
Temporal Hierarchies and Inheritance Semantics for
GTRBAC

James B D Joshi
School of Electrical and
Computer Engineering,

Purdue University,
West Lafayette, IN, USA

joshij@ecn.purdue.edu

Elisa Bertino
Dipartimento di Scienze

dell'Informazione,
Universita' di Milano,

Milano, Italy

bertino@dsi.unimi.it

Arif Ghafoor
School of Electrical and
Computer Engineering,

Purdue University,
West Lafayette, IN, USA

ghafoor@ecn.purdue.edu

ABSTRACT
A Generalized Temporal Role Based Access Control (GTR-
BAC) model that allows speci�cation of a comprehensive set
of temporal constraint for access control has recently been
proposed. The model constructs allow one to specify various
temporal constraints on role, user-role assignments and role-
permission assignments. However, Temporal constraints on
role enablings and role activations can have various impli-
cations on a role hierarchy. In this paper, we present an
analysis of the e�ects of GTRBAC temporal constraints on
a role hierarchy and introduce various kinds of temporal
hierarchies. In particular, we show that there are certain
distinctions that need to be made in permission inheritance
and role activation semantics in order to capture all the ef-
fects of GTRBAC constraints such as role enablings and role
activations on a role hierarchy.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access control; H.2.7
[Database Administration]: Security, integrity, and pro-
tection

General Terms
Security, Theory

Keywords
role based access control, security, role hierarchy, temporal
constraints

1. INTRODUCTION
Role based access control (RBAC) has emerged as a promis-

ing alternative to traditional discretionary and mandatory
access control (DAC and MAC) models [3, 6, 8, 9, 12], which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT'02, June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006 ...$5.00.

have some inherent limitations [6]. Several bene�cial fea-
tures such as policy neutrality, support for least privilege
and e�cient access control management are associated with
RBAC models [6, 12]. Such features make RBAC better
suited for handling access control requirements of diverse
organizations. Furthermore, the concept of role is associ-
ated with the notion of functional roles in an organization,
and hence RBAC models provide intuitive support for ex-
pressing organizational access control policies [12]. RBAC
models have also been found suitable for addressing security
issues in the Internet environment [6, 10], and show promise
for newer heterogeneous multi-domain environments that
raise serious concerns related to access control across do-
main boundaries [6].
One of the important aspects of access control is that of

time constraining accesses to limit resource use. Such con-
straints are essential for controlling time-sensitive activities
that may be present in various applications, such as work-
ow management systems (WFMSs), where various work-
ow tasks, each having some timing constraints, need to be
executed in some order. Use of RBAC has been found very
suitable for such workow applications [2]. To address gen-
eral time-based access control needs, Bertino et. al. propose
a Temporal RBAC model (TRBAC) [1], which has been re-
cently generalized by Joshi et. al. [5]. The Generalized-
TRBAC (GTRBAC) model [5] incorporates a set of lan-
guage constructs for the speci�cation of various temporal
constraints on roles, including constraints on their activa-
tions as well as on their enabling times, user-role and role-
permission assignments. In particular, GTRBAC makes a
clear distinction between role enabling and role activation.
A role is enabled if a user can acquire the permissions as-
signed to it. An enabled role is said to be activated when a
user acquires the permissions assigned to the role in a ses-
sion. Related to the notions of an enabled or an activated
role is that of Jaeger et. al.'s assigned and activated au-
thorizations [4]. An open issue in the GTRBAC model, as
well as in the TRBAC model [1], is the interplay between
temporal constraints and role hierarchy.
Many researchers have highlighted the importance and

use of role hierarchies in RBAC models [3, 7, 11]. A prop-
erly designed role hierarchy allows e�cient speci�cation and
management of access control structures of a system. When
two roles are hierarchically related, one is called the senior
and the other the junior. The senior role inherits all the
permissions assigned to the junior roles. The inheritance

74

of permissions assigned to junior roles by a senior role sig-
ni�cantly reduces assignment overhead, as the permissions
need only be explicitly assigned to the junior roles.
Even though the notion of role hierarchy has been widely

investigated, to our knowledge, no earlier work has addressed
the implication of the presence of temporal constraints on
role hierarchies, which is the focus of our work. In particu-
lar, in this paper, we present a detailed analysis of role hi-
erarchy in the presence of various temporal constraints with
respect to the GTRBAC model and show that there are var-
ious distinctions that need to be made about the inheritance
semantics of a role hierarchy.
It is important to point out that Sandhu [11] and Mo�et

et. al. [7] have already recognized the limitations of the
pure inheritance semantics proposed in the RBAC96 family
of models [12]. Sandhu [11] has proposed the ER-RBAC96
model that incorporates a distinction between two types
of role hierarchy: usage hierarchy that applies permission-
inheritance semantics and activation hierarchy that uses ac-
tivation - inheritance semantics. In a usage hierarchy, the
activation of a senior role allows a user to acquire all the
permissions of all of its junior roles but no users assigned
only to the senior role is allowed to activate the junior roles.
An activation hierarchy extends \permission inheritance hi-
erarchy to roles that are stipulated to have dynamic separa-
tion of duty (SoD)" [11]. Our analysis further strengthens
his arguments and shows that, in the presence of timing con-
straints on various entities, the separation of the permission-
inheritance and the activation-inheritance semantics pro-
vides a basis for capturing various inheritance semantics of
a hierarchy. We show that these hierarchies can be unre-
stricted, weakly restricted or strongly restricted depending
upon the enabling times of the hierarchically related roles.
In another important work related to role hierarchies, Mo�et
et al. [7] have identi�ed the need for three types of hierar-
chies: isa hierarchy, activity hierarchy and supervision hier-
archies, in order to address the needs of control principles
in an organization, which include separation of duty, decen-
tralization and supervision and review [7]. They show that
the combined permission and activation inheritance within
a hierarchy can limit a hierarchy from achieving organiza-
tional control needs. Clearly, our temporal hierarchies as
well as Sandhu's hierarchies provide a basis for limiting such
complete inheritance in a hierarchy, making it possible to
support separation of duty and restricted inheritance in a
hierarchy. Furthermore, Mo�ett et. al. [7] point out that
the commercial organizations' demand for a dynamic access
control model that can support dynamic authorization state
as well as dynamic propagation of access rights has largely
being neglected. The GTRBAC models's temporal frame-
work and the trigger mechanism along with the temporal
hierarchies that we de�ne in this paper provide a strong ba-
sis for such dynamic features in an access control model.
The paper is organized as follows. In section two, we

briey present the constraint model of GTRBAC. In section
three, we present the analysis of inheritance semantics in
a role hierarchy of the GTRBAC model. We then discuss
related work in section four and present some conclusions
and future work in section �ve.

2. THE GTRBAC MODEL
The GTRBAC model [5] is an extension of the TRBAC

model [1]. The GTRBAC model introduces the separate no-

tion of role enabling and role activation and provides con-
straints and event expressions associated with both. An
enabled role indicates that a user can activate it, whereas
an activated role indicates that at least one subject has acti-
vated a role in a session. The temporal constraints in GTR-
BAC allow the speci�cation of the following constraints:

1. Temporal constraints on role enabling/disabling: These
constraints allow one to specify the time intervals dur-
ing which a role is enabled or diabled. When a role is
enabled, the permissions assigned to it can be acquired
by a user by simply activating the role. It is also possi-
ble to specify a role duration. When such a duration is
speci�ed, the enabling/disabling event for a role is ini-
tiated by a constraint-enabling expression that may be
separately speci�ed at run-time by an administrator,
or by a trigger.

2. Temporal constraints on user-role and role-permission
assignments: These are constructs to express either
a speci�c interval or a duration in which a user or a
permission is assigned to a role.

3. Activation constraints: These allow one to specify how
a user should be restricted in activating a role. These
include, for example, specifying what is the total du-
ration a user is allowed to activate a role, or how many
users can be allowed to activate a particular role.

4. Run-time events: A set of run-time events allows an
administrator to dynamically initiate GTRBAC events,
or enable duration or activation constraints. Another
set of run-time events allows users to make activation
requests to the system.

5. Constraint enabling expressions: GTRBAC includes
events that enable or disable duration constraints and
role activation constraints.

6. Triggers: Triggers allow one to express dependency
among GTRBAC events, capture past events, and de-
�ne future events based on them.

The GTRBACmodel extends the safety notion of the TR-
BAC model to show that there exists an execution model for
it. For the periodicity constraints, the periodic expressions
are written as (I;P), where I is an interval and P is a set
of in�nte number of intervals. (I;P) represents the set of
all the intervals of P that is contained in I. For example,
(I; P) = ([1/1/2002, 12/31/2002], Mondays) considers all
the Mondays of the year 2002. D is used to express the du-
ration speci�ed for a duration constraint. Constraints are
expressed by a generic form (X;E), where X is a periodic
expression (I;P) or an expression indicating duration D,
and E is an event expression such as enable r (event that
enables role r). For more details, we refer the readers to [5].
We illustrate with an example the GTRBAC speci�cation
of an access control policy. Table 1 contains the GTRBAC
speci�cation of a hospital's access policy. Groupings labeled
1, 2, 3 and a, b, c are used simply to ease discussion.
In 1a, the enabling times of DayDoctor and NightDoctor

roles are speci�ed as a periodicity constraint. For simplic-
ity we use DayTime and NightTime instead of their (I; P)
forms. In 1b, di�erent users are assigned to the two doc-
tor roles. Adams can assume DayDoctor role on Mondays,

75

Table 1: Example GTRBAC access policy for a medical information system
1 a. (DayTime, enable DayDoctor), (NightTime, enable NightDoctor)

b. ((M, W, F), assignu Adams to DayDoctor), ((T, Th, S, Su), assignu Bill to DayDoctor),
((M, W, F), assignu Alice to NightDoctor), ((T, Th, S, Su), assignu Ben to DayDoctor),

c. ((10am, 3pm), assignu Carol to DayDoctor)
2 a. (assignu Ami to NurseInTraining), (assignu Elizabeth to DayNurse)

b. c1 = (6 hours, 2 hours, enable NurseInTraining)
3 a. (enable DayNurse! enable c1)

b. (activate DayNurse for Elizabeth! enable NurseInTraining after 10 min)
c. (enable NightDoctor! enable NightNurse after 10 min),

(disable NightDoctor! disable NightNurse after 10 min)
d. (enable DayDoctor! enable DayNurse after 10 min),

(disable DayDoctor! disable DayNurse after 10 min)

Wednesdays and Fridays, whereas Bill can assume it on
Tuesdays, Thursdays, Saturdays and Sundays. Similarly,
Alice and Ben are assigned to the NightDoctor role on the
di�erent days of the week. Furthermore, in 1c, the assign-
ment indicates that Carol can assume the DayDoctor role
everyday between 10am and 3pm. In 2a, Ami and Eliz-
abeth are assigned to roles NurseInTraining and DayNurse

respectively, without any periodicity or duration constraints;
that is, the assignment is valid at all times. 2b speci�es a
duration constraint of 2 hours on the enabling time of the
NurseInTraining role, but this constraint is valid for only
6 hours after the constraint c1 is enabled. Because of this,
Ami will be able to activate the NurseInTraining role at
the most for two hours whenever the role is enabled.
The constraints in 3 are triggers. Trigger 3a indicates that

constraint c1 is enabled once the DayNurse is enabled, which
means now the NurseInTraining role can be enabled within
the next 6 hours. Trigger 3b indicates that 10 min after Eliz-
abeth activates the DayNurse role, the NurseInTraining role
is enabled for a period of 2 hours. This shows that a nurse
in training will have access to the system only if Elizabeth is
present in the system, that is, she is acting as a training su-
pervisor. It is possible that Elizabeth activates the DayNurse
role a number of times within 6 hours after the DayNurse role
is enabled, and hence the NurseInTraining role will be en-
abled as many times if these activations (by Elizabeth) are
more than 2 hours apart. This will allow Ami to activate
the NurseInTraining role a number of times. To prevent
this, an activation constraint can be added. The remain-
ing triggers in 3 show that the DayNurse and NightNurse

roles are enabled (disabled) 10 min after the DayDoctor and
NightDoctor roles are enabled (disabled).

3. ROLE HIERARCHIES AND TEMPORAL
CONSTRAINTS

Sandhu [11] distinguishes a role hierarchy into two types:
usage hierarchy and activation hierarchy. By de�ning an ac-
tivation hierarchy as a superset of a usage hierarchy, Sandhu
establishes an activation hierarchy essentially as an exten-
sion of the usage hierarchy. Furthermore, he shows that
there are situations where the distinction between the two is
very crucial. In particular, the distinction allows capturing
dynamic SoD constraints that may exist between hierarchi-
cally related roles.
In the remainder of this section, we formally de�ne the

basic types of a temporal hierarchy and then analyze the ef-
fects of various temporal constraints on them. We show that

the di�erent types of hierarchy need to be further divided
into subtypes in order to capture the complete inheritance
semantics introduced due to di�erent temporal properties
associated with the roles of the hierarchy

3.1 Temporal Role Hierarchy
Here, we take a slightly di�erent approach than in [11].

We explicitly de�ne a hierarchy that allows only permissions
to be inherited as inheritance-only hierarchy or I-hierarchy
(same as the permission-usage hierarchy in [11]) and the
one that allows only the activation semantics as activation-
only hierarchy or A-hierarchy. We further refer to a hierar-
chy combining both the inheritanceand activation semantics
as general hierarchy or Inheritance-Activation hierarchy(IA-
hierarchy for short). Finally, we extend the notion of hier-
archical relations with respect to a time instant t in order
to capture the fact that such semantics are time dependent.
Table 2 reports the various predicate notations we use in the
formal de�nitions presented in this paper.
Predicates enabled(r; t); u assigned(u; r; t) and p assigned

(p; r; t) refer to the status of roles, and user-role and role-
permission assignments at time t. Predicate can activate(u;
r; t) implies that user u can activate role r at time t. It al-
lows us to capture the fact that a user u may be able to
activate role r without being explicitly assigned to it, as it
is possible in a hierarchy that incorporates the activation-
inheritance semantics. In other words, \u can activate r"
implies that user u is implicitly or explicitly assigned to role
r. It also does not rule out the possibility that some activa-
tion or SoD constraints may prevent the actual activation of
r by u at time t. Predicate can acquire(u; p; t) implies that
u can acquire permission p at time t, whereas, the predi-
cate can be acquired(p; r; t) implies that permission p can
be acquired through role r at time t. It is important to note
that predicates can activate(u; r; t), can acquire(u; p; t) and
can be acquired(p; r; t) do not assume anything about the
state of a role. That is, they do not say in which state
role r is at time t. For example, if can activate(u; r; t) and
enabled(r; t) hold then a user u's request to activate r at time
t is granted provided there are no other activation or SoD
constraints prohibiting it. However, if can activate(u; r; t)
holds but not enabled(r; t), then u's request to activate r

at time t is denied. Thus, predicates can activate(u; r; t),
can acquire(u; p; t) and can be acquired(p; r; t) indicate pos-
sibility rather than what actual occurs.
Predicates active(u; r; s; t) and acquires(u; p; s; t) refer to

what actually occurs at time instant t. active(u; r; s; t) in-

76

Table 2: Various status predicates
Predicate Meaning
enabled(r; t) Role r is enabled at time t
u assigned(u; r; t) User u is assigned to role r at time t
p assigned(p; r; t) Permission p is assigned to role r at time t
can activate(u; r; t) User u can activate role r at time t
can acquire(u; p; t) User u can acquire permission p at time t
can be acquired(p; r; t) Permission p can be acquired through role r at time t
active(u; r; s; t) Role r is active in a user u's session s at time t
acquires(u; p; s; t) User u acquires permission p in session s at time t

dicates that role r is active in user u's session s at time t,
whereas, acquires(u; p; s; t) implies that u acquires permis-
sion p at time t in session s.
Now we introduce the following axioms to capture the key

relationships among various predicates in Table 2 so that we
can identify precisely the permission-acquisition and role ac-
tivations that are possible or that actually occur in an RBAC
system.

Axioms. For all r 2 Roles, p 2 Permissions, u 2 Users,
s 2 Sessions and t � 0, the following implications hold:

1. p assigned(p; r; t)! can be acquired(p; r; t)

2. u assigned(u; r; t)! can activate(u; r; t)

3. can activate(u; r; t) ^ can be acquired(p; r; t)
! can acquire(u; p; t)

4. active(u;r; s; t) ^ can be acquired(p; r; t)
! aquires(u; p; s; t)

Axiom (1) states that if a permission is assigned to a role,
then it can be acquired through that role. Axiom (2) states
that all users assigned to a role can activate that role. Axiom
(3) states that if a user u can activate a role r, then all the
permissions that can be acquired through r can be acquired
by u. Thus, for the simple case where user u and permission
p are assigned to r, the axioms indicate that u can acquire
p. Similarly, axiom (4) states that if there is a user session
in which a user u has activated a role r then u acquires all
the permissions that can be acquired through role r.
We note that axioms (1) and (2) indicate that permis-

sion acquisition and role activation semantics is governed
by explicit user-role and role permission assignments. Se-
mantically, the use of a role hierarchy is to extend the pos-
sibility of permission acquisition and role-activation beyond
the explicit assignments, as we shall show next. Below, we
de�ne the formal semantics of the time-dependent role hi-
erarchies. The following de�nitions do not consider the en-
abling times of the hierarchically related roles, and hence
are termed unrestricted hierarchies. The restricted forms
will be introduced in later sections.

De�nition 1. (Unrestricted inheritance-only hierarchy or
I-hierarchy) Let x and y be roles such that (x�ty), that is,
x has an unrestricted inheritance-only relation over y. Then
the following condition (c1) holds:

8p; (x�ty) ^ can be acquired(p; y; t)!
can be acquired(p; x; t)

x is said to be a senior role of y, and conversely y is said
to be a junior role of x, with respect to the unrestricted
I-hierarchy.

The condition characterizing inheritance-only relation pro-
vides a new way of acquiring a permission through a role by
using its relation with other roles. Its semantics indicates
that a permission can be acquired through a role by direct
inheritance of all the permissions of junior roles. Thus if
(x�ty), then the permissions that can be acquired through
x include all the permissions assigned to x (by axiom (1))
and all permissions that can be acquired through role y (by
c1), which in turn include all the permissions assigned to y

as well as all the permissions that can be acquired through y's
juniors (by axiom (1) and condition c1). This shows that the
I-hierarchy is transitive. Note that the axioms and condi-
tion c1 do not allow u to activate y. Hence, the hierarchical
relation (x�ty) is restricted to the permission-inheritance
semantics only.

De�nition 2. (Unrestricted activation-only hierarchy or A-
hierarchy) Let x and y be roles such that (x�ty), that is,
x has an unrestricted activation-only relation over y. Then
the following condition (c2) holds:

8u; (x�ty) ^ can activate(u; x; t)! can activate(u; y; t)

x is said to be a senior role of y, and conversely y is said
to be a junior role of x, with respect to the unrestricted
A-hierarchy.

Here, the activation-only semantics introduces a new \can
activate" semantics between a user and a role. Axiom (2)
states that a user able to activate a role through explicit
assignment, whereas the A-relation allows that through re-
lations between roles, without a need for explicit user-role
assignment. Condition (c2) states that if user u can ac-
tivate role x, and x has A-relation over y, then s/he can
activate role y too, even if u is not explicitly assigned to
y. However, note that an explicit assignment of u to y is
possible but will be redundant here. The set of axioms and
condition c2 together allow a user u assigned to role x to
activate all of y's juniors. However, as condition c1 does
not apply to an A-hierarchy, if (x�ty), then u cannot ac-
quire y's permissions by just activating x. Note that the
can activate(u; x; t) predicate makes A-hierarchy transitive
the same way the predicate can be acquired(p; y; t) makes
an I-hierarchy so.

De�nition 3. (Unrestricted general hierarchy or IA-hierarchy)
Let x and y be roles such that (x�ty), that is, x has an
unrestricted general inheritance relation over y. Then the
following holds:

77

(x�ty)! (x�ty) ^ (x�ty)

x is said to be a senior role of y, and conversely y is said
to be a junior role of x, with respect to the unrestricted
IA-hierarchy.

The IA-hierarchy is the most common form of hierarchy
and contains both permission-inheritance and activation-
inheritance aspects of a hierarchy. Hence, a user can ac-
quire permissions of roles that are junior to which s/he is
assigned without activating them. At the same time, s/he
may activate the junior roles even though s/he is not ex-
plicitly assigned to them. Note that the de�nitions do not
account for the enabling times of the roles that are hierar-
chically related.
On a given set of roles, there may be various inheritance

relations. Therefore, we require that the following consistency
property be satis�ed in a role hierarchy.

Consistency Property : Let <f> 2 f�t;�t;�tg and
<f '> 2 f�t;�t;�tg/f<f>g. Let x and y be roles such that
(y <f> x); then the condition : (y <f '> x) must hold.

The main purpose of a hierarchical relation is the acqui-
sition of the permissions of junior roles by a senior role by
using any of the three hierarchy types. The consistency

property ensures that a senior-junior relation between two
roles in one type of hierarchy is not reversed in another type
of hierarchy. Due to space limitation, we do not address here
other issues concerning how various hierarchies can co-exist
within the same set of roles.
Examples of the three hierarchies are illustrated in Fig-

ure 1, where the Software Engineer role is senior to the
Progammer role. In Figure 1(a) and 1(b), the combination of
roles that a user u, assigned only to Software Engineer
role, can activate is f(Software Engineer),(Programmer),
(Software Engineer, Programmer)g. However, the permis-
sions associated with the same combination in the two cases
are not exactly the same. For example, if u activates the
Software Engineer role, the permissions acquired by him
in 1(a) is maximal, that is, both the roles' permissions are
acquired, whereas it is only the permissions assigned to the
Software Engineer role in the case of 1(b). Furthermore,
the activation of the combination (Programmer, Software

Engineer) is redundant in an IA-hierarchy in terms of which
permissions are acquired, while it is signi�cant in 1(b).
Under the role hierarchy reported in Figure 1(c), the user

can activate only the Software Engineer role (unless of
course, the user is also explicitly assigned to the Programmer).
However, he acquires maximal permissions, that is, permis-
sions assigned to both the roles.
Table 3 shows various features, indicated in the �rst row,

of those types of hierarchy. The second row shows these fea-
tures for the I-hierarchy over the set of roles x1; x2; : : : ; xn
for which the inheritance relation is x1�tx2�t : : :�txn�1�t

xn (i.e., x1 is the senior-most and xn is the junior-most). In
the table, u refers to a user assigned only to role x1. Similar
features over the set of roles characterize the A-hierarchy
and IA-hierarchy; these relatess are reported in the third
and the fourth rows of Table 3. The second column shows
the combinations of roles that can be activated by u. In the
I-hierarchy, only one role can be activated. In A and IA-
hierarchies, any subset of the roles can be activated because
of the role-activation semantics; however, in IA-hierarchy

the activation is redundant in terms of permission acquisi-
tion. For example, consider a subset of roles that contain
role x1; activation of any other roles in this set is unneces-
sary as it does not add new set of permissions acquired by
u.
The third and forth column show that an I-hierarchy

allows the acquisition of only the maximal permission set
Pmax. Here, by considering Pi as the permission set associ-
ated with role xi, we get Pmax = [ni=1Pi and Pmin = Pn.
The two columns also show that in A and IA-hierarchies,
u can acquire both the maximum or minimum number of
permissions. However, under an A-hierarchy, u will need
to activate all the roles to acquire Pmax, whereas under an
IA-hierarchy, u will need to activate only the senior-most
role.
The last column shows the number of unique combina-

tions of these permission sets that u can acquire. Since u can
activate only the senior-most role in an I-hierarchy, u can
acquire only one set of combination of these permission sets,
which is Pmax. In an A-hierarchy, any subset of roles can be
activated to acquire the unique combinations of the permis-
sion sets that are associated with the activated roles. Hence,
it is 2jXj � 1, as there are that many non-empty subsets of
fP1; P2; : : : ; Png. We note that, in an IA-hierarchy, by ac-
tivating role xi, the user essentially acquires permission sets
associated with all the roles xi; xi+1; : : : ; xn. Hence, only
n unique permission sets can be acquired. These values are
signi�cant from the perspective of the principle of the least
privilege, that is, an I-hierarchy has no support for the least
privilege acquisition, whereas an IA-hierarchy supports the
least privilege at n levels, that is, n di�erent combinations
of permission sets are allowed. The A-hierarchy supports all
combinations and hence completely supports the principle
of least privilege.
We also note that if the constraints of the de�nitions are

such that they hold true for all the time instants, then those
hierarchies reduce to non-temporal RBAC hierarchies along
the ones discussed in [11].

3.2 Role Enabling Constraints and Hierarchies
A hierarchy in the presence of various temporal constraints

becomes dynamic as permissions and users can be assigned
or de-assigned to any junior roles at times when a senior role
is enabled. Furthermore, there are activation constraints
that need to be accounted for when either of the hierarchy
types is considered. Here, we consider the e�ect of the pres-
ence of temporal assignment constraints on the hierarchies.

3.2.1 Inheritance-only hierarchy (I-hierarchy)
As we can see, in an I-hierarchy, the permissions of a ju-

nior role are acquired by the senior role. However, in the
presence of temporal constraints, we need to be able to cap-
ture various dynamic aspects of the hierarchy.
Let us revisit the I-hierarchy of Figure 1(c). Figure 1(d)

shows two possible intervals associated with the enabling
times of the two roles. In Figure 1(d)-(i), we see that the
enabling interval of Software Engineer role is a subset of
that of the Programmer role. In this case, the I-hierarchy
has the semantics similar to the non-temporal RBAC, that
is, whenever u activates the Software Engineer role s/he
also acquires the permissions of the Programmer role, be-
cause at that time the Programmer role is also enabled.
Thus, in interval �1, u cannot acquire any permissions of

78

Programmer

Software
Engineer

Programmer

Software
Engineer

Programmer

Software
Engineer

τ1

u is assigned to Software Engineer

(a) IA-hierarchy (b) A-hierarchy (c) I-hierarchy

Combination of roles that can be
activated by u in (a) and (b)

{(Software Engineer),
 (Software Engineer, Programmer),
 (Programmer)}

Combination of roles that can be
activated by u in (c)

{(Software Engineer),(Programmer)}

IA-hierarchy

A-hierarchy

I-hierarchy

LEGEND

τ2

Programmer

Software
Engineer

(d) Enabling intervals of Software Engineer and Programmer roles

Figure 1: An example hierarchy

Table 3: Hierarchies and associated features with u assigned to x1
x1 <f> x2 <f> Role combination Maximal Permission Minimal Permission Number of combinations
: : : xn�1 <f> xn that can be activated set that can be set that can be of P1; P2; : : : ; Pn

in a session by u acquired by u acquired by u acquired by u

I-hierarchy fx1g Pmax Pmax 1
(By activating fx1g) (By activating fx1g)

A-hierarchy Pmax Pmin

X � fx1; x2; : : : ; xng (By activating (By activating fxng) 2jXj � 1
fx1; x2; : : : ; xng)

IA-hierarchy X � fx1; x2; : : : ; xng Pmax Pmin n

(By activating fx1g) (By activating fxng)

the Programmer role even if it is enabled, as the Software

Engineer role is disabled at that time. It is also possible that
there is a temporal interval in which Software Engineer

role is enabled but the Programmer role is not, as indicated
by interval �2 in Figure 1(d)-(ii). In such a case, we can see
that the following two approaches can be used to capture
the inheritance semantics :

1. Weakly restricted approach (Iw): The permissions of
the Programmer role are inherited by the Software

Engineer role in interval �2,

2. Strongly restricted approach (Is): The permissions of
the Programmer role are not inherited by the Software
Engineer role in interval �2.

Under the weakly restricted approach, every permission
that can be acquired through a junior role can also be ac-
quired through its senior roles under an I-hierarchy, irre-
spective of whether the junior role is enabled or not. In the
strongly restricted approach, each permission that can be ac-
quired through a junior role can also be acquired through its
senior roles only in intervals where the junior role is also en-
abled. Table 4 below summarizes the inheritance semantics
of an I-hierarchy in the presence of temporal constraints.

3.2.2 Activation-only hierarchy (A-hierarchy)
We see that when we have an A-hierarchy, it is natural

to just use the second approach given above, that is, there
is no activation-inheritance allowed in interval �2. This is
because of an explicit need for activating a junior role by
a user assigned to its senior role in order to acquire the

junior role's permissions, and in �2, the junior role cannot
be activated. If we try to also enforce the �rst possibility
mentioned above then it will conict with the semantics of
an enabled role, as only enabled roles can be activated.
However, as activation hierarchy needs a user assigned to

the senior role to activate a junior role in order to acquire the
junior role's permissions, the issue of propagation of tem-
poral user-role assignment down the A-hierarchy needs to
be considered. For example, consider the roles Software
Engineer and Programmer forming the A-hierarchy in Fig-
ure 1(b). Consider again the same enabled times of the two
roles as in Figure 1(d). We need to determine whether the
user is to be allowed to activate the junior role at the time
when the senior role he is assigned to is not enabled, as indi-
cated by the interval �1 in Figure 1(d)-(i). For such a case,
we can again delineate the following two approaches:

1. Weakly restricted approach (Aw): The user u is allowed
to activate Programmer role in the A-hierarchy at any
time the Programmer role is enabled.

2. Strongly restricted approach (As): The user u is al-
lowed to activate the Programmer role only if both the
Software Engineer and Programmer roles are enabled
(note that he does not need to activate the Software

Engineer role).

In both the approaches, when a user tries to activate a
role in an activation hierarchy, additional checks need to be
carried out. The �rst check is to determine if the user is
assigned to any role, up the hierarchy, starting from the role
it is attempting to activate. The second check is required

79

Table 4: Inheritance semantics
Hierarchy � �

(r1 <f> r2) r1 disabled r1 enabled
r2 enabled r2 disabled

Iw No inheritance in � Inheritance in �

(by activating r1)
Is No inheritance in � No inheritance in �

Aw Inheritance in � No inheritance in �

(by activating r1)
As No inheritance in � No inheritance in �

IAw A-Inheritance in � I-Inheritance in �

(by activating r2) (by activating r1)
IAs No inheritance in � No inheritance in �

to determine if the senior role that a user is assigned to is
also enabled. If the senior role is disabled, we then need to
deactivate all activations of junior roles by the user assigned
to the senior role. Table 4 summarizes the two activation

inheritance types.

3.2.3 General inheritance hierarchy (IA-hierarchy)
As general inheritance embodies both the permission in-

heritance and role-activation semantics of a role hierarchy,
it is simply a combination of the two. In other words, in
interval �1, the general hierarchy can bene�t from the use
of role-activation semantics and allow activation of the ju-
nior role using the weakly restricted semantics. Similarly, in
interval �2, the inheritance-only semantics can be used and
inheritance through the senior role using weakly unrestricted
semantics can be utilized. This is shown in Table 4.

3.2.4 Example of hierarchy subtypes
We illustrate with the examples reported in Figure 2 the

practical uses of the various kinds of hierarchies listed in
Table 4.
Consider the Iw-hierarchy in Figure 2(a). Here, we see

that the SeniorSecurityAdmin role is enabled only in inter-
val (8pm, 11pm). Neither of the junior roles is enabled in
the entire interval (8pm, 11pm). But the Iw relation allows a
user who activates the SeniorSecurityAdmin role to acquire
all the permissions of the junior roles too. This may be de-
sirable if SeniorSecurityAdmin role is designed to perform
special security operations for checking and maintenance. In
such a case, it is reasonable to think that the user assigned
to the SeniorSecurityAdmin role will need all the admin-
istrative privileges of the junior roles. The temporal re-
strictions on SecurityAdmin1 and SecurityAdmin2 restrict
the users assigned to them to carry out corresponding sys-
tem administration activities only in the speci�ed intervals.
However, here, the user assigned to SeniorSecurityAdmin

cannot assume the role of the junior roles SecurityAdmin1
and SecurityAdmin2. To remove this limitation, we can use
IAw-hierarchy instead.
The hierarchy in Figure 2(b), on the other hand, is of type

Is. The senior role is the PartTimeDoctor role, which has
two intervals in which it can be enabled, (3pm, 6pm) and
(7am, 10am). If a user activates the PartTimeDoctor role
in the �rst interval, according to the Is relation, he essen-
tially gets all the privileges of only the DayDoctor role, as
the NightDoctor role is disabled at that time. Now, con-
sider the second interval. We see that it overlaps with the

Iw Iw

SeniorSecurityAdmin
 {(8pm,11pm)}

SecurityAdmin1
 {(9am,9pm)}

SecurityAdmin2
 {(5am,5pm)}

Is Is

 PartTimeDoctor
{(3pm,6pm),(7am,10am)}

 DayDoctor
{(9am,9pm)}

 NightDoctor
 {(9pm,9am)}

(a) (b)

A w

 GeneralDoctor
 {}

 DayDoctor
{(9am,9pm)}

 NightDoctor
 {(9pm,9am)}

A w A s

 SupervisorDoctor
{(10am,12noon),(7am,9am)}

 DayDoctor
{(9am,9pm)}

 NightDoctor
 {(9pm,9am)}

A s

(c) (d)

Figure 2: Hierarchy examples

enabling times of the two junior roles. Hence, if the user
activates the PartTimeDoctor role in the second interval, he
acquires the privileges of only the NightDoctor role in the
sub-interval (7am-9am) and that of only the DayDoctor role
in the interval (9am, 10am). Thus, we see that the two dif-
ferent semantics of an inheritance hierarchy can be used to
achieve di�erent needs. Again, a part time doctor cannot
work as a DayDoctor or a NightDoctor, although he can
acquired the permissions. However, if a user is also to be
allowed to use the junior roles, we can use IAw-hierarchy
instead.
Now, let us look at Figure 2(c). Here, we see that there is

no interval in which the GeneralDoctor role can be enabled.
However, since the activation hierarchy is of type Aw, any
user assigned to the GeneralDoctor role can activate either
of the junior roles when they are enabled. In e�ect, any one
assigned to the GeneralDoctor role can activate both the
DayDoctor and the NightDoctor roles whenever they are
enabled.
Figure 2(d) illustrates the use of an activation hierar-

chy of type As. Here, a doctor supervisor can assume the
SupervisorDoctor role in intervals (10am, 12noon) and (7am,
9am). In the �rst interval, the supervisor will be able to ac-
quire all the privileges of the DayDoctor role by activating
it and in the second interval, he will be able to acquire all
the privileges of the NightDoctor role by activating it along
with the SupervisorDoctor role. The SupervisorDoctor

role may simply contain some extra privileges that are re-
quired for the supervision task during day and night.

3.3 Formal Definitions of Restricted
Hierarchies

We now formally de�ne the weakly restricted and strongly
restricted forms of each hierarchy type discussed in the pre-
vious section.

De�nition 4. (Weakly restricted inheritance hierarchy or
Iw-hierarchy) Let x and y be roles such that (x�w;ty), that
is, x has a weakly restricted inheritance-only relation over y.
Then the following holds:

8p; (x�w;ty) ^ enabled(x; t) ^ can be acquired(p; y; t)
! can be acquired(p; x; t)

80

We note that for a (x�w;ty) relation, only role x needs to
be enabled at time t. Role y may or may not be enabled
at that time. Similarly, for weakly restricted A-hierarchy
(x�w;ty) to hold, only role y needs to be enabled as shown
in the following de�nition.

De�nition 5. (Weakly restricted activation hierarchy Aw-
hierarchy) Let x and y be roles such that (x�w;ty), that is, x
has a weakly restricted activation-only relation over y. Then
the following holds:

8u; (x�w;ty) ^ enabled(y; t) ^ can activate(u; x; t)
! can activate(u; y; t)

De�nition 6. (Weakly restricted general hierarchy or IAw-
hierarchy) Let x and y be roles such that (x�ty), that is,
x has a weakly restricted general inheritance relation over y.
Then the following holds:

(x�w;ty)! (x�w;ty) ^ (x�w;ty)

The strongly restricted forms of the hierarchies allow in-
heritance semantics to be valid only when both the hierar-
chically related roles are enabled. The following de�nitions
formalize these hierarchies.

De�nition 7. (Strongly restricted inheritance-only hierar-
chy or Is-hierarchy) Let x and y be roles such that (x�s;ty),
that is, x has a strongly restricted inheritance-only relation
over y. Then the following holds:

8p; (x�s;ty) ^ enabled(x; t) ^ enabled(y; t)
^can be acquired(p; y; t)! can be acquired(p; x; t)

De�nition 8. (Strongly restricted activation hierarchy or
As-hierarchy) Let x and y be roles such that (x�s;ty), that
is, x has a stronly restricted activation-only relation over y.
Then the following holds:

8u; (x�s;ty) ^ enabled(x; t) ^ enabled(y; t)
^can activate(u; x; t)! can activate(u; y; t)

De�nition 9. (Strongly restricted general hierarchy or IAs-
hierarchy) Let x and y be roles such that (x�ty), that is, x
has a strongly restricted general inheritance relation over y.
Then the following holds:

(x�s;ty)! (x�s;ty) ^ (x�s;ty)

The weakly restricted and strongly restricted forms of hi-
erarchies deal with the cases where atleast one of the two
roles is enabled. The hierarchies de�ned in section 3.1 do
not consider the enabling times of the related roles. In this
sense, the weakly restricted and strongly restricted hierar-
chies are specializations of the unestricted hierarchy types
with an additional requirement that one or both the roles
be enabled for the inheritance semantics to be valid.
It is important to note that if inheritance between two

roles is de�ned just by using one of the unrestricted types,
the inheritance semantics applies even when the roles are not
enabled. The bene�t of such a case is in the propagation of
the inheritance semantics along the hierarchy, as illustrated
in Figure 3. Assume that the hierarchy is an unrestricted

A-hierarchy and consider an interval � in which only roles
r1 and r4 are enabled. We can see that de�nition 2 ap-
plies to each pair and the result is that any user assigned

r1

r2

r3

r4

enabled in τ

enabled in τ

disabled in τ

disabled in τ

Figure 3: Inheritance through disabled roles

to r1 can also activate r4. Now suppose that it is an Aw-
hierarchy as de�ned in 5. As r2 and r3 are both disabled,
the activation-inheritance semantics does not apply between
them. And hence, it blocks the activation-inheritance se-
mantics between r1 and r4 also. Thus, no user assigned to
r1 will be able to activate role r4.

3.4 Periodicity and Duration Constraint
Expressions

A hierarchical relation between two roles is essentially
a constraint on them. Hence, GTRBAC's constraint en-
abling/disabling expression can be used to enable or disable
a hierarchical relation. Hence, if h is a hierarchical relation
x <f> y, then h can be enabled/disabled by using the event
expression \enable/disable h". This allows administrators
to dynamically change the hierarchical relationships on a set
of roles through prede�ned periodicity constraitns, run-time
requests and triggers.
For specifying the periodicity constraints on a hierarchy,

we simply use the GTRBAC model's periodicity expression
framework, i.e., we use (I, P, enable/disable h) to mean
that enabling or disabling of a hierarchical relation h is
constrained by the interval expression (I, P) , i.e., for all
t 2 Sol(I; P); h is enabled/disabled, where Sol(I; P) is the
set of valid times instants denoted by (I; P).
Similarly, we use the expression cd = (Dh, enable/disable

h) to de�ne the duration constraint on a hierarchy h. Dh

indicates how long the hierarchical relation h may hold. In
other words, if tend � tstart = Dh, where tstart is the time
at which h becomes valid, then for all t 2 (tend � tstart); h
holds. Note that tstart is not known in advance and hence is
determined by the �ring of the event \enable/disable h"
by a trigger or a run-time request. For example, suppose
we have the following trigger and a duration constraint on
a hierarchical relation:
(tr): enable r ! enable (h = r�w;trs) after 10 min

(c): (1 Hours, enable h)

Here, only 10 minutes after role r is enabled will role rs

become the senior of rs. Furthermore, the duration con-
straint allows rs to remain senior of r for 1 hour.
We also note that a duration constraint can also be of the

forms (I, P,Dh, enable/disableh) or (D,Dh, enable/disable
h). Constraint cd = (I, P, Dh, enable/disable h) implies
that the enabling/disabling of h can be done for duration
Dh only within the intervals de�ned by (I, P). Now, sup-
pose that constraint (c) above is replaced by ([Mondays,
Fridays],Dh, enableh) , i.e., (I, P) indicates every Mondays
and Fridays. In that case, if the trigger (tr) is �red, then,

81

on days other than Mondays and Fridays, role rs cannot
senior of r.
If the duration constraint (c) is (D, Dh, enable/disable

h), it needs to be �rst enabled by a constraint enabling ex-
pression \enable c". If (tr) �res after constraint (c) has
been enabled, then the hierarchical relation is enabled and
rs becomes the senior of r. Compared to this, constraint
cd = (Dh, enable/disable h) indicates that the duration
constraint cd is enabled at all times.
A practical use of such a dynamically changing hierarchi-

cal relation is in a case where a senior (acting as a supervisor)
is allowed to inherit read-only permissions of its juniors. For
example, a particular end of the week period can be speci�ed
when the supervisor can read all its juniors' documents, by
enabling the senior-junior hierarchical relations. This will
allow her/him to carry out progress review of the project as
well as the weekly progress of each individual team mem-
ber that he is supervising. Mo�et et. al [7] have identi�ed
such a supervision-review capability as an important orga-
nizational control principle.

3.5 Activation Constraints and Role
Hierarchy

Each individual role in a hierarchy may have its own acti-
vation constraints. These constraints provide a way of lim-
iting resource use by limiting access to resources. In either
of the inheritance or activation hierarchies, the question
of whether such activation constraints have any e�ect on
the permission inheritance becomes an issue. Next, we con-
sider a hierarchy in the presence of cardinality constraints
and then generalize the discussion to the other activation
constraints.
Assume that the Programmer role has a permission set,

say P , associated with a licensed software package. Suppose
that there are 5 user licenses for the package indicating that
only 5 users can concurrently execute any program of the
package. Such a constraint could be directly expressed as
a cardinality constraint on the Programmer role. Software
Engineer, being senior to Programmer, can inherit P . How-
ever, at anytime the number of concurrent executions of
any particular program by users assigned to the Software
Engineer role and Programmer role needs to be restricted
to 5. If we adopt an I or IA- hierarchy, we observe that
correctly enforcing such a constraint is not straightforward:

� As the cardinality constraint is applied on the Programmer
role, it cannot capture the use of the permission set P
by the Software Engineer role. Hence, there may be
�ve concurrent activations of the Programmer role and
some activations of the Software Engineer role at any
time, allowing more than �ve users to have access to
the programs. In such a situation extra measures need
to be taken to enforce the cardinality constraint.

� An alternative solution may be to develop a constraint
expression on the combination of roles, such as the
one that says the number of concurrent activations of
Software Engineer and Programmer roles should be
at most 5. However, this introduces other problems
because of the fact that P could be only a subset
of the permission set associated with the Software

Engineer role. In such a case, the constraint will en-
force the same cardinality constraint on all the permis-
sions assigned to the Software Engineer role and not

only to P . For example, six concurrent activations of
the Software Engineer role will not be permitted and
hence permissions other than P assigned to it cannot
be used, which may not be what we want.

We note that, here, the cardinality control on a role is
aimed at controlling the concurrent use of permissions and,
hence, we say that the cardinality constraint is permission-
oriented.
Now suppose that the role hierarchy is an A-hierarchy.

As users need to explicitly activate junior roles in order to
acquire its permissions, the above problems do not arise.
Hence, in the example, if we use the activation hierarchy
rather than the inheritance hierarchy, the intended cardi-
nality control on the use of P is easily enforced. Further-
more, if there is another role Programmer2 that is also a
junior to the Software Engineer role that has a permission
set P2 and cardinality constraint (permission-oriented as in
Programmer) of n, the simple overall activation hierarchy is
an e�ective solution.
As another example, suppose we want at the most 5 nurses

and 3 doctors on active duty at a time and we create two
roles, Doctor and Nurse, such that Doctor is senior to Nurse.
Here, the cardinality constraints are user-oriented rather
than being permission-oriented in that, by imposing the car-
dinality constraint of 3 on the Doctor role and 5 on the Nurse
role, we want to restrict scheduling at the most 3 doctors
and 5 nurses at a time. We can assume that there is no
need to control the permission distribution associated with
the Doctor and Nurse roles, as in the previous case.
Now assume that we use an A-hierarchy. This means,

when there are 3 doctors and 5 nurses in active duty, the
doctors do not have permissions that are associated with
the Nurse role, as they cannot activate the Nurse role. If we
want each doctor to also be able to use permissions associ-
ated with the Nurse role every time s/he is active, by mak-
ing her/him activate both the roles, then only two nurses
will be able to activate the Nurse role. This is not what
we intend to enforce. However, if we adopt an I-hierarchy
or an IA-hierarchy, the problem does not arise, because,
the permissions associated with the Nurse role are implic-
itly assigned to the Doctor role too and there is no need of
explicitly enabling the Nurse role by a user assigned to the
Doctor role.
Thus, we can see that an I-hierarchy or an IA-hierarchy

can capture any activation constraint on roles when the car-
dinality control implies the control on the number of users,
whereas an A-hierarchy captures any activation constraint
on roles when the activation control implies control on the
distribution of permissions.
Similar to the cases in cardinality constraint, an I-hierarchy

or an IA-hierarchy is appropriate when other activation
constraints imply a user-oriented control, whereas an A-
hierarchy is appropriate when the activation constraints im-
ply a permission-oriented control. Furthermore, the preva-
lent concept of a role as a set of permission implies that
the permission-oriented activation control is a phenomenon
that is closer to the RBAC concepts than the user-oriented
activation control.

4. RELATED WORK
Several researchers have addressed issues related to inher-

itance semantics in RBAC [3, 7, 8, 11]. However, none has

82

addressed issues concerning the inheritance relation when
temporal properties are introduced. We have used the sep-
arate notions of hierarchy using permission-usage and role-
activation semantics similar to the one proposed by Sandhu
[11] and have strengthened Sandhu's argument that the dis-
tinction between the two semantics is very crucial. Sandhu's
argument is based on the fact that the simple usage seman-
tics is inadequate for expressing desired inheritance relation
when certain dynamic SoD constraints are used between two
roles that are hierarchically related, whereas, here, we em-
phasized the need for such distinction to capture the inher-
itance semantics in the presence of various temporal con-
straints. Sandhu's notion of activation hierarchy extending
the inheritance hierarchy corresponds to the IA-hierarchy
and our I-hierarchy corresponds to Sandhu's usage-hierarchy
[11]. In [3], Giuri has proposed an activation hierarchy based
on AND and OR roles. However, these AND-OR roles can
be easily simulated by Sandhu's ER-RBAC96 hierarchies as
well as our three basic hierarchies, making Giuri's model a
special case of ER-RBAC96 and GTRBAC [11].
In order to address the needs of control principles in an

organization, which include separation of duty, decentral-
ization and supervision and review, Mo�et et al. [7] have
identi�ed three types of hierarchies: isa hierarchy, activity
hierarchy and supervision hierarchies. They show that for
addressing these control principles completely , we need a
dynamic access control model and a hierarchy that allows
restrictive inheritance as well as dynamic propagation of ac-
cess rights [7]. We believe that GTRBAC's temporal con-
straint framework with trigger as well as constraint enabling
mechanisms, and the temporal hierarchies can provide the
modeling capability to address some, if not all, of these is-
sues. Due to space limitation, we leave that for future work.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have addressed the key issues concerning

the e�ects of various temporal constraints of the GTRBAC
model on a role hierarchy. We showed that the distinction
between the inheritance-only, activation-only and general-
inheritance hierarchies is useful in capturing the hierarchy
semantics in the presence of temporal constraints. This fur-
ther strengthens Sandhu's [11] claim that the distinction be-
tween the two is very crucial, although the motivations he
presents [11] are very di�erent from our motivations that
essentially derive from the introduction of temporal proper-
ties. Our inheritance hierarchies also have di�erent levels of
support for the principle of least privilege, which is also con-
sidered one of the strong virtues of RBAC models. We also
showed that the unrestricted hierarchy types augmented
with the enabling times of the related roles results in the
strongly restricted and weakly restricted forms of inheritance.
The strongly restricted versions of the three cases have the
same temporal requirements, that is, both the junior and
the senior roles must be enabled at the time the hierarchical
relations are e�ective. We further introduced the notions of
user-oriented and permission-oriented cardinality constraint
(or activation constraints in general), which are associated
with the inheritance and activation semantics.
We plan to extend the present work in various directions.

The �rst direction is an extensive investigation on how the
various inheritance hierarchies can co-exist on the same set
of roles. The possibility of establishing di�erent inheritance
relations among the roles in a given set is very promising.

It would allow one to support a very large number of di�er-
ent constraints and application semantics. We also plan to
develop an SQL-like language for specifying temporal prop-
erties for roles and the various types of inheritance relations.
Finally, we plan to develop a prototype of such language on
top of a relational DBMS.

6. ACKNOWLEDGMENTS
Portions of this work were supported by the sponsors of

the Center for Education and Research in Information As-
surance and Security (CERIAS) of Purdue University.

7. REFERENCES
[1] E. Bertino, P. A. Bonatti, and E. Ferrari. Trbac: A

temporal role-based access control model. ACM
Transactions on Information and System Security,
4(4):65{104, September 2001.

[2] E. Bertino, E. Ferrari, and V. Atluri. The speci�cation
and enforcement of authorization constraints in
workow management systems. ACM Transactions on
Information and System Security, 2(1):65{104,
September 1999.

[3] L. Giuri. Role-based access control: A natural
approach. In Proceedings of the 1st ACM Workshop
on Role-Based Access Control. ACM, 1997.

[4] T. Jaeger and J. E. Tidswell. Practical safety in
exible access control models. ACM Transactions on
Information System Security, 4(2):158{190, May 2001.

[5] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor.
Generalized temporal role based access control model
(GTRBAC) (Part I)- speci�cation and modeling.
Technical Report CERIAS TR 2001-47, Purdue
University, 2001.

[6] J. B. D. Joshi, A. Ghafoor, W. Aref, and E. H.
Spa�ord. Digital government security infrastructure
design challenges. IEEE Computer, 34(2):66{72,
February 2001.

[7] J. D. Mo�et and E. C. Lupu. The uses of role
hierarchies in access control. In Proceedings of 4th
ACM Workshop on Role-Based Access Control,
October 1999.

[8] M. Nyanchama and S. Osborn. The role graph model
and conict of interest. ACM Transactions on
Information and System Security, 2(1):3{33, 1999.

[9] S. Osborn, R. Sandhu, and Q. Munawer. Con�guring
role-based access control to enforce mandatory and
discretionary access control policies. ACM
Transactions on Information and System Security,
3(2):85{106, May 2000.

[10] J. S. Park, R. Sandhu, and G. J. Ahn. Role-based
access control on the web. ACM Transactions on
Information and System Security, 4(1):37{71,
February 2001.

[11] R. Sandhu. Role activation hierarchies. In Proceedings
of 2rd ACM Workshop on Role-based Access Control,
pages 65{79, Fairfax, Virginia, October 22-23 1998.

[12] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38{47, 1996.

83

