicts in the overall policy in a multidomain environment. The administration problem for
enterprise-wide access control, therefore, not only includes authorization management for users
and resources within a single domain but also conflict resolution among heterogeneous access
control policies of multiple domains to allow secure interoperation within the enterprise. This work
presents design and implementation of X-GTRBAC Admin, an administration model that aims at
enabling administration of role-based access control (RBAC) policies in the presence of constraints
with support for conflict resolution in a multidomain environment. A key feature of the model is that
it allows decentralization of policy administration tasks through the abstraction of administrative
domains, which not only simplifies authorization management, but is also fundamental to the
concept of decentralized conflict resolution presented. The paper also illustrates the applicability of
the outlined administrative concepts in a realistic enterprise environment using an implementation
prototype that facilitates policy administration in large enterprises.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications;
D.4.6 [Operating Systems]: Security and Protection—Access controls; H.2.0 [Database Man-
agement]: General—Security, integrity, and protection; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms: Algorithms, Management, Security.

Additional Key Words and Phrases: XML, role-based access control, secure interoperation, policy
administration

The work reported in this paper has been partially supported by the National Science Foundation
under grants no. IIS-0242419, IIS-0209111, and ITR-0428554, and by the sponsors of CERIAS.
Authors’ addresses: Rafae Bhatti, Basit Shafiq, Elisa Bertino, and Arif Ghafoor; Department of
Electrical and Computer Engineering and CERIAS, Purdue University, IN 47906; James B. D.
Joshi, School of Information Sciences, University of Pittsburgh, PA 15260.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1094-9224/05/1100-0388 $5.00

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005, Pages 388–423.

X-GTRBAC Admin • 389

1. INTRODUCTION

Modern day enterprise spans several functional units or administrative do-
mains. It is faced with the challenge of achieving efficient resource utilization
to maintain a competitive edge and, simultaneously, ensuring secure interoper-
ation across its constituent domains. The enterprise, thus, represents a dynamic
environment where resource access policies include diverse authorization re-
quirements expressed as authorization constraints. While desirable for access
control, constraints can lead to conflicts in the overall policy in a multidomain
environment. The administration of enterprise-wide access control, therefore,
poses several challenges that range from authorization management of users
and resources within individual domains to conflict resolution among heteroge-
neous access control policies of multiple domains to allow secure interoperation
within the enterprise. Both of these issues are key aspects of the administra-
tion problem addressed by the work presented in this paper. Our work is based
on the Role-Based Access Control (RBAC) model which is widely recognized
as being helpful in simplifying authorization management in large enterprises
[Sandhu et al. 1996]. The contributions of this paper are twofold: it presents
(1) a formal specification of administrative concepts and constraints to facil-
itate the administration of advanced RBAC policies, and (2) a decentralized
conflict resolution algorithm to allow secure interoperation in a multidomain
environment.

Figure 1 illustrates a logical view of the policy administration aspects. An
enterprise RBAC policy would typically consist of a set of users, roles, per-
missions, and the user-to-role and permission-to-role assignments. Figure 1a
shows the RBAC policy administration tasks within a single domain. RBAC
allows specification of constraints on policy administration tasks. The basic
RBAC model includes separation of duty (SoD) and role-hierarchy related con-
straints, whereas advanced models (see Section 2) also allow specification of
temporal and nontemporal contextual constraints. These constraints are es-
sential to capture the access control requirements of the enterprise. Figure 1b
shows the second aspect of policy administration concerning policy integration
for interoperation in a multidomain environment. Policy integration, however,
may introduce potential policy conflicts due to the presence of constraints. Ad-
ministration of a multidomain policy, therefore, needs to be done in a manner
that ensures the security of interoperation.

Although policy administration approaches for the basic RBAC model have
been proposed (see Section 1.1), we believe that the basic RBAC model is not
expressive enough to capture a variety of constraints needed to be enforced in
an enterprise environment. The unique challenges motivating the use of more
expressive policies for enterprise-wide access control have been highlighted in
Bhatti et al. [2005] and Joshi et al. [2004], and an XML-based Generalized Tem-
poral Role-Based Access Control (X-GTRBAC) framework has been proposed to
address them. The X-GTRBAC specification language is based on Generalized
Temporal Role-Based Access Control (GTRBAC) model [Joshi et al. 2005], which
is a generalized temporal extension of the Role Based Access Control (RBAC)
model proposed in the NIST RBAC standard [Ferraiolo et al. 2001]. X-GTRBAC

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

390 • R. Bhatti et al.

Fig. 1. Logical aspects of policy administration in a multidomain enterprise environment.

augments GTRBAC with XML to allow for supporting the policy enforcement
in a heterogeneous, distributed environment.

While the X-GTRBAC framework is expressive enough for enterprise-wide
access control (see Section 2.2), it lacks an administration model for autho-
rization management, which may pose several challenges, since the task of
managing a huge number of users and resources across the multiple admin-
istrative domains within the enterprise cannot realistically be centralized in
a small team of security administrators. Hence, decentralizing the details of
the access control scheme without losing central control over broad policy is
a challenging goal [Sandhu and Munawer 1999]. Moreover, policy integration
in a multidomain environment requires a conflict resolution strategy that can
evaluate and resolve potential conflicts to allow secure interoperation. To en-
able solution to both these administration problems, we introduce in this paper
X-GTRBAC Admin, the administration model for the X-GTRBAC framework.
The primary focus of this paper is to elucidate these administrative concepts
in the context of X-GTRBAC and outline the specifications of the proposed ad-
ministration model.

The remainder of this paper is organized as follows. We begin with a compar-
ison of our work with the earlier approaches for RBAC policy administration.
We then discuss the background and motivation of our particular approach
and outline the salient features of the X-GTRBAC specification language. We
next present formal specifications of X-GTRBAC Admin, the administrative
model for the X-GTRBAC framework for enterprise-wide access control. The
discussion is divided into two sections. We first present the basic model ad-
dressing the policy administration tasks within a single domain and, thereafter,
present the extended model in support of policy integration and secure inter-
operation in a multidomain environment. We consolidate the ideas presented
in the paper with the discussion of a generic enterprise example and illustrate

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 391

the applicability of our model using an implementation prototype that facili-
tates policy administration in large enterprises. To the best of our knowledge,
no earlier work on policy administration has provided a comprehensive treat-
ment of the two aspects of policy administration discussed in this paper. The
paper concludes with a discussion on multidomain administration issues and
a sketch of future research goals.

1.1 RELATED WORK

There has been a growing interest in administration models built on RBAC
and related schemes. An administration model for RBAC (ARBAC99) has been
proposed in Sandhu and Munawer [1999]. The model uses RBAC for role admin-
istration within an RBAC system and introduces the notion of an administrator
role, with administrative permissions. It uses can assign and can assignp rela-
tions for role and permission assignments, respectively. These relations use the
notions of (1) the “role range” that an administrator role has authority over, and
(2) the “prerequisite role” (also called prerequisite condition) needed to exercise
that authority. Both the role range and prerequisite role are derived from the
role hierarchy. Certain weaknesses in the model have been highlighted in Oh
and Sandhu [2002]. An ARBAC02 model has been presented in Oh and Sandhu
[2002] to overcome these weaknesses and it uses the organization structure
as the basis for prerequisite conditions, instead of prerequisite roles in a role
hierarchy. While the ARBAC02 model is adequate for the tasks of role and
permission assignments within an enterprise, there are certain issues left un-
addressed. The original ARBAC97 model that ARBAC02 builds upon does not
explicitly support specification of constraints during policy administration, as
it assumes that “constraints will be enforced while carrying out administra-
tive chores.” The only kind of constraint explicitly supported by the model is
a role-membership constraint. This leaves much to be desired, since an ad-
ministration model should be able to express a variety of constraints and also
include the management of constraints in the policy administration process.
We provide formal specification of an extensive set of constraints, including
those on role enabling and activation, and a set of administrative functions,
relations, and operations that facilitates the process of policy administration in
the presence of constraints. In addition, ARBAC02 does not address the issues
related to policy administration in a multidomain environment. It does not for-
mally define the notion of organizational structure, while we do so based on the
semantics of role and domain hierarchies. This formalization is then used to
address issues of secure interoperation and conflict resolution in a multidomain
policy.

A scoped administration model for RBAC has been proposed in Crampton and
Loizou [2002]. The model uses the notion of administrative scope to define ad-
ministrative operations on role hierarchy. The primary focus of Crampton and
Loizou [2002] is to observe and rectify any side effects of changes to a role hier-
archy in a single domain. We maintain that we are tackling a related problem,
but within a multidomain environment. We assume that the single-domain poli-
cies are initially consistent, with stable role hierarchies, and consider the effect

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

392 • R. Bhatti et al.

of role assignments and interdomain role mappings on the consistency of these
policies. The issues of role hierarchy management within a single domain are
relevant to administration, but orthogonal to current focus of this paper. Like
ARBAC02, the model in Crampton and Loizou [2002] also does not deal with
management of constraints nor does it deal with issues of policy administration
in a multidomain environment.

2. BACKGROUND AND MOTIVATION

In this section, we provide some background and motivation needed to discuss
the administrative concepts related to the X-GTRBAC framework.

2.1 RBAC and GTRBAC

In order to discuss the salient features of the X-GTRBAC framework, and its
administrative extension, we provide the formal definitions of the component
models of our framework, namely, RBAC and GTRBAC.

Definition 2.1.1 (RBAC Model) [Ferraiolo et al. 2001] The RBAC model
consists of the following components:

� Sets Users, Roles, Permissions, and Sessions representing the set of
users, roles, permissions, and sessions, respectively;

� UA ⊆ Users × Roles, the user assignment relation, that assigns users to
roles;

� assigned users: Roles → 2Users, the mapping of role r onto a set of users.
Formally: assigned users(r) = {u|(u, r) ∈ UA};

� PA ⊆ Roles × Permissions, the permission assignment relation, that assigns
permissions to roles;

� assigned permissions: Roles → 2Permissions, the mapping of role r onto a set
of permissions. Formally: assigned permissions(r) = {p|(p, r) ∈ PA};

� Sessions ⊆ Users ×2Roles;
� user: Sessions → Users, which maps each session to a single user;
� role: Sessions → 2Roles that maps each session to a set of roles;
� RH ⊆ Roles × Roles, a partially ordered role hierarchy (written ≥).

A session si ∈ Sessions has the permission of all roles r ′ junior to roles
activated in the session, i.e.,
{p|((p, r) ∈ PA ∨ (p, r ′) ∈ PA) ∧ r ∈ role(si) ∧ r ≥ r ′ }
The RH relation is one of the most important aspects of RBAC for its use

toward simplifying authorization management. The original RBAC model sup-
ports only inheritance or usage hierarchy, which allows the users of a senior role
to inherit all permissions of junior roles. In order to preserve the principle of
least privilege, RBAC model has been extended to include activation hierarchy,
which enables a user to activate one or more junior roles without activating
senior roles [Sandhu 1998]. An inheritance-activation hierarchy can be defined
on roles by composing inheritance and activation hierarchies [Joshi et al. 2002].

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 393

In this paper, we do not concern ourselves with the advanced semantics of role
hierarchies and use the ≥ relation defined in the RBAC standard.

The GTRBAC model [Joshi et al. 2005] incorporates a set of language con-
structs for the specification of various temporal constraints on roles, includ-
ing constraints on role enabling, role activation, user-to-role assignments, and
permission-to-role assignments. In particular, GTRBAC makes a clear distinc-
tion between role enabling and role activation. An enabled role indicates that a
user can activate it, whereas an activated role indicates that at least one subject
has activated a role in a session. The notion of separate activation conditions is
particularly helpful in large enterprises, with several hundred users belonging
to the same role, to selectively manage role activations at the individual user
level.

The temporal framework in GTRBAC model allows the specification of the
following constraints, events, and expressions:

1. Temporal constraints on role enabling/disabling: These constraints allow
one to specify the time intervals during which a role is enabled. It is also
possible to specify a role duration.

2. Temporal constraints on user-to-role and permission-to-role assignments:
These are constructs to express either a specific interval or a duration in
which a user or a permission is assigned to a role.

3. Activation constraints: These allow one to specify how a user should be re-
stricted in activating a role. These include, for example, specifying the total
duration for which a user is allowed to activate a role or the number of users
that can be allowed to activate a particular role.

4. Run-time events: A set of run-time events allows an administrator to dynam-
ically initiate GTRBAC events or a user to issue activation requests.

5. Constraint enabling expressions: GTRBAC includes events that enable or
disable duration constraints and role-activation constraints.

6. Triggers: Triggers allow one to express dependency among GTRBAC events
as well as capture the past events and define future events on which they
are based.

7. Periodic time expression: A periodic expression (PTE) is represented by pairs
<[begin,end],P>, where P is a periodic expression denoting an infinite set
of periodic time instants, and [begin, end] is a time interval I denoting the
lower and upper bounds that are imposed on instants in P. Formally, P is
expressed as follows:

Definition 2.1.2 (Periodic Expression): [Joshi et al. 2005]: Given calendars
Cd, C1, . . . , Cn, and time occurrences O1, . . . , On, a periodic expression P is
defined as:

P =
n∑

i=1

Oi.Ci � x.Cd

where O1 = all, Oi ∈ 2N ∪ {all}, Ci
 Ci-1 for i = 2, .., n, Cd = Cn, and
x ∈ N.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

394 • R. Bhatti et al.

Table I. Temporal Constraints and Event Expressions in GTRBAC

Constraint categories Events Expression
Enabling constraints Role enabling (I, P,D, enable/disable r)
Activation constraints Role activation <!–only occurs as a run-time

event –>

Assignment constraint
User-to-role assignment ([I, P, D], assignU/deassignUr

to u)
Permission-to-role assignment ([I, P, D], assignP/deassignP p

to r)
Trigger <!–any triggering event –> E1, . . . , En , C1, . . . , Ck → E

after �t

Run-time requests

Users’ activation request (s:(de)activate r for u after

�t))

Administrator’s run-time request

(assignU/de-assignUr to u
after �t)

(enable/disable r after �t)
(assignP/de-assignP p to r
after �t)

(enable/disable c after �t)

The formalism for periodic expressions is based on the notion of calendars.
A calendar is defined as a countable set of contiguous intervals, numbered by
integers called indexes of the intervals. Symbol � separates the first part of the
periodic expression that identifies the set of starting points of the intervals it
represents, from the specification of the duration D of each interval in terms of
calendar Cd. For example, all. Years + {3, 7}. Months � 2. Months represents
the set of intervals starting at the same instant as the third and seventh month
of every year and having a duration of 2 months. In practice, Oi is omitted when
its value is all, whereas it is represented by its unique element when it is a
singleton. x.Cd is omitted when it is equal to 1.Cn.

The temporal constraint expressions in GTRBAC are summarized in Table I.

2.2 X-GTRBAC

X-GTRBAC allows specification of all the elements of the GTRBAC model. These
specifications are captured through a context-free grammar called X-Grammar,
which follows the same notion of terminals and nonterminals as in Backus-
Naur Form (BNF), but supports the tagging notation of XML that also allows
expressing attributes within element tags. The use of attributes helps maintain
compatibility with XML schema syntax, which serves as the type definition
model for our language. Since it follows BNF convention, X-Grammar can be
accepted by a well-defined automaton to allow automatic translation into XML
schema documents. These XML documents ultimately constitute the enterprise
access control policy base. Following is a brief description of the X-Grammar
specifications that result in the policy base.

The X-Grammar for user, role, and permission called XML User Sheet (XUS),
XML Role Sheet (XRS), and XML Permission Sheet (XPS), respectively, en-
code the respective elements of the RBAC model. In addition, they specify a
list of attributes of a user, role, or permission, which may be relevant for the
purposes of user-role and permission-role assignments. These assignments are

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 395

captured, respectively, by XML User-to-Role Assignment Sheet (XURAS) and
XML Permission-to-Role Assignment Sheet (XPRAS). A salient feature of X-
GTRBAC is that it captures the temporal constraint expressions of the GTR-
BAC model using X-Grammar specification. These expressions are defined in
an XML Temporal Constraint Definition (XTempConstDef). The temporal con-
straints on user-to-role and permission-to-role assignments are then included,
respectively, in the XURAS and XPRAS. Similarly, enabling and activation con-
straints may also be defined and included with the role definition in XRS.

In addition to temporal constraints, X-GTRBAC also supports nontemporal
contextual constraints. For instance, an assignment constraint in XURAS may
also involve the evaluation of the user attributes (as declared in XUS) to decide
the eligibility of users for role assignments. Similarly, an enabling or activa-
tion constraint in XRS may involve the evaluation of the role attributes (as
declared in XRS) to decide on the enabling or activation of a role. The evalu-
ation of such contextual constraints allows a fine-grained mechanism for role
assignment, enabling, or activation. Another kind of constraint that can be
specified on roles is an SoD constraint. SoD constraints are defined using an
XML separation-of-duty definition (XSoDDef) and included in XRS. The use of
X-Grammar specification in policy administration process has been illustrated
in Figure 1a. The X-Grammar for XUS, XRS, XPS, XURAS, and XPRAS is pre-
sented in Appendix A. The detailed specifications of X-GTRBAC framework can
be found in [Bhatti et al. 2005].

We now introduce X-GTRBAC Admin, the administrative extensions to the
GTRBAC model, and present the formal specification for its components.

3. X-GTRBAC ADMIN—BASIC MODEL

X-GTRBAC Admin is introduced to address the two aspects of the policy admin-
istration problem discussed in the paper. In this section, we present the basic
concepts of the model designed primarily to address the policy administration
tasks within a single domain (Figure 1a). The model is extended in Section 4
to support secure interoperation in a multidomain environment (Figure 1b).

In order to include the administrative concept in the X-GTRBAC framework,
the specification language is extended to include the specification of an admin-
istrative domain (Admin Domain), an administrative role (Admin Role), and an
administrative permission (Admin Permission).

Admin Domain is the most defining feature of the X-GTRBAC Admin model.
It represents an administrative domain of authority within an enterprise. In X-
GTRBAC Admin, all instances of regular and administrative roles and permis-
sions are associated with an Admin Domain. The Admin Domains are related
according to a partial order and this partially ordered set defines an adminis-
trative domain hierarchy. This hierarchy reflects the organizational structure
of the enterprise. Each Admin Domain is assigned an Admin Role and an Admin
Role may have authority over multiple Admin Domains by virtue of dominance
relationship among domains as defined in the formal model.

An Admin Role is an administrative role authorized to manage policy admin-
istration tasks within a given Admin Domain. This authority is given by a set of
associated Admin Permissions as defined in the model. A pool of administrative

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

396 • R. Bhatti et al.

users is selected by the SSO for assignment to Admin Roles, where such assign-
ment may be based on evaluation of user attributes and applicable constraints,
as in the case of regular roles, to allow fine-grained policy assignments. The
Admin Roles are related according to a partial order, which defines an admin-
istrative role hierarchy. As we will see later (Section 4.4), this hierarchy is
induced by dominance relationship amongst domains.

An Admin Permission specifies an administrative permission that can be
used by an Admin Role. Typically a set of available permissions belonging to
various Admin Domains within the enterprise would be created by the respec-
tive SSOs. We use assign, deassign, assignp, deassignp, enable, disable, map,
and unmap as the basic set of Admin Permissions. These permissions, however,
are only a qualification and not an authorization. We define a set of authoriza-
tion relations in the formal model that must also be satisfied by the Admin Role
to carry out an administrative operation.

3.1 Formal Model

Based on these concepts, the formal definition of the X-GTRBAC Admin model
is now presented.

Definition 3.1.1 (Core Components): The X-GTRBAC Admin model con-
sists of the following core components:
� AD, a set of Admin Domains;
� AU, a set of administrative users, AU ⊆ Users;
� RR, a set of regular roles, RR = Roles;
� ER, a set of enabled regular roles, ER ⊆ RR;
� RP, a set of regular permissions, RP = Permissions;
� AR, a set of Admin Roles;
� AP, a set of Admin Permissions;
� The association of regular roles with domains, called a role instances,1 is

defined as RRD ⊆ AD × RR = {(ad, rr) | ad ∈ AD, rr ∈ RR};
� The association of regular permissions with domains, called permission in-

stances, is defined as RPD ⊆ AD × RP = {(ad, rp) | ad ∈ AD, rp ∈ RP};
� The association of an Admin Domain with an Admin Role is defined as ARD ⊆
AD × AR = {(ad, ar) | (ad ∈ AD, ar ∈ AR) };

� The association of Admin Permissions with Admin Domains is defined as
APD ⊆ AD × AP = {(ad, ap) | ad ∈ AD, ap ∈ AP}

� The set ATTRx of attribute-value pairs for a regular user, role, or permission
instance x; an attribute value pair AVP is defined as a tuple (name, value),
where both name and value are constants.

� The set SOD of regular roles in Separation of Duty (SoD); a collection SODS of
SOD sets may exist to define fine-grained SoD constraints.

1The terms role instance and permission instance are used to differentiate the instances of (possibly
the same) role or permission in different domains. Therefore, the model allows the instances in
different domains to share the same definition.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 397

� The set CR of constraints defined according to Definition 3.1.2. CR may be an
empty set.

� The set CONST is a collection of constants of simple data types (as string,
integer, etc.).

� AUA ⊆ AU × AR, the user-assignment relation, that assigns administrative
users to Admin Roles;

� APA ⊆ AP × AR, the permission-assignment relation, that assigns Admin Per-
missions to Admin Roles;

� RM ⊆ RR × RR, the role-mapping relation, that maps a regular role from one
domain to a regular role from another domain;

� A partially ordered regular role hierarchy RRH ⊆ RR × RR; RRH = RH;
� A partially ordered Admin Role hierarchy, ARH ⊆ AR × AR;
� A partially ordered Admin Domain hierarchy DH ⊆ AD × AD; (adx ≥ ady) ∈ DH

implies that domain adx dominates domain ady in the hierarchy.

A significant feature of our model is the use of constraints directly in the
policy administration process. The following definition formalizes the notion of
a constraint expression used in our framework.

Definition 3.1.2 (Constraints): A constraint expression in X-GTRBAC Ad-
min is one of the following two kinds:

� A periodic time expression PTE defined as per the GTRBAC model (see Section
2.1).

� A logical expression using the usual ∧ and ∨ operators on three tuples of the
form (y , ω, δ(p1, . . . , pn)), where δ is a parameterized administrative function
(as defined in Table II), pi and y are a member of the set (RR ∪ AR ∪ RP ∪ AP
∪ AD ∪ Users ∪ CONST), and ω ∈ {=, �=, ≥, ≤, ∈}}

An administrative function evaluate is a predicate defined to validate a con-
straint expression, i.e., evaluate: CR → {true, false}. A constraint evaluates to
true in one of the following two ways: (1) It is a PTE and the associated interval
and periodicity conditions are satisfied, or (2) it is a logical expression with
clauses of the form (y , ω, δ(p1, . . . , pn)), and the expression is satisfied over the
set of clauses. A clause evaluates to true if y compares with the return value
of the function δ according to the comparison operator ω.

3.2 Administrative Features

We now present the salient features of X-GTRBAC Admin based on the for-
mal model. The set of features supported by the model include administrative
functions (used for review), administrative relations (used to determine au-
thorizations), administrative operations (used to change the system state), and
administrative restrictions (used to restrict membership in certain components
of the model). Overall, the set of identified administrative features provide com-
prehensive coverage for all management tasks that are required to administer
a multidomain RBAC system.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

398 • R. Bhatti et al.

Table II. X-GTRBAC Admin Functions

Function Description Formal semantics
domain:(RR ∪ AR ∪

AP) → AD
Returns the domain of a role or

permission instance
domain(x) = {d | (d , x) ∈

RRD ∨ (d , x) ∈ ARD ∨ (d ,
x) ∈ APD }

has authority over: AR
→ 2AD

Returns the set of all Admin
Domains that an Admin Role
has authority over. An Admin
Role has authority over a
domain if the latter is same as
or dominated by the domain of
the former

has authoriy over(ar) = {d |
domain(ar) =d∨
domain(ar) ≥ d }

administers: AR → 2RR Returns the set of all regular
roles administered by an
Admin Role. An Admin Role
administers a regular role if
both belong to the same domain

administers(ar) = {rr |
domain(ar) = domain(rr)}

has attribute value:
(Users ∪ RR ∪ RP) ×
CONST → CONST

For the user, role, or permission
x, returns the value of the
attribute identified by v

has attribute value(x,v) =
{AVP.value | AVP.name = v
∧ AVP ∈ ATTRx }

in separation of duty:
RR → SODS

For the role rr, returns the SOD
set

in separation of duty(rr) =
{SOD | rr ∈ SOD}

assigned users: RR →
2Users

For the role rr, returns the set of
users assigned to the role

assigned users(rr ∈ RR) = {u|
(u, rr) ∈ UA }a

assigned permissions:
RR → 2Permissions

For the role rr, returns the set of
permissions assigned to the
role

assigned permissions(rr) =
{rp | (rr, rp) ∈ PA}a

activated users: RR →
2Users

For the role rr, returns the set of
users active in the role

activated users(rr) = {u| rr ∈
ER ∧(∃si ∈ Sessions | rr ∈
role(si) ∧ u ∈ user(si))}b

aThis function is modified to use qualified (i.e. regular) role instance. This definition supersedes that in Definition
2.1.1.
bNote that the roles that may have been activated belong to the enabled regular role set, i.e. only enabled roles
can be activated.

Table II summarizes the administrative functions provided by X-GTRBAC
Admin. These functions can be used by the SSO or the administrators to obtain
information about different components of the system, such as association of
a role or permission instance with a domain, authority of an Admin Role over
Admin Domains, association of an Admin Role with a regular role, values of role
attributes, roles in separation of duty, users, and permissions assigned to roles,
and users who have activated certain roles. This information may be used as
the basis of predicates in constraint expressions to restrict any administrative
operation. An example of using review functions in constraints will be provided
in Section 3.3.

The administrative relations provided by X-GTRBAC Admin are given in
Table III. These relations are used to represent association between various
components of the model, such as set of administrative users and Admin Roles,
Admin Permissions and Admin Roles, and Admin Roles and regular roles. The
relations involve the evaluation of a (possibly null) constraint expression that is
used to determine the validity of the association for a particular administrative

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 399

Table III. X-GTRBAC Admin Relations

Relation Description Formal Semantics
can assign admin ⊆
AU × ARD× CR

The user-assignment relation that
authorizes an SSO to assign
administrative users to Admin
Roles subject to the satisfaction of
the associated constraints

can assign admin (au, ar, c) ↔
(c = null ∨evaluate(c) = true)

can deassign admin
⊆ AU × ARD× CR

analogous to can assign admin

can assignp admin
⊆ ARD× APD× CR

The permission-assignment relation,
that authorizes an SSO to assign
Admin Permissions to Admin
Roles if the permission and the
role belong to the same domain,
and subject to the satisfaction of
the associated constraints

can assignp admin (ar,ap, c) ↔
domain(ar) = domain(ap) ∧
(c = null ∨evaluate(c) = true)

can deassignp admin
⊆ ARD× APD× CR

analogous to can assignp admin

can assign ⊆ ARD×
RRD× CR

The user-assignment relation, that
authorizes an Admin Role (or its
senior) to assign a regular user to
a regular role (or its junior) if the
Admin Role has the assign Admin
Permission, and subject to the
satisfaction of the associated
constraints

can assign(ar,rr,c) ↔ (rr ∈
administers(ar) ∧ (ar,assign) ∈
APA ∧ evaluate(c) = true) ∨(∃
ar ′ ∈ AR | ar ≥ ar ′ ∧
can assign(ar ′,rr, c)) ∨ (∃ rr ′ ∈
RR | rr ′ ≥ rr ∧
can assign(ar,rr ′, c))

can deassign ⊆ ARD×
RRD× CR

analogous to can assign

can enable ⊆ ARD×
RRD× CR

The role-enabling relation, that
authorizes an Admin Role (or its
senior) to enable a regular role (or
its junior) if the Admin Role has
the enable Admin Permission, and
subject to the satisfaction of the
associated constraints

can enable(ar,rr, c) ↔ (rr ∈
administers(ar) ∧ (ar,enable) ∈
APA ∧ evaluate(c) = true)
∨(∃ar ′∈ AR | ar ≥ ar ′ ∧
can enable(ar ′,rr, c)) ∨(∃ rr ′ ∈
RR | rr ′ ≥ rr ∧
can enable(ar,rr ′, c))

can disable analogous to can enable
can assignp ⊆ ARD×
RRD× CR

The permission-assignment relation,
that authorizes an Admin Role (or
its senior) to assign a regular
permission to a regular role (or its
junior) if the Admin Role has the
assignp Admin Permission, and
subject to the satisfaction of the
associated constraints

can assignp(ar,rr, c) ↔ (rr ∈
administers(ar) ∧(ar,assignp) ∈
APA ∧ evaluate(c) = true) ∨(∃
ar ′ ∈ AR | ar ≥ ar ′ ∧
can assignp(ar ′,rr, c)) ∨(∃ rr ′ ∈
RR | rr ′ ≥ rr ∧ can assignp(ar,
rr ′, c))

can deassignp analogous to can assignp
can map ⊆ ARD×
RRD× RRD× CR

The role-mapping relation, that
allows an Admin Role to map a
regular role from one domain to a
regular role from another domain
if the Admin Role has the map
Admin Permission, and subject to
the satisfaction of the associated
constraints

can map(ar, r1, r2, c) ↔ (r1, r2 ∈
administers(ar) ∧ domain(r1) �=
domain(r2) ∧ (ar,map) ∈ APA ∧
evaluate(c) = true) ∨(∃ ar ′ ∈ AR

| ar ≥ ar ′ ∧
can map(ar ′,r1, r2, c)) ∨
(∃r1′, r2′ ∈ RR

|r1′ ≥ r1 ∨ r2′ ≥ r2∧
can map(ar, r1′, r2′, c))

can unmap analogous to can map

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

400 • R. Bhatti et al.

Table IV. X-GTRBAC Admin Operationsc

Operation Description Formal semantics
assign admin role(au ∈ AU,

ar ∈ AR, c ∈ CR)
The user-assignment

operation that adds a new
tuple to the AUA relation

if can assign admin(au, ar,
c) then AUA = AUA ∪ (au,
ar)

assign admin permission(ar
∈ AR, ap ∈ AP, c ∈ CR)

The permission-assignment
operation that adds a new
tuple to the APA relation

if can assign adminp(ar,
ap, c) then APA = APA ∪
(ar, ap)

assign role(ar ∈ AR, rr ∈ RR,
u ∈ Users, c ∈ CR)

The user-assignment
operation that adds a new
tuple to the UA relation

if can assign(ar, rr, c) then
UA = UA ∪(u, rr)

enable role(ar ∈ AR, rr ∈ RR,
c ∈ CR)

The role-enabling operation
that adds a new element to
the ER set

if can enable(ar, rr, c) then
ER = ER ∪ (rr)

assign permission(ar ∈ AR,
rr ∈ RR, rp ∈ RP, c ∈ CR)

The permission-assignment
operation that adds a new
tuple to the PA relation

if can assignp(ar, rr, c) then
PA = PA ∪ (rr, rp)

map role(ar ∈ AR, r1 ∈ RR,
r2 ∈ RR, c ∈ CR)

The role-mapping operation
that adds a new tuple to the
RM relation

if can map(ar, r1, r2, c)
then RM = RM ∪(r1, r2)

cThe reverse operations (such as deassign role) are obtained by using the corresponding predicate (such as
can deassign) from Table III and replacing ∪ with -.

Table V. X-GTRBAC Admin Restrictions

Restriction Description Formal Semantics
RR-AR-Mutual

Exclusion
No role can be included in both the

regular and the administrative role sets
RR ∩ AR = ∅

AR-AD Uniqueness An Admin Role is associated uniquely
with an Admin Domain, i.e., an Admin
Domain cannot be assigned more than
one Admin Role, and an Admin Role
cannot be assigned to more than one
Admin Domain

∀ ar,ar ′,ad,ad ′ ∈ ARD,ar �=
ar ′,ad �= ad ′, (ad, ar) ∈
ARD = > (ad, ar ′) /∈ ARD∧
(ad ′, ar) /∈ ARD

AUA Role cardinality The cardinality of Admin Roles associated
with administrative users through the
AUA relation is 1, i.e., only a single
user can be assigned to an Admin Role
at any given time

∀u, u′ ∈ Users, u �= u′, (u,
ar) ∈ AUA => (u′, ar) /∈
AUA

AUA User cardinality The cardinality of administrative users
associated with Admin Roles through
the AUA relation is 1, i.e., an
administrative user can be assigned to
only one Admin Role at any given time

∀ ar,ar ′ ∈ AR,ar �= ar ′, (u,
ar) ∈ AUA => (u, ar ′) /∈
AUA

operation, such as role assignment, enabling, or interdomain role mapping.
Note that role activation is not included as an administrative relation since it
is not performed by an administrator, but is done at run time by users.

Table IV summarizes the administrative operations provided by X-GTRBAC
Admin. These include operations for role assignment, enabling, and inter-
domain role mapping.

The set of administrative restrictions used in X-GTRBAC Admin are given
in Table V. These restrictions are not a fundamental component of the model,

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 401

and have the status of recommendations. The use of these restrictions is not
only intuitive, but also keeps the administration concept simple in practice.

3.3 Administration Process

To better illustrate the administration model and the use of various admin-
istrative features, we outline the policy administration process in XGTRBAC-
Admin.

3.3.1 Creation of Core Component Sets. The first step in the administra-
tion process is the one-time creation of the core component sets of the model
by the SSO as defined in Definition 3.1.1. A key concept here is the creation of
set of role (permission) instances, which allows different instances of the same
role (permission) in different domains to adhere to the same role (permission)
definition. This allows enforcement of uniform administration policies across
the enterprise. Another significant feature is the introduction of partial order
on the administrative role and administrative domain sets which captures the
hierarchical organizational structure in the enterprise. We recommend the use
of membership constraints defined in Table V on creation of RR, AD, and ARD
sets. These constraints imply that the association of Admin Roles and Admin
Domains should be unique and any authority over multiple Admin Domains can
be transferred to an Admin Role only through semantics of the administrative
role and domain hierarchies.

3.3.2 Assignment of Administrative Users to Admin Roles, and That of
Admin Permissions to Admin Roles. This is done by the SSO using the
assign admin role and assign admin permission operations defined in Table IV.
We recommend the use of cardinality constraints defined in Table V on these
assignments. These constraints are natural to impose given the distinction
between administrative roles and regular roles; administrative tasks would
typically not require multiple users to be assigned to them, and vice versa.

3.3.3 Assignment of Regular Users to Regular Roles, and That of Regular
Permissions to Regular Roles. This is done by the Admin Roles using the as-
sign role and assign permission operations defined in Table IV. An example
of policy administration process involving the use of these operations is pre-
sented in Figure 2; an administration process involving other administrative
operations will be similar.

The example begins by creation of the core components and the constraints
used in policy administration. This step is performed by the SSO. After this
step, the Admin Roles and Admin Permissions in the system have been des-
ignated through the AUA and APA relations. In the next step, assign role and
assign permission operations are requested, involving assignment of user u2
and permission p2a to role r1a by ARa subject to the constraints c1 and c2,
respectively. The precondition of these operations involves evaluation of the
authorization relations and associated constraints, and the postcondition (af-
ter a successful evaluation) is the addition of new tuples in the UA and PA
relations.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

402 • R. Bhatti et al.

Fig. 2. An example of policy administration process involving assign role and assign permission
operations.

3.3.4 Administration of Multidomain Policies. It may be noted that by
virtue of the hierarchical ordering of domains and roles, the administrative
roles may have authority over multiple (collaborating) domains. We call the ad-
ministrators acquiring these roles as the multidomain administrators. These
administrators can use the map role operation defined in Table IV to estab-
lish interdomain mapping between roles belonging to multiple domains, and
thereby allowing interoperation between their respective policies. Multidomain
administration will be handled in the extended administration model and is the
topic of next section.

4. EXTENDED ADMIN MODEL FOR SECURE INTEROPERATION

The decentralization in the X-GTRBAC Admin model achieved by delegating
authority enables the local domain administrators to define access control poli-
cies within their administrative domains. As has been pointed out in Section 1,
the other aspect concerning administration of enterprise-wide access control
policies is policy integration to allow interoperation among these heterogeneous
domains. This requires an access policy that governs information access beyond
the individual domains’ boundaries. Such a policy is defined by the multido-
main administrators. A multidomain administrator may specify both permitted
and restricted interdomain accesses by using map role and unmap role opera-
tions defined in Table IV. These operations let the multidomain administrators
establish a role mapping among the collaborating domains (as illustrated in
Figure 3). However, because of the presence of constraints, authorizations speci-
fied by the multidomain administrators may conflict with the underlying access-
control policies of constituent domains. These conflicts need to be resolved in
a manner such that the authorizations and restrictions defined by the admin-
istrators of the constituent domains are not preempted, while also ensuring
security of overall interoperation.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 403

Fig. 3. Multidomain interoperation graphs illustrating role mapping and associated constraints.

In our earlier work [Shafiq et al. 2005], we proposed a policy integration
framework for composing an interoperation policy from the RBAC policies of
collaborating domains, where the individual domain policies are assumed to be
consistent, i.e., conflict-free. In that framework, an integer programming (IP)-
based approach was used to determine an optimal solution to policy conflicts.
In this paper, we extend the existing policy integration framework to address
the following key issues: (1) Secure interoperation of X-GTRBAC policies in the
presence of constraints; and (2) decentralized conflict resolution for a multido-
main policy.

Because the multidomain policy is configured to manage interoperation, the
enablement/disablement of contextual constraints may change both local and
remote authorizations, resulting in change in policy state. In addition, multido-
main administrators are authorized to add/remove interdomain role mappings
within their respective domains, resulting in change in policy configuration. To
ensure secure interoperation, the policy conflicts need to be resolved whenever
such events occur.

To apply the policy integration framework proposed in [Shafiq et al. 2005],
we adopt a graph-based formalism for specifying advanced RBAC policies. In
the following, we first introduce the graph-based formalism for specifying the
GTRBAC policies and then discuss the proposed policy integration mechanism
for secure interoperation.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

404 • R. Bhatti et al.

4.1 Graph-Based Specification Model for GTRBAC

In graph-based models, users, roles, and permissions are represented as nodes
and the edges of the graph describe the association between various nodes. In or-
der to capture the RBAC semantics, the nodes cannot be arbitrarily connected.
An edge between a user node u and a role node r indicates that role r is assigned
to user u. Edges between role nodes are used to model the role hierarchy within
a domain, where we use the role hierarchy as defined in the RBAC model. In ad-
dition, interdomain edges may exist between role nodes and are used to capture
hierarchical relationship between interdomain roles. A user u can access a role
r if there is a path from the user node u to the role node r that consist only of
user-role assignment and role-role hierarchy edges. For instance, in Figure 3a
user u1 assigned to role r1A and r2A can access all roles except r3B because of the
existence of access paths from the user node u1 to those role nodes. There can
be edges between role and permission nodes (not in figure). The graph model
supports specification of SoD constraints, which are particularly relevant in an
enterprise. A role-specific SoD constraint disallows assignment and/or activa-
tion of conflicting roles to the same user. Similarly, a user-specific SoD constraint
prohibits conflicting users from accessing (being assigned to or activating) the
same role simultaneously. In the graph, a role-specific SoD constraint between
two roles is represented by a double arrow between the corresponding roles. To
represent a user-specific SoD constraint between conflicting users ui and u j for
a role rk , a double-headed edge with a label rk is drawn between the user nodes
ui and u j . The label rk specifies that the corresponding users are conflicting for
role rk and cannot access rk simultaneously. In the RBAC graph of Figure 3a,
role-specific SoD constraints are defined between roles r2A and r1A, and r2A and
r3A. A user-specific SoD constraint for role r2A is also specified between users
u1 and u2. In addition, an SoD constraint is induced between roles r1B and r3B
because of the interdomain mappings specified by the multidomain adminis-
trator. This is due to the fact that (1) roles r2A and r3A are in role-specific SoD,
(2) role r1B is mapped to role r2A, and (3) role r3B is mapped to role r3A. Because
of (2) and (3), user u4 can simultaneously acquire permissions of roles r2A and
r3A by accessing roles r3B and r1B and thereby violate SoD constraint in (1).
Therefore, roles r3B and r1B must also be in SoD.

The temporal semantics of GTRBAC is incorporated by augmenting the
RBAC graph with temporal labels. The RBAC graph of Figure 3a is a time-
augmented policy graph comprising two domains A and B. The temporal labels
associated with the edges indicate that the access allowed by the edge is tem-
porally constrained within the stated time period. Unlabeled edges indicate
accesses that are not temporally constrained. An augmented RBAC graph is
first projected into a simple RBAC graph by retaining all the accesses that
are allowed at a given time instance. The projected RBAC graph is then used
for conflict resolution. For instance, the projections of the augmented RBAC
graph at two different time instances are shown in Figures 3b and c. Although
an expensive process, we argue that the projection technique is adequate for
the temporal framework provided by X-GTRBAC Admin for enterprise-wide
access control. This is because the access requirements in enterprise systems,

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 405

although dynamic, are relatively stable for a given period of time (say during
the execution of a project, etc.). In addition, even if the access requirements to
different enterprise resources vary between different work shifts, the duration
of the shifts is reasonably large to justify the overhead of switching between
shifts and improving production (or service) efficiency. Therefore, we believe
that very few projections (proportional to the number of work shifts per day
in an enterprise—a typical value is 2–3) will be needed. Essentially, the feasi-
bility of this technique is determined by the application domain, and has been
articulated in our case. We will return to the example later on in Section 5 to
concretely discuss the interoperation strategy for the illustrated RBAC graph
of Figure 3. However, before that, we will introduce the security requirements
for such an interoperation.

4.2 Security Requirements in a Multidomain System

The goal of policy integration is to allow information and resource sharing
without preempting the local authorizations of constituent domains and simul-
taneously ensuring security of the overall interoperation. As mentioned earlier,
interdomain role mappings defined by multidomain administrators may con-
flict with the authorizations defined in the local access control policies of con-
stituent domains. These conflicts need to be resolved without altering domains’
local policies. In particular, the following two principles need to be enforced
while establishing secure interoperation [Gong and Qian 1996].

• Autonomy principle: If an access is permitted within an individual domain,
it must also be permitted under secure interoperation. In the context of RBAC,
the autonomy principle entails that all the valid role accesses by local users
specified in a domain’s local access control policy must be supported in the
overall interoperation policy. Formally:

reachable (u, r, Gi) ⇒ reachable (u, r, G)
where, Gi is an RBAC graph representing the local access control policy of
domain i and G is the multidomain RBAC graph corresponding to the overall
interoperation policy. The predicate reachable (u, r, G) is stated in Table VI; it
returns true if the role node r in the RBAC graph G can be reached from the
user node u, implying that user u can access role r.

In the RBAC framework discussed above, the violation of autonomy princi-
ple may occur because of interdomain constraints introduced by interdomain
role mappings, such as induced SoD, which was illustrated in the preceding
discussion with reference to Figure 3.

• Security principle: If an access is not permitted within an individual do-
main, it must also not be permitted under secure interoperation. In the context
of RBAC, all role accesses prohibited in a domain’s local access control policy
must not be supported in the overall interoperation policy. Formally:

¬ reachable (u, r, Gi) ⇒ ¬ reachable (u, r, G)
The violations of the security principle can be classified into following three

classes:

1. Role assignment violation: An interoperation policy causes a violation of role
assignment constraint of domain k if it allows a user u of domain k to access

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

406 • R. Bhatti et al.

Table VI. Predicates and Functions Used in Policy Analysis

Predicate/function Description
reachable(u,r,G) Returns True if the role node r in the RBAC graph G can be reached

from the user node u. This reachability implies that user u can
access role r under the policy specified as RBAC graph G

uassign(u,r) Returns True if user u is assigned to role r
passign(p,r) Returns True if permission p is assigned to role r
exists(x) Returns True if x ∈ AD

dom(x,y) Returns True if y ∈ dominates(x)
overrideable(G) Returns True if the configuration in graph G is overrideable; false for

leaf nodes
dominates(x) Returns set LD of domains locally dominated by domain x. Note that

|LD| = 2
projected-RBAC(TG) Returns projected RBAC graph G corresponding to the temporal

RBAC graph TG
IP-formulate(G) Returns an IP problem P for the policy graph G formulated with the

desired optimality criterion using the constraint transformation
rules listed in Table B.1

graph-prune(G,P) Returns G s.t. G = G − {(ri , r j)|∃uk(ukri
, = 1 and ukr j

, = 0) and
domain(r1) �= domain(r j)} i.e., from the graph G, remove all the
interdomain edges (ri ,r j) for which there exists a user uk , such that
the variables ukri

, = 1 and ukr j
, = 0 in P

a local role r, even though u is not directly assigned to r or any of the roles
that are senior to r in the role hierarchy of domain k.

2. Role-specific SoD violation: An interoperation policy causes a violation of
role-specific SoD constraint of domain k if it allows a user to simultaneously
access any two conflicting roles ri and r j of domain k in the same session or
in concurrent sessions.

3. User-specific SoD violation: Let U c
r denote the conflicting set of users for role

r belonging to domain k. An interoperation policy causes a violation of user-
specific SoD constraint of domain k if it allows any two distinct users from
the set U c

r to access role r in concurrent sessions.

The interoperation policy graphs shown in Figure 3 lead to all three types
of policy conflicts described above. For instance, the policy graph in Figure 3b
defines the following interoperation between domains A and B:

1. Role r1A in domain A inherits all the permissions available to r1B in domain
B by virtue of the interdomain mapping from r1A to r1B.

2. r5A in domain A inherits all the permissions available to r2B in domain B
because of the interdomain mapping from r5A to r2B.

3. r1B in domain B inherits all the permissions available to r2A in domain A
because of the interdomain mapping from r1B to r2A.

4. r2B in domain B inherits all the permissions available to r4A in domain A
because of the interdomain mapping from r2B to r4A.

This interoperation policy is not conflict free. It allows role r5A to access
the permissions of its senior role r4A through r2B, which is a violation of role-
assignment constraint. Moreover, the interdomain role mappings from r1A to

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 407

r1B and from r1B to r2A enable u1 to also access the conflicting role r2A when it
accesses role r1A. This is a violation of the role-specific SoD constraint between
roles r1A and r2A. In addition, the multidomain policy allows u1 to access the
role r1A and u2 to access the role r2A. u1 by accessing r1A can acquire permission
over r2A through the role r1B. This is a violation of user-specific SoD constraint,
which prohibits u1 and u2 from simultaneously accessing the role r2A.

Conflicts in a multidomain policy occur because of the interdomain role ac-
cesses that are defined through map role operation. Such conflicts can be re-
solved by either modifying the security policy of the affected domains or by
restricting interdomain accesses conflicting with the access control policy of
any of the collaborating domain. The former is not a viable solution as it affects
the autonomy of domains, which is a key requirement for secure interoperation.
The latter seeks resolution of conflicts by removing interdomain mappings with-
out triggering any change in the domains’ local access control policies, implying
that the autonomy of all interoperating domains remain intact. With respect to
the latter approach, there may be several choices available for resolving inter-
operation conflicts and each choice corresponds to removal of a different set of
interdomain mappings. An arbitrary selection of interdomain edges for removal
may significantly reduce interoperation.

Alternatively, conflict resolution can be formulated as an optimization prob-
lem to maximize interdomain information and resource sharing according to
some prespecified optimality measure. Various optimality measures for secure
interoperation have been defined in the literature [Gong and Qian 1996]. These
include maximum direct access, maximum sharing, and minimum representa-
tion. Selection of an appropriate optimality measure depends on the underlying
applications or processes requiring interdomain interoperation. For instance,
maximizing interdomain data accessibility is a meaningful optimization crite-
rion for distributed database systems carrying out transactions that are largely
independent of each other. However, this optimality criterion may not be suit-
able for distributed task-based applications involving a number of tasks, each
requiring a set of resource accesses in order to be executed. In this case, at-
tempting to maximize individual interdomain accesses without regard to their
semantic dependence with respect to the tasks being executed will not yield a
viable solution. Therefore, an appropriate optimality criterion is to maximize
the number of overall tasks supported by the collaborative system rather than
maximizing individual interdomain accesses.

As an example consider the interoperation policy graph shown in Figure 3b.
We define two tasks t1 and t2. Suppose the execution semantics of task t1 require
the invoking process/user to access roles r3B, r1A, and r4A. Similarly, t2 entails
accessing roles r3B, r1A, and r5A by the process/user invoking the task. These
execution semantics impose an additional requirement on the interoperation
between domains A and B and affect the choice of resolution strategy for the
conflicts in the interoperation policy graph depicted in Figure 3b. To resolve
the policy conflicts enumerated earlier, one of the following sets of edges from
the multidomain policy graph of Figure 3b needs to be removed: {(r1A-r1B), (r5A-
r2B)}, {(r1A-r1B), (r2B-r4A)}, {(r1B-r2A), (r5A-r2B)}, {(r1B-r2A), (r2B-r4A)}. As we will
see later, removal of the interdomain role edges (r1B-r2A), (r5A-r2B) yields an

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

408 • R. Bhatti et al.

optimal resolution with respect to maximum resource accesses; however, none
of the tasks t1 and t2 can be supported in the resulting interoperation policy.
In case the optimality criterion is to maximize task execution, the interdomain
edge (r1B-r2A) needs to be retained in the final policy, which, in this case, is
contrary to the objective of maximizing individual interdomain accesses. In the
remainder of this section, we focus on the formulation of conflict resolution as an
IP problem and the discussion of our conflict resolution algorithm. Subsequently
in Section 5, we provide an example demonstrating the applicability of our
conflict resolution strategy to the inconsistent interoperation policy depicted in
Figure 3b.

4.3 IP Formulation of RBAC Policy

We use integer programming (IP)-based approach for resolving policy conflicts
in an optimal manner. In the proposed approach, the projected RBAC policy is
formulated as the following 0-1 integer program:

maximize cT ur + d T t
subject to Aur ≤ b
∀tk ∈ t, tk − ∏

uir j
∈Stk

uir j = 0

∀uir j ∈ ur , uir j = 0 or 1
∀tk ∈ t, tk = 0 or 1

Here, c and d are the cost vectors defining the optimality criterion, ur is
a vector representing user role authorization, and t is a vector of tasks. The
elements of matrix A correspond to the coefficients of the terms used in the
IP constraints. The various variables in the system are used to formulate the
constraints and optimality criterion for the IP problem. We now discuss these
separately.

4.3.1 Constraints. In the IP formulation of RBAC policy, we express con-
straints such as role assignment, SoD, and permitted/restricted access using
equations/inequalities. The variables used in these constraints convey both user
and role information. For instance, the variables are of the form uir j where the
first subscript i identifies the user and the second subscript r j specifies the
role. The variable uir j is a binary variable, i.e., it can take a value of “0” or “1”
only. If the variable uir j = 1, then user ui is authorized for role r j , otherwise
ui cannot access role r j . If user ui and role r j are from different domains and
uir j = 0, then there should not be any path from the user node ui to the role
node r j in the role graph. Note that a given multidomain RBAC policy may be
inconsistent and a path may exist between user ui from one domain and role r j
from another domain, while it may be found that uir j = 0 in the solution to the
IP problem. Based on this solution, the inconsistency is resolved in the final
policy by dropping the interdomain edge(s) that lie(s) in the path between the
user node ui and role node r j .

The elements of the vector t correspond to different task variables. Each task
tk ∈ t requires certain user-role accesses to be invoked in order to be executed,

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 409

i.e., a task tk comprises of a set of uir j variables. The set stk defines the
dependence of task tk on these variables. The task variable tk gets assigned
a value of 1 when all the associated uir j variables are also 1, which is expressed
in the second constraint in this IP problem. Semantically, this constraint means
that an interoperation policy supports execution of task tk if all the user-role
accesses in the set stk are supported. The last two constraints mean that the
variables tk and uir j are binary variables. Appendix B tabulates the transforma-
tion rules for generating IP constraints from the projected multidomain RBAC
graph.

4.3.2 Optimality Criterion. We have discussed two optimality criteria in
the preceding subsection. The given IP problem can be formulated to support
both those criteria based on the selection of variables c and d . In particular,
the first criterion regarding maximizing interdomain data accessibility can be
specified in the objective function as a sum of all decision variables representing
interdomain user to role authorization, i.e., all ci s corresponding to interdo-
main user-role variables are assigned a value of “1” and the remaining ci s
and all di s are set to “0” [Shafiq et al. 2005]. As mentioned in Section 4.1, the
temporal constraint associated with a interdomain role mapping restricts the
time during which interdomain information can be accessed via such mapping.
Enabling or disabling of interdomain role mappings may introduce conflicts
in the interoperation policy. Resolution of such conflicts requires reevaluation
of the IP, which may change the prior level of sharing. In order to avoid fre-
quent invocation of the IP, it is desired to achieve maximum sharing for the
longest period of time. This requires removing the conflicting interdomain ac-
cesses with smaller time spans in favor of the interdomain accesses with larger
time spans. This requirement can be specified in the IP objective function by
assigning weights to the decision variables in proportion to the remaining time
span of the corresponding interdomain role accesses.

The second criterion regarding maximizing the number of collaborative tasks
supported by the system can be specified in the objective function by including
all task variables associated with the collaboration tasks with uniform weights,
i.e., all di s are assigned a value of “1” and all ci s are set to “0”.

A correctness result for the IP formulation technique for conflict resolution
has been presented in [Shafiq et al. 2005], which establishes the fact that after
solving the IP problem and applying the solution to the policy graph, none of
the identified conflicts remain in the interoperation policy.

4.4 Conflict Resolution Algorithm

Based on the discussion in the preceding subsections, we now give the conflict
resolution algorithm to generate a conflict-free policy for an RBAC policy graph.
The RBAC policy graph that we consider in this paper is actually the projection
of an augmented graph representing a GTRBAC policy (see Figure 3). It is,
therefore, the case that different projections of the GTRBAC policy graph may
be obtained at different time instances. This implies that conflict resolution is
no more only a static operation; it needs to be performed every time the state of
the policy (i.e., the projection) changes. The conflict resolution algorithm has,

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

410 • R. Bhatti et al.

Table VII. Decentralized Conflict Resolution Algorithm and Its Subroutines

DCR(TGk, . . . ,TGn)
1. for i ← k to n
2. Gi:i ← projected-RBAC(TGi)
3. Gk−1:k ← Gk:k

4. Mk−1:k ← Ø
5. for i ← k to n−1
6. {Gi:i+1, Mi:i+1} ← CR2(Gi−1:i, Gi,+1:i+1)
7. while not (I ← detect change(TG1, . . . ,

TGn, M0,1,. . . ,Mn−1,n))
8. ; // busy wait
9. m ← min(I) // minimum leaf node index

10. k ← m−1
11. go to step 5

CR2(Ga:x, Gy:y)
1. if not exists(x:y)
2. Create x:y s.t. dom(x:y,a:x) ∧ dom(x:y,y:y)
3. Create ARx:y for x:y s.t. x:y ∈ domain(ARx:y).
4. if overrideable(Ga:x)
5. D ← dominated domains(a:x)
6. else D ← a:x
7. Gp:q = D1 // Di refers to ith element in D
8. for i ← 1 to |D|−1
9. {Gq:q+1, Mq:q+1} ← CR2(Gq−1:q, Gq+1:q+1)

10. q = q+1
11. P ← IP-formulate(Gq−1:q)
12. Gq−1:q ← graph-prune(Gq−1:q,P)
13. return Gq−1:q, Mq−1:q

dominated domains(x:y)
1. D ← Ø
2. LD = a:x, y:y ← dominates(x:y) // child nodes
3. if exists(a:x)
4. if domiantes(D1) �= Ø

// if left child is composite node
5. if overidable(Ga:x)
6. D ← D ∪ dominated domains(a:x)
7. else D ← D ∪ a:x
8. if exists(y:y)
9. D ← D ∪ y:y

10. return D

detect change(TG1, . . . ,TGn, M0,1, . . . ,Mn−1,n,)
1. for i ← 1 to n
2. I[i] ← 0 // initialize change vector
3. for i ← 1 to n
4. for each temporal constraint tc ∈ TGi

5. if ((enabled(tc,time) and not
enabled(tc,time-1)) or (not enabled(tc,time)
and enabled(tc,time-1)))

6. I[i] ← 1
7. for i ← 1 to n
8. for each temporal constraint tc ∈ Mi−1,i

9. if ((enabled(tc,time) and not
enabled(tc,time-1)) or (not enabled(tc,time)
and enabled(tc,time-1)))

10. I[i] ← 1
11. return I

therefore, been modified from [Shafiq et al. 2005] and significantly extended to
incorporate this dynamic aspect.

The main routine Decentralized Conflict Resolution (DCR) and its subrou-
tines are shown in Table VII. The algorithm makes use of several predicates and
functions, listed in Table VI. Of particular importance is the notion of dominance
among domains introduced on the basis of the organizational structure of the
enterprise. In order to represent the multiple domains within the enterprise,
we construct a domain tree, which essentially represents an administrative do-
main hierarchy as defined in Definition 3.1.1. Let each administrative domain
be a leaf in a tree, where the tree represents the organizational structure. We
use a construction method that starts from the leaves of the tree and moves
upward. We use a pair-wise merging method to successively merge child nodes
into composite parent nodes. The methodology is as follows.

At the each level, a new leaf is combined with another composite node (except
for the first step, when both nodes are leaf nodes). Effectively, there is an Admin
Role hierarchy corresponding to the domain hierarchy, which is comprised of the
Admin Roles from each domain. The administrator at each leaf in the domain
tree is responsible for the domain represented by the leaf. Then, by virtue of
the has authority over function, defined in Table II, the administrator at the
next higher level is responsible for the domains represented by its child nodes.
Henceforth, we call the immediate child nodes as locally dominated domains

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 411

Fig. 4. An organizational domain free.

and the immediate parent as the dominating domain. The construction proceeds
in this manner and eventually reaches the root of the tree, which is responsible
for the overall multidomain policy of the enterprise (this is typically the SSO).

An example domain tree is shown in Figure 4. It also indicates the Admin
Role associated with each domain that has authority over that domain. The
leaves A, B, and C represent the individual enterprise domains, administered,
respectively, by ARa, ARb, and ARc. The node AB represents the union (in terms
of administrative authority) of A and B and is administered by ARab. Here, AB
is the dominating domain and A and B are the locally dominated domains.
In this example, the most dominating domain is ABC (root of the tree) and
is administered by the SSO. Its locally dominated domains are AB, and C,
whereas A, B, and C comprise its set of all dominated domains. It may be noted
that the set of all dominated domains always comprises of leaf nodes. On the
other hand, the set of locally dominated domains could contain domains, such as
AB, which are not leaf nodes and, hence, not an individual enterprise domain,
but only represent a union of administrative authority over multiple domains.
This distinction is important in our conflict resolution algorithm, and also has
impact on the optimality vs. autonomy tradeoff, as shall be shortly discussed.

We note that while the decentralization of policy administration tasks pro-
ceeds from the root to the leaves, the conflict resolution tasks take the reverse
route. This is necessary to maintain consistency in the overall enterprise policy,
while simultaneously preserving the autonomy of the individual domains to the
extent possible. The conflict resolution algorithm is, therefore, designed to pre-
serve the autonomy and also allow a tradeoff between autonomy and optimality,
if desired. This is achieved as follows. Each multidomain administrator (such as
ARab in Figure 4) carries out localized conflict resolution within its dominated
domains (A and B) and creates a dominating domain (AB) that represents the
secure interoperation environment for its locally dominated domains (A and B)
according to the resulting conflict-free policy. The node representing the domi-
nating domain (node AB) may, however, itself be a locally dominated domain of
another higher level node (ABC) administered by another multidomain admin-
istrator (ARabc). Hence, the conflict resolution is recursively carried out until
we reach the root of the tree (ABC).

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

412 • R. Bhatti et al.

At each step during the process, the administrator of the dominating domain
has the option of keeping or modifying the conflict-free policy obtained from its
locally dominated domains. If the policy is kept, it is simply used as it is in the
conflict resolution algorithm. If the policy is, however, needed to be modified,
the policies of all (as opposed to only locally) dominated domains would again
need to be included in the analysis. This decision could be motivated by opti-
mality considerations, as keeping the policy might lead to a suboptimal overall
solution. Consider for instance nodes A, B, and AB in Figure 4. AB represents
the secure interoperation environment for A and B according to a conflict-free
policy. At the next stage, it is possible that the policy obtained by applying con-
flict resolution algorithm on AB and C be less optimal than the policy obtained
by applying the algorithm directly on A, B, and C. Keeping in mind that this
autonomy vs. optimality tradeoff depends on the target enterprise, we propose
a hybrid scheme that allows the system to be configured in either mode (i.e.,
keeping or modifying the input policy). Building upon this discussion of the
domain tree, we now summarize the conflict resolution algorithm.

The input to the DCR is the set of temporal graphs (TGs), which repre-
sent GTRBAC policies of the individual enterprise domains enumerated in a
numerical order. These graphs are first projected onto corresponding RBAC
policy graphs (Gs), and then submitted two at a time to the pair-wise conflict
resolution CR2 subroutine. CR2 creates a composite domain by merging the
domains that the incoming graphs correspond to (which therefore become the
locally dominated domains of the newly created domain). The dominating do-
main then carries out the conflict resolution on either the locally dominated
domains or all dominated domains, depending on whether the incoming graph
is overrideable, i.e., can be modified. Due to the construction method, only the
left child could be a composite node, so the incoming graph supplied as the first
argument (assumed to correspond to the left child) needs to be checked. The
subroutine dominated domains helps to get the set of all dominated domains,
if applicable. CR2 returns the conflict-free policy graph and the interdomain
role mapping for the locally dominated domains. When the control returns to
DCR, it busy-waits on detect change to detect any change in policy state or con-
figuration in temporal (and not projected) graphs of individual domains. The
change-detection routine records the indexes of all individual domains where
any change occurred. The minimum of these indexes is obtained and DCR is
reinvoked on the domain tree upward from that index. The use of minimum
index eliminates redundant computation as the complete domain tree need not
be changed every time. We note that all composite domains are indexed as a
two-digit pair separated by a colon, indicating the domain indexes making up
the composite domain. In the case of an individual domain, both digits are the
same. The use of two-digit indexes enables carrying out the analysis on the
domain tree during the execution of the algorithm. In practice, the numeric
subscript could be replaced by a letter, as in Figure 4.

Having completed the discussion on our administration model, we next
present an example of a generic enterprise that demonstrates how the features
of basic and advanced X-GTRBAC Admin model would be useful for enterprise-
wide access control.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 413

Table VIII. A Set of Regular Users

Domain User Id Eligible role (ER)
1. domA u1 R1A
2. domA u2 R2A

3. domA u3 R3A

4 domB u4 R1B

5. domB u5 R2B

Table IX. A Set of Regular Permissions

Domain Perm Id Eligible role (ER)
1. domA P1 R1A

2. domA P2 R2A

3. domA P3 R3A

4 domB P4 R1B

5. domB P5 R2B

Table X. A Set of Admin Roles

Admin role (AR) Valid intervals AR domain
1. ARa MO-FR 9-5 domA

2. ARb MO-FR 9-5 domB

3. ARab MO-FR 9-5 domA, domB

4 ARsp TEMP SPECIAL

Table XI. A Set of Admin Permissions

Admin permission (AP) AP domain
1. AP1 (can assign,can assignp) domA

2. AP2 (can assign,can assignp) domB

3. AP3 (can deassign) domB

4 AP4 (can enable) ALL

5. ENTERPRISE-WIDE ACCESS CONTROL AND X-GTRBAC ADMIN

The administrative concepts presented in X-GTRBAC Admin are now illus-
trated in the context of a generic enterprise environment. For continuation with
preceding discussion, and making it concrete, we use the example presented in
Figure 3. Let the users and permissions within the two domains A and B be given
in Tables VIII and IX, respectively. Tables X and XI give the candidate users
for the Admin Roles and the set of available Admin Permissions, respectively,
for the two domains. We note that domain A and domain B are administered by
Admin Roles ARa and ARb, respectively. Note, also, that the Admin Role ARab
has authority over both domains. The intention here is that while ARa and ARb
can carry out policy administration tasks within their own domains, ARab is re-
sponsible for administering the interoperation policy between the two domains.
We will discuss the general case for scoping the administrative authority in
Section 6, where we present a mechanism for implementing our decentralized
administration framework. We next observe the administrative features pro-
vided by X-GTRABC Admin to administer the enterprise access control policy.
The forthcoming discussion of the administration process involving this exam-
ple uses the XML policy files described in Section 2.2. We remind the reader
that the syntax of these files has been provided in Appendix-A.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

414 • R. Bhatti et al.

5.1 Assignment of Administrative Roles and Permissions

The assignment of Admin Roles and Admin Permissions is carried out by the
SSO. An Admin Role is represented in our framework using the XRS, which
includes information, such as hierarchy and cardinality constraints. It also in-
cludes attributes of the role, including associated domains. The assignment of
Admin Roles ARa, ARb, ARab, and ARsp is handled by the can assign admin re-
lation, which is represented using XURAS. The assignment may be based on
the evaluation of applicable constraints on user attributes which are encoded
in a specially designated admin credential. The user credential and associ-
ated cardinality constraints are specified using the XUS (cardinality in XUS
is represented by MaxRoles element). An Admin Permission is represented in
our framework using the XPS, which includes attributes of a permission, in-
cluding associated domains. The assignment of Admin Permissions AP1–AP4 to
the Admin Roles may based on the attributes of the role as defined in XRS
and is handled by the can assignp admin relation, which is represented using
XPRAS.

For the purpose of this example, we do not explicitly need to indicate the
users assigned as administrators and would just use the Admin Roles by name
in subsequent discussions. It may be noted that the temporal conditions sup-
plied in Table X restrict the activation of the Admin Roles by the assigned
users to only within the stated validity period. Such conditions reflect the
realistic scenario within an enterprise, where the activation of Admin Roles
may need to be time-constrained. The clear distinction between role assign-
ment and role activation in GTRBAC allows this constraint to be effectively
enforced.

From the information in Tables X and XI, we note that ARa and ARb can be
assigned AP1, and AP2, and AP3, respectively, whereas ARab can be assigned AP1,
AP2, and AP3, because it has administrative authority over both domains to
which these permissions belong. AP4 can also be assigned to any Admin Role,
because it is designated as available for ALL domains. On the other hand, the
domain for AR4 has been designated as SPECIAL, which implies that it is an
Admin Role that may be enabled temporarily during nonusual activity periods,
such as special projects. In such cases, additional domains of administrative
authority are typically needed according to the scale of the project. Hence AR4
can be configured to act as an Admin Role for the SPECIAL project domain(s)
and would remain valid for the TEMP duration of the project. The corresponding
Admin Permissions for these Admin Roles would be project-specific, and created
by the SSO.

5.2 Assignment of Regular Roles and Permissions

The assignment of regular roles and regular permissions are carried out by Ad-
min Roles similarly using XURAS and XPRAS, respectively. The XURAS repre-
sents the can assign relation, whereas the XPRAS represents the can assignp
relation. The “eligible role” column in Table IX is used to indicate the roles
that a user or permission could be assigned to after the satisfaction of the eli-
gibility criterion, expressed as a set of constraints. The information needed to

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 415

Fig. 5. IP corresponding to the RBAC graph of Figure 3b.

evaluate the constraints is obtained from the XUS, XRS, and XPS documents.
The users assigned to Admin Roles can then execute the assigned Admin Per-
missions. For instance, the Admin Role ARa can assign the user u1 to role R1A,
because it has the can assign permission (AP1) and required scope (i.e., its do-
main A is same as the domain of R1A). ARb has can assign permission (AP2)
over domain B and can assign u4 to role R1B. Using can assignp permission,
the permissions P1, P2, and P3 will also be assigned to the roles R1A, R2A, and
R3A by ARa, whereas P4 and P5 will be assigned to the roles R1B and R2B by ARb,
respectively.

Any applicable constraints during the process of user-role and permission-
to-role assignments for both regular and administrative roles are included in
the XURAS and XPRAS documents as temporal or logical expressions. The use
of XURAS and XPRAS in this manner facilitates automated fine-grained policy
assignments in large enterprises.

5.3 Conflict Resolution

The IP formalism allows secure interoperation to be established while resolving
conflicts that arise because of the dynamic resource accesses in the example
multidomain policy. Applying the conflict resolution algorithm of Section 4 on
the RBAC graph of Figure 3b gives the IP program shown in Figure 5. The
optimality criterion of this IP is to maximize all interdomain accesses as can be
observed from the objective function that consists of all interdomain user-role
variables with uniform weight assignment. The IP is solved using CPLEX, a
well known IP solver. The optimal solution to this IP problem has an objective

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

416 • R. Bhatti et al.

function value of 7 with the following values of interdomain variables: u1r1B =
u1r2B = u4r3A = u4r4A = u4r5A = u5r4A = u5r5A = 1, u3r2B = u4r2A = 0. Since, in the
optimal solution,u3r2B = 0 and u4r2A = 0, the interdomain edges (r1B-r2A) and
(r5A-r2B), therefore, need to be removed from the final policy.

Although the above solution maximizes the individual interdomain accesses,
it does not support executions of tasks t1 and t2. The execution semantics of
task t1 (t2) requires accessing roles r3B, r2A, and r4A (r3B, r2A, and r5A) by the
user/process invoking the task t1 (t2). Constraints c48 and c49 in the IP formu-
lation of Figure 5 capture this semantic dependency. By removing the role map-
ping (r1B-r2A) from the final interoperation policy, none of the users authorized
for role r3B can access role r2A, implying that tasks t1 and t2 cannot be executed
in the interoperation policy generated by solving the IP of Figure 5. Changing
the optimality criterion from maximizing interdomain accesses to maximizing
task supportability (maximize t1 + t2) in Figure 5, produces a different interop-
eration policy in which the interdomain edges (r1A-r1B), (r5A-r2B), and (r3B-r3A)
are removed. Since the interdomain edge (r1B-r2A) is retained in this resolution,
the resulting interoperation policy, therefore, supports execution of both tasks
t1 + t2. However, the number of individual interdomain accesses in this case is
reduced to 5.

The reader will note that both the above solutions to the IP problem eliminate
the autonomy and security violations occurring in the initial RBAC graph of
Figure 3b. A simple observation of the state of the graph after the removal
of afore-mentioned interdomain edges indicates that there remains no such
combination of edges that caused those violations.

6. SYSTEM ARCHITECTURE AND IMPLEMENTATION

This section describes the system architecture and the implementation proto-
type of our administrative model. The architecture is based on the concepts
outlined in Sections 3 and 4.

Figure 6 shows the X-GTRBAC Admin system architecture. With reference to
Figure 1, we are incorporating support for both aspects of policy administration.
Therefore, the architecture has been designed according to Figure 1. The sup-
port for administrative extensions related to policy assignments, as described
in Section 3, namely Admin Domains, Admin Roles, and Admin Permissions,
is provided by the PA (Policy Assignments) module. It carries out the assign-
ment of administrative users to Admin Roles and that of Admin Roles to Ad-
min Permissions. These automated assignments are performed using the as-
sign admin role and assign admin permission operations, respectively, as dis-
cussed in Section 3. The output of the module is the administrative policy of the
enterprise. The CR (Conflict Resolution) module enables secure interoperation
among the domains within an organizational structure, as depicted in Figure
4. It implements the decentralized conflict resolution algorithm (DCR) given in
Section 4.2.

We use a set of schema definitions that describe the XML documents being
shared by the enterprise domains. These definitions are captured using the

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 417

Fig. 6. System architecture for (a) policy assignments (PA); (b) conflict resolution (CR).

Fig. 7. X-Grammar for (a) XML policy definition (XPolicy); (b) XML policy relationship definition
(XPRD); (c) semantic dependence definition (XSDD).

X-Grammar notation introduced Section 2.2. The policy information of each
domain (illustrated using RBAC policy graph of Section 4) is represented using
an XML document called XPolicy. The XPolicy schema is defined using the
specification language defined in Joshi et al. [2004], and is shown in Figure 7a.
It captures all the essential policy information, including the users, roles,
permissions, and user-to-role and permission-to-role assignments. In addition,
if the policy belongs to a dominating domain in the domain tree, then the docu-
ment also includes imported Policy Definition elements (i.e., policy definitions of
the locally dominated domains) and the Policy Relationship Definition elements
(i.e., the interdomain role mapping among the locally dominated domains,
based on the map role operation defined in Table IV). The XML Policy Rela-
tionship Definition (XPRD) schema is shown in Figure 7b. We note that the role
mapping may also have temporal constraints associated with it, captured by the

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

418 • R. Bhatti et al.

MappingCondition tag.2 In addition, the XPRD also includes the information
regarding the semantic dependence among tasks that must be considered
while determining the optimal interoperation, as discussed in Section 4, and
illustrated with an example in Section 5. This information is captured by
the XML Semantic Dependence Definition (XSDD) schema and is shown in
Figure 7c.

The conflict resolution algorithm is implemented as follows. Each locally
dominated domain first exports its policies to its dominating domain. For in-
stance, in Figure 4, A and B will both export their XPolicy to node AB. At
this point, the administrator of the dominating domain would define any inter-
domain role mapping among the locally dominated domains using the XPRD
schema and appending the Policy Relationship Definition element to the XPol-
icy document. This document will then be used by the administrator to generate
and solve the IP problem for the locally dominated domains. AB generates and
solves the IP problem for A and B. The resulting policy will be conflict-free with
respect to A and B. This resulting conflict-free policy is itself represented as
an XPolicy document. To implement the hybrid scheme of system configuration
discussed in Section 4 (i.e., favoring autonomy vs. optimality), the XPolicy doc-
ument has an overrideable attribute, which can be set to yes or no, depending
on the semantics of the target enterprise. A value of no implies that the pol-
icy cannot be overridden by the administrator of the dominating domain and,
hence, favors autonomy, whereas a value of yes allows the administrator to
again include all dominated domains in the analysis, thus favoring optimality.
The conflict resolution process is recursively carried out until the root of the
domain tree is reached, at which point a final XPolicy document is generated.
This document is then transmitted to all dominated domains (represented by
leaf nodes in the domain tree) and represents the overall enterprise interop-
eration policy. We note that the XPolicy documents exported by the individual
domains represent the projected RBAC policy graph. In case any change is de-
tected in policy state or configuration, the corresponding XPolicy documents
will be revised and the conflict resolution policies among the affected domains
will be regenerated, as per the algorithm described in Section 4.4.

Implementation efforts are underway for supporting the X-GTRBAC Ad-
min model in our existing Java-based prototype, first described in Bhatti et al.
[2005]. The PAmodule has been implemented and included in the prototype. The
DCR algorithm has been partially implemented as a stand-alone C program.
The CR2 subroutine managing secure interoperation for projected policy graphs
is currently supported and we are working on including the detect change sub-
routine to enable dynamic policy analysis. The CR module has been coded in C
for performance reasons, since it needs to be invoked potentially several times.
The Java Native Interface (JNI) API allows the C program to interface with
our Java-based prototype.

2The pt expr id attribute refers to the definition of the periodic time expressions of GTRBAC shown
in Table I and the LogicalExpression tag refers to the constraint expression in X-GTRBAC Admin.
For details of its XML representation, see Bhatti et al. [2005].

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 419

7. DISCUSSION AND CONCLUSION

In this paper, we have presented X-GTRBAC Admin, an administration model
for the X-GTRBAC framework. The model presents a solution to the admin-
istration problem for enterprise-wide access control, which not only includes
authorization management for users and resources within a single domain,
but also conflict resolution among access control policies of multiple domains to
allow secure interoperation within the enterprise. We maintain that a distinct
feature of our approach is that it allows policy administration in the presence
of constraints. Our model provides a formal specification of administrative con-
cepts and constraints to facilitate the administration of advanced RBAC poli-
cies. The formal model has also been represented using an XML-based grammar
specification called X-Grammar, which is well-suited to heterogeneous, interop-
erable systems, and defines a consistent vocabulary based on XML-Schema to
express enterprise access control policies. Both the regular and administrative
assignment operations in our X-GTRBAC system are treated uniformly, which
keeps the administrative concept simple in practice. A key feature of the model
is that it allows decentralization of the policy administration tasks through
the abstraction of administrative domains, which not only simplifies autho-
rization management, but is also fundamental to the concept of decentralized
conflict resolution presented in the paper. The model formalizes the organiza-
tional structure of a multidomain enterprise using role and domain hierarchies,
and incorporates a decentralized conflict resolution algorithm to allow secure
interoperation in a multidomain environment. A generic enterprise example
has been provided to consolidate the ideas presented in the paper. We have also
presented a comprehensive software architecture and discussed the system im-
plementation.

The decentralized conflict resolution mechanism is a significant feature of
our model. It allows the domain administrators to define their security require-
ments and allows secure interoperation across the heterogeneous enterprise
domains while respecting the autonomy and security requirements of the con-
stituent domains. No earlier administrative model (ARBAC, [Crampton and
Loizou 2002]) has addressed the issues of conflict resolution in a multidomain
environment. There has been research on policy management along related
lines, such as [Dawson et al. 2000; Bonatti et al. 1996, 2002; Gong and Qian
1996]. However, to the best of our knowledge, this is the first approach that
deals with conflict resolution in a dynamic environment using a temporal ac-
cess control framework. There are tradeoffs, however, that need to be made in
the favor of either autonomy of domains or optimality of the overall solution.
These tradeoffs depend on the target enterprise and, hence, our model sup-
ports a hybrid scheme that allows favoring one criterion over the other. While
the autonomy criterion is met affordably using the domain tree construction,
the optimality criterion is expensive to meet in a highly dynamic environment
due to the heavy processing requirements at each level of the domain tree. We
have, therefore, studied several heuristics (such as Lagrangian relaxation, tabu
search, and simulated annealing [Zhang 2004]) that would make compliance
with this criterion less expensive to achieve. In other words, it will reduce the

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

420 • R. Bhatti et al.

amount of processing overhead encountered to solve the IP problem for each
instance (i.e., projection) of the policy graph. This, however, is not without its
cost—the approximation results in a near-optimal solution. It is desirable to
find better heuristics that can bridge the gap between the near optimal and
optimal solution, although attaining the latter with long-lived guarantees is,
most likely, not feasible. Addressing this concern will be the focus of further
work.

Several extensions to our model can be foreseen. Our present analysis of
multidomain policies has assumed that the individual domain policies are
consistent. An ongoing work deals with removing this assumption and address-
ing the consistency problem for a single-domain policy. We intend to explore
other issues related to administration of policies in multidomain environments,
such as assignment criteria of domain administrators, interplay of administra-
tive authority and advanced role hierarchies, and evaluating the administrative
authority in the wake of domain merging or splitting. Part of the complexity in
determining administrative authority in a multidomain environment is intro-
duced because of the constraint specification in our framework. The contextual
constraints (both temporal and nontemporal) imposed on a user-to-admin-role
assignment may lead to a situation when no administrator remains eligible
to be assigned to a domain, whereas, there may also be times when multiple
candidates are available. Another factor that complicates this issue is the trust-
worthiness of the domain administrators. A protocol must exist that allows the
multiple domains in the enterprise to reach a consensus on the authority of the
multidomain administrators managing their access control policies. Address-
ing these concerns is a policy design issue and needs to be considered as part
of the administration problem. These challenges need to be addressed for effec-
tive administration of access control policies in a widely distributed dynamic
enterprise.

APPENDIX A

Fig. A.1. X-Grammar for XUS.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 421

Fig. A.2. X-Grammar for XRS.

Fig. A.3. X-Grammar for XPS.

Fig. A.4. X-Grammar for XURAS.

Fig. A.5. X-Grammar for XPRAS.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

422 • R. Bhatti et al.

APPENDIX B

Table B.1. Transformation Rules for Generating IP Constraints from RBAC Policy Graph

Category ID Rule Meaning
Hierarchy and
assignment

1 ¬reachable(ui , r j) ⇒ uir j = 0 If there is no access path from a
user node ui to role/permission
node r j , then ui is not
authorized to access r j

2 Let Au be the set of users assigned to r j .∑
u∈Au ur j ≥ 0, where, pk is a dynamic

permission assigned to r j .

At least one of the users from the
set of users assigned to a role
must access that role in any
feasible solution of IP

3 For an intradomain I hierarchy edge from role
r j to rk , uir j − uirk ≤ 0

Any user ui assuming role r j also
assumes rk , if role r j is senior
to rk

4 Let UIk = {u|¬uassign(u, r)∧(r = rk ∨ r ≥r
k)}

and RIk = {r j |r j ≥ rk} · ∀u ∈ UI K ,∑
r j ∈RI S

ur j − urk ≥ 0.

Any user u not assigned to rk or
any of its senior roles can
access rk only if u is able to
access at least one role in the
set RIk

5 Consider a user ui and a role rk such that
domain(ui) �= domain(rk). Let Rm =
{r|domain(r) = domain(rk) ∧ reachable(ui , rk)},
and Rc = {r|r ≥rk ∧ domain(rk) �= domain(r)}
and Rpc = {rp|∃r ∈ Rc such that(rp =
r ∧ uassign(u, r)) ∨ (rp ≥ r ∧ domain(r) =
domain(rp))} The following IP constraints
define the conditions for ui to access rk .

∀rm ∈ Rm, uirm − uirk ≤ 0
∑

rm∈Rm

uirm +
∑

rn∈Rc

uirn − uirk ≥ 0,

∑

rm∈Rm

uirm +
∑

rp∈Rpc

uirp − uirk ≥ 0

A user ui may access a
cross-domain role rk only if one
of the following two conditions
holds: (i) ui is authorized for a
cross-domain role rm such that
domain(rm) = domain(rk) and
rm ≥I rk . (ii) ui is authorized
for role rn and there is an
interdomain edge from rn to rk

6 For an interdomain edge from rk to rl , the
following constraints define the interdomain
access semantics for any two users ui and u j

via (rk − rl).
if domain(ui) = domain(u j) = domain(rk)

then (uirk − uirl) − (u jrk − u jrl) = 0 else
(uirk − uirl)−
(u jrk − u jrl) ≥ 0

If user ui is able to access rl

through the cross-domain edge
(rk , rl), then any user u j , if
authorized for role rk , can also
access rl through (rk , rl)

SoD 7 For a role SoD constraint between r j and rk ,
∀u ∈ Users, ur + ur ≤ 1

Conflicting roles or permissions
cannot be accessed by same
user simultaneously

8 Let Uc be the set of conflicting users for role rk ,
then

∑

u∈Uc

urk ≤ 1

Conflicting users cannot access
same role/permission
concurrently

Task-dependence 9 Let ST be a set of user role accesses that need
to be invoked for execution of task Ti , then

Ti −
∏

ur ∈ST

ur = 0

A task Ti can execute if all the
user-role accesses in the
semantic dependency set of Ti

are satisfied.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

X-GTRBAC Admin • 423

REFERENCES

BACON, J., MOODY, K., AND YAO, W. 2002. A model of OASIS role-based access control and its
support for active security. ACM Transactions on Information and System Security (TISSEC) 5,
4(Nov.).

BHATTI, R., JOSHI, J. B. D., BERTINO, E., AND GHAFOOR, A. 2005. X-GTRBAC: An XML-based policy
specification framework and architecture for enterprise-wide access control. ACM Transactions
on Information and System Security (TISSEC), 8, 2 (May).

BONATTI, P. A., SAPINO, M. L., AND SUBRAHMANIAN, V. S. 1996. Merging heterogeneous security
orderings. ESORICS. 183–197.

BONATTI, P. A., VIMERCATI, S., AND SAMARATI, P. 2002. An algebra for composing access control
policies.” ACM Transactions on Information and System Security, 5, 1 (Feb.). 1–35.

CRAMPTON, J. AND LOIZOU, G. 2002. Administrative scope and role hierarchy operations. In Pro-
ceedings of 7th ACM Symposium on Access Control Models and Technologies (June).

DAWSON, S., QIAN, S., AND SAMARATI, P. 2000. Providing security and interoperation of heteroge-
neous systems. Distributed and Parallel Databases, 8, 1, 119–145.

FERRAIOLO, D. F., SANDHU, R., GAVRILA, S., RICHARD KUHN, D., AND CHANDRAMOULI, R. 2001. Proposed
NIST standard for role-based access control. ACM Transactions on Information and System
Security (TISSEC), 4, 3 (Aug.).

GONG, L. AND QIAN, X. 1996. Computational issues in secure interoperation. IEEE Transaction
on Software and Engineering, 22, 1 (Jan.).

JOSHI, J. B. D., BERTINO, E., LATIF, U., AND GHAFOOR, A. 2005. Generalized temporal role based
access control model (GTRBAC)- Specification and modeling. IEEE Transaction on Knowledge
and Data Engineering, 17, 1 (Jan.).

JOSHI, J. B. D., BERTINO, E., GHAFOOR, A. 2002. Temporal hierarchies and inheritance semantics
for GTRBAC. In Proceedings of 7th ACM Symposium on Access Control Models and Technologies
(June).

JOSHI, J. B. D., BHATTI, R., BERTINO, E., AND GHAFOOR, A. 2004. X- RBAC An access control language
for multidomain environments. IEEE Internet Computing, 8, 6, 40–50 (Nov./Dec.).

OH, S. AND SANDHU, R. 2002. A model for role administration using organization structure. In
Proceedings of the 7th ACM Symposium on Access Control Models and Technologies (June).

SANDHU, R., COYNE, E. J., FEINSTEIN, H. L., AND YEOMAN, C. E. 1996. Role based access control
models. IEEE Computer 29, 2 (Feb.).

SANDHU, R. 1998. Role activation hierarchies. In Proceedings of the 3rd ACM Workshop on Role-
Based Access Control (Oct.). 33–40.

SANDHU. R. AND MUNAWER, Q. 1999. The ARBAC99 model for administration of roles. In Proceed-
ings of the 15th Annual Computer Security Applications Conference (Dec.).

SHAFIQ, B., JOSHI, J., BERTINO, E., AND GHAFOOR, A. 2005. Secure interoperation in a multidomain
environment. Accepted for publication in IEEE Transaction on Knowledge and Data Engineering,
17, 11 (Nov.).

ZHANG, H. 2001. Improving constrained nonlinear search algorithms through constraint relax-
ation. Masters thesis, University of Illinois at Urbana Champaign, Urbana, IL.

Received October 2004; revised April 2005; accepted September 2005

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.

