Theorem: Can_share(α,x,y,G₀) (for subjects)

- Subject_can_share(α, x, y, G₀) is true iff x and y are subjects and
 - there is an α edge from x to y in G₀
 OR if:
 - ∃ a subject s ∈ G₀ with an s-to-y α edge, and
 - ∃ islands I₁, …, Iₙ such that x ∈ I₁, s ∈ Iₙ, and there is a bridge from I_j to I_j₊₁

Diagram showing the relationships with islands and bridges.
What about objects?
Initial, terminal spans

- **x initially spans** to y if x is a subject and there is a tg-path associated with word \{t \rightarrow *g \rightarrow \} between them
 - x can grant a right to y
- **x terminally spans** to y if x is a subject and there is a tg-path associated with word \{t \rightarrow *\} between them
 - x can take a right from y

Theorem: Can_share(α,x,y,G₀)

- Can_share(α,x,y,G₀) iff there is an α edge from x to y in G₀ or if:
 - ∃ a vertex s ∈ G₀ with an s to y α edge,
 - ∃ a subject x' such that x' = x or x' initially spans to x,
 - ∃ a subject s' such that s' = s or s' terminally spans to s, and
 - ∃ islands I₁, ..., Iₙ such that x' ∈ I₁, s' ∈ Iₙ, and there is a bridge from I₁ to Iₙ⁺¹

\[x' \text{ can grant a right to } x \quad s' \text{ can take a right from } s \]
Theorem: \text{Can_share}(\alpha, x, y, G_0)

- **Corollary:** There is an $O(|V|+|E|)$ algorithm to test can_share: Decidable in linear time!!
- **Theorem**
 - Let G_0 contain exactly one vertex and no edges,
 - R a set of rights.
 - $G_0 \vdash^* G$ iff G is a finite directed acyclic graph, with edges labeled from R, and at least one subject with no incoming edge.
 - **Only if** part: v is initial subject and $G_0 \vdash^* G$;
 - No rule allows the deletion of a vertex
 - No rule allows an incoming edge to be added to a vertex without any incoming edges. Hence, as v has no incoming edges, it cannot be assigned any

Theorem: \text{Can_share}(\alpha, x, y, G_0)

- **If** part: G meets the requirement
 - Assume v is the vertex with no incoming edge and apply rules
 1. Perform “v creates ($\alpha \cup \{g\}$ to) new x_i” for all $2 \leq i \leq n$, and α is union of all labels on the incoming edges going into x_i in G
 2. For all pairs x, y with $x \alpha$ over y in G, perform “v grants (α to y) to x”
 3. If β is the set of rights x has over y in G, perform “v removes ($\alpha \cup \{g\} - \beta$) to y”
Example

Take-Grant Model: Sharing through a Trusted Entity

- Let p and q be two processes
- Let b be a buffer that they share to communicate
- Let s be a third party (e.g., operating system) that controls b

Witness

- S creates (r, w, to new object) b
- S grants (r, w, b) to p
- S grants (r, w, b) to q
Theft in Take-Grant Model

- Can_steal(α,x,y,G₀) is true if there is no α edge from x to y in G₀ and ∃ sequence G₁, ..., Gₙ s. t.:
 - ∃ α edge from x to y in Gₙ,
 - ∃ rules ρ₁,..., ρₙ that take Gᵢ⁻¹ ⊢ ρᵢ Gᵢ, and
 - ∀ v,w ∈ Gᵢ, 1 ≤ i < n, if ∃ α edge from v to y in G₀ then ρᵢ is not “v grants (α to y) to w”

- Disallows owners of α rights to y from transferring those rights
- Does not disallow them to transfer other rights
- This models a Trojan horse

A witness to theft

- u grants (t to v) to s
- s takes (t to u) from v
- s takes (α to w) from u
Theorem: When Theft Possible

\[\text{Can_steal}(\alpha, x, y, G_0) \text{ iff there is no } \alpha \text{ edge from } x \text{ to } y \text{ in } G_0 \text{ and } \exists G_1, \ldots, G_n \text{ s.t.:} \]

- There is no \(\alpha \) edge from \(x \) to \(y \) in \(G_0 \).
- \(\exists \) subject \(x' \) such that \(x' = x \) or \(x' \) initially spans to \(x \), and
- \(\exists s \) with \(\alpha \) edge to \(y \) in \(G_0 \) and \(\text{can_share}(t, x, s, G_0) \)

Proof:

- \(\Rightarrow \): Assume the three conditions hold
 - \(x \) can get \(\alpha \) right over \(s \) (\(x \) is a subject) and then take \(\alpha \) right over \(y \) from \(s \)
 - \(x' \) creates a surrogate to pass \(\alpha \) to \(x \) (\(x \) is an object)
 - \(x' \) initially spans to \(x \) (Theorem 3.10 - \(\text{can_share}(t, x', s, G_0) \))

- \(\Leftarrow \): Assume \(\text{can_steal} \) is true:
 - No \(\alpha \) edge from definition 3.10 in \(G_0 \).
 - \(\text{Can_share}(\alpha, x, y, G_0) \) from definition 3.10 condition (a): \(\alpha \) from \(x \) to \(y \) in \(G_n \)
 - \(s \) exists from \(\text{can_share} \) and earlier theorem
 - Show \(\text{Can_share}(t, x, s, G_0) \) holds: \(s \) can’t grant \(\alpha \) (definition), someone else must get \(\alpha \) from \(s \), show that this can only be accomplished with take rule
Theft indicates cooperation: which subjects are actors in a transfer of rights, and which are not?

Next question is

How many subjects are needed to enable $\text{Can_share}(\alpha, x, y, G_0)$?

Note that a vertex y

- Can take rights from any vertex to which it terminally spans
- Can pass rights to any vertex to which it initially spans

Access set $A(y)$ with focus y (y is subject) is union of

- set of vertices y,
- vertices to which y initially spans, and
- vertices to which y terminally spans

Deletion set $\delta(y, y')$: All $z \in A(y) \cap A(y')$ for which

- y initially spans to z and y' terminally spans to z
- y terminally spans to z and y' initially spans to z
- $z = y$ & $z = y'$

Conspiracy graph H of G_0:

- Represents the paths along which subjects can transfer rights
- For each subject in G_0, there is a corresponding vertex $h(x)$ in H
- if $\delta(y, y')$ not empty, edge from $h(y)$ to $h(y')$
Example

Theorems

- \(I(p) = \) contains the vertex \(h(p) \) and the set of all vertices \(h(p') \) such that \(p' \) initially spans to \(p \)
- \(T(q) = \) contains the vertex \(h(q) \) and the set of all vertices \(h(q') \) such that \(q' \) terminally spans to \(q \)
- **Theorem 3-13:**
 - \(\text{Can}_\text{share}(\alpha, x, y, G_0) \) iff there is a path from some \(h(p) \) in \(I(x) \) to some \(h(q) \) in \(T(y) \)
- **Theorem 3-14:**
 - Let \(L \) be the number of vertices on a shortest path between \(h(p) \) and \(h(q) \) (as in theorem 3-13), then \(L \) conspirators are necessary and sufficient to produce a witness to \(\text{Can}_\text{share}(\alpha, x, y, G_0) \)
Back to HRU:
Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being “secure”
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

Turing Machine & halting problem

- The halting problem:
 - Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).
- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
Turing Machine

- TM is an abstract model of computer
 - Alan Turing in 1936
- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state

The action table describes the transition function
- Transition function $\delta(k, m) = (k', m', L)$:
 - in state k, symbol m on tape location is replaced by symbol m',
 - head moves to left one square, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state
Turing Machine

Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state

Current state is k
Current symbol is C

General Safety Problem

- Theorem: It is undecidable if a given state of a given protection system is safe for a given generic right
- Proof: Reduce TM to safety problem
 - Symbols, States \Rightarrow rights
 - Tape cell \Rightarrow subject
 - Cell s_i has A \Rightarrow s_i has A rights on itself
 - Cell s_k \Rightarrow s_k has end rights on itself
 - State p, head at s_i \Rightarrow s_i has p rights on itself
 - Distinguished Right own:
 - s_i owns s_{i+1} for $1 \leq i < k$
Current state is k
Current symbol is C

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
A & B & C & D \\
\end{array}
\]

\[
\begin{array}{cccc}
& s_1 & s_2 & s_3 & s_4 \\
\hline
s_1 & A & \text{own} & & \\
\hline
s_2 & B & \text{own} & & \\
\hline
s_3 & C & k & \text{own} & \\
\hline
s_4 & & D & \text{end} & \\
\end{array}
\]

Command Mapping (Left move)

$\delta(k, C) = (k_1, X, L)$

command $c_{k,C}(s_i, s_{i-1})$

if own in $a[s_{i-1}, s_i]$ and k in $a[s_j, s_l]$ and C in $a[s_r, s_t]$
then
- delete k from $A[s_r, s_t]$;
- delete C from $A[s_r, s_t]$;
- enter X into $A[s_r, s_t]$;
- enter k_1 into $A[s_{i-1}, s_{i-1}]$;
end
Mapping (Left Move)

After $\delta(k, C) = (k_1, X, L)$ where k is the current state and k_1 the next state.

Mapping (Initial)

Current state is k
Current symbol is C
Command Mapping
(Right move)

\[\delta(k, C) = (k_1, X, R) \]

command \(c_{k,C}(s_i, s_{i+1})\)

if own in \(a[s_i, s_{i+1}]\) and \(k\) in \(a[s_i, s_j]\) and \(C\) in \(a[s_i, s_j]\)

then

- delete \(k\) from \(A[s_i, s_j]\);
- delete \(C\) from \(A[s_i, s_j]\);
- enter \(X\) into \(A[s_i, s_j]\);
- enter \(k_1\) into \(A[s_{i+1}, s_{i+1}]\);
end

Mapping

After \(\delta(k, C) = (k_1, X, R)\)

where \(k\) is the current state and \(k_1\) the next state

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(X)</th>
<th>(D)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td></td>
</tr>
<tr>
<td>(s_1)</td>
<td>(A)</td>
<td>(own)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>(B)</td>
<td>(own)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>(X)</td>
<td>(own)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td>(D)</td>
<td>(k_1)</td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
\[\delta(k_1, D) = (k_2, Y, R) \text{ at end becomes} \]

Command Mapping (Rightmost move)

\[\text{command } \text{crightmost}_{C(s_i,s_{i+1})} \]

\[\text{if } \text{end in } a[s_i,s_{i}] \text{ and } k_1 \text{ in } a[s_i,s_{i}] \text{ and } D \text{ in } a[s_i,s_{i}] \]

\[\text{then} \]

\[\begin{align*}
\text{delete end from } & a[s_i,s_{i}] ; \\
\text{create subject } & s_{i+1} ; \\
\text{enter } & \text{own into } a[s_{i+1},s_{i+1}] ; \\
\text{enter end into } & a[s_{i+1},s_{i+1}] ; \\
\text{delete } & k_1 \text{ from } a[s_{i+1},s_{i+1}] ; \\
\text{delete } & D \text{ from } a[s_{i+1},s_{i+1}] ; \\
\text{enter } & Y \text{ into } a[s_{i+1},s_{i+1}] ; \\
\text{enter } & k_2 \text{ into } A[s_{i+1},s_{i+1}] ; \\
\text{end}
\end{align*} \]

After \(\delta(k_1, D) = (k_2, Y, R) \) where \(k_1 \) is the current state and \(k_2 \) the next state

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>X</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td></td>
<td></td>
<td>b k_2</td>
<td>end</td>
</tr>
</tbody>
</table>
```
Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_{r}, then right has leaked
- If safety question decidable, then represent TM as above and determine if q_{r} leaks
 - Leaks halting state \Rightarrow halting state in the matrix \Rightarrow Halting state reached
- Conclusion: safety question undecidable

Other theorems

- Set of unsafe systems is recursively enumerable
 - Recursively enumerable?
- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
Other theorems

- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

Observations
- Safety is undecidable for the generic case
- Safety becomes decidable when restrictions are applied

Schematic Protection Model

- Key idea is to use the notion of a protection type
 - Label that determines how control rights affect an entity
 - Take-Grant:
 - subject and object are different protection types
 - TS and TO represent subject type set and object set
 - \(\tau(\text{X}) \) is the type of entity \(\text{X} \)
- A ticket describes a right
 - Consists of an entity name and a right symbol; \(\text{X}/z \)
 - Possessor of the ticket \(\text{X}/z \) has right \(r \) over entity \(\text{X} \)
 - \(Y \) has tickets \(\text{X}/r, \text{X}/w \rightarrow Y \) has tickets \(\text{X}/nw \)
 - Each entity \(\text{X} \) has a set \(\text{dom}(\text{X}) \) of tickets \(\text{Y}/z \)
 - \(\tau(\text{X}/rc) = \tau(\text{X})/rc \) is the type of a ticket
Schematic Protection Model

- Inert right vs. Control right
 - Inert right doesn’t affect protection state, e.g. read right
 - take right in Take-Grant model is a control right
- Copy flag c
 - Every right r has an associated copyable right rc
 - r:c means r or rc
- Manipulation of rights
 - A link predicate
 - Determines if a source and target of a transfer are “connected”
 - A filter function
 - Determines if a transfer is authorized

Transferring Rights

- \(\text{dom}(X) \) : set of tickets that X has
- Link predicate: \(\text{link}(X, Y) \)
 - conjunction or disjunction of the following terms
 - \(X/z \in \text{dom}(X) \); \(Y/z \in \text{dom}(Y) \);
 - \(Y/z \in \text{dom}(X) \); \(Y/z \in \text{dom}(Y) \)
 - \text{true}
 - Determines if X and Y ”connected” to transfer right
 - Examples:
 - Take-Grant: \(\text{link}(X, Y) = Y/g \in \text{dom}(X) v X/t \in \text{dom}(Y) \)
 - Broadcast: \(\text{link}(X, Y) = X/b \in \text{dom}(X) \)
 - Pull: \(\text{link}(X, Y) = Y/p \in \text{dom}(Y) \)
 - Universal: \(\text{link}(X, Y) = \text{true} \)
- Scheme: a finite set of link predicates is called a scheme
Filter Function

- Filter function:
 - Imposes conditions on when tickets can be transferred
 - $f: TS \times TS \rightarrow 2^{TV}$ (range is copyable rights)
- $X/r:c$ can be copied from $dom(Y)$ to $dom(Z)$ if $\exists i$ s. t. the following are true:
 - $X/r:c \in dom(Y)$
 - $link(Y, Z)$
 - $\tau(X)/r:c \in f(\tau(Y), \tau(Z))$
- Examples:
 - If $f(\tau(Y), \tau(Z)) = T \times R$ then any rights are transferable
 - If $f(\tau(Y), \tau(Z)) = T \times RI$ then only inert rights are transferable
 - If $f(\tau(Y), \tau(Z)) = \emptyset$ then no tickets are transferable
- One filter function is defined for each link predicate

SCM Example 1

- Owner-based policy
 - Subject U can authorize subject V to access an object F if U owns F
 - Types: $TS=\{user\}$, $TO=\{file\}$
 - Ownership is viewed as copy attributes
 - If U owns F, all its tickets for F are copyable
 - $RI: \{r:c, w:c, a:c, x:c\}$; RC is empty
 - read, write, append, execute; copy on each
 - $\forall U, V \in user$, $link(U, V) = true$
 - Anyone can grant a right to anyone else if they posses the right to do so (copy)
 - $f(user, user) = \{filer, filew, filea, filex\}$
 - Can copy read, write, append, execute
SPM Example 1

- Peter owns file Doom; can he give Paul execute permission over Doom?
 1. \(\tau(\text{Peter}) \) is user and \(\tau(\text{Paul}) \) is user
 2. \(\tau(\text{Doom}) \) is file
 3. \(\text{Doom}/x_c \in \text{dom}(\text{Peter}) \)
 4. \(\text{Link} (\text{Peter}, \text{Paul}) = \text{TRUE} \)
 5. \(\tau(\text{Doom})/x \in f(\tau(\text{Peter}), \tau(\text{Paul})) \) - because of 1 and 2

Therefore, Peter can give ticket \(\text{Doom}/x_c \) to Paul

SPM Example 2

- Take-Grant Protection Model
 - \(TS = \{ \text{subjects} \}, TO = \{ \text{objects} \} \)
 - \(RC = \{ tc, gc \}, RI = \{ rc, wc \} \)
 - Note that all rights can be copied in T-G model
 - \(\text{link}(p, q) = p/t \in \text{dom}(q) \lor q/t \in \text{dom}(p) \)
 - \(f(\text{subject, subject}) = \{ \text{subject, object} \} \times \{ tc, gc, rc, wc \} \)
 - Note that any rights can be transferred in T-G model
Demand

- A subject can demand a right from another entity
 - Demand function $d: TS \rightarrow 2^{TxR}$
 - Let a and b be types
 - $a/r: c \in d(b)$: every subject of type b can demand a ticket $X/r: c$ for all X such that $\tau(X) = a$
 - A sophisticated construction eliminates the need for the demand operation – hence omitted

Create Operation

- Need to handle
 - type of the created entity, &
 - tickets added by the creation
- Relation $can\cdot create(a, b) \subseteq TS \times T$
 - A subject of type a can create an entity of type b
- Rule of acyclic creates
 - Limits the membership in $can\cdot create(a, b)$
 - If a subject of type a can create a subject of type b, then none of the descendants can create a subject of type a
Create operation
Distinct Types

- create rule \(cr(a, b) \) specifies the
 - tickets introduced when a subject of type \(a \) creates an
 entity of type \(b \)
- \(B \) object: \(cr(a, b) \subseteq \{ b/r:c \in RI \} \)
 - Only inert rights can be created
 - \(A \) gets \(B/r:c \) iff \(b/r:c \in cr(a, b) \)
- \(B \) subject: \(cr(a, b) \) has two parts
 - \(cr_p(a, b) \) added to \(A \), \(cr_c(a, b) \) added to \(B \)
 - \(A \) gets \(B/r:c \) if \(b/r:c \in cr_p(a, b) \)
 - \(B \) gets \(A/r:c \) if \(a/r:c \in cr_c(a, b) \)

Non-Distinct Types

- \(cr(a, a) \): who gets what?
 - \(self/r:c \) are tickets for creator
 - \(a/r:c \) tickets for the created
 - \(cr(a, a) = \{ a/r:c, self/r:c | r.c \in R \} \)
 - \(cr(a, a) = cr_c(a, b) | cr_p(a, b) \) is attenuating if:
 1. \(cr_c(a, b) \subseteq cr_p(a, b) \) and
 2. \(a/r:c \in cr_p(a, b) \Rightarrow self/r:c \in cr_p(a, b) \)
- A scheme is attenuating if,
 - For all types \(a, cc(a, a) \rightarrow cr(a, a) \) is attenuating
Examples

- Owner-based policy
 - Users can create files: $cc(\text{user}, \text{file})$ holds
 - Creator can give itself any inert rights: $cr(\text{user}, \text{file}) = \{\text{file}/r.c| r \in R\}$

- Take-Grant model
 - A subject can create a subject or an object
 - $cc(\text{subject}, \text{subject})$ and $cc(\text{subject}, \text{object})$ hold
 - Subject can give itself any rights over the vertices it creates but the subject does not give the created subject any rights (although grant can be used later)
 - $cr(\text{a}, \text{b}) = \emptyset$; $cr(\text{a}, \text{b}) = \{\text{sub/tc, sub/gc, sub/rc, sub/wc}\}$
 - Hence,
 - $cr(\text{sub}, \text{sub}) = \{\text{sub/tc, sub/gc, sub/rc, sub/wc}\} | \emptyset$
 - $cr(\text{sub}, \text{obj}) = \{\text{obj/tc, obj/gc, obj/rc, obj/wc}\} | \emptyset$

Safety Analysis in SPM

- Idea: derive maximal state where changes don’t affect analysis
 - Indicates all the tickets that can be transferred from one subject to another
 - Indicates what the maximum rights of a subject is in a system

- Theorems:
 - A maximal state exists for every system
 - If parent gives child only rights parent has (conditions somewhat more complex), can easily derive maximal state
 - Safety: If the scheme is acyclic and attenuating, the safety question is decidable
Typed Access Matrix Model

- Finite set T of types ($TS \subseteq T$ for subjects)
- Protection State: (S, O, τ, A)
 - $\tau:O \rightarrow T$ is a type function
 - Operations same as in HRU model except create adds type
- τ is child type iff command create creates subject/object of type τ
- If parent/child graph from all commands acyclic, then:
 - Safety is decidable
 - Safety is NP-Hard
 - Safety is polynomial if all commands limited to three parameters

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SPM has no equivalent to delete, destroy
- HRU allows multiparent creates, SPM does not
 - SPM cannot express multiparent creates easily, and not at all if the parents are of different types because $\text{can}\cdot\text{create}$ allows for only one type of creator
 - Suggests SPM is less expressive than HRU
Comparing Models

- Expressive Power
 - HRU/Access Control Matrix subsumes Take-Grant
 - HRU subsumes Typed Access Control Matrix
 - SPM subsumes
 - Take-Grant
 - Multilevel security
 - Integrity models
- What about SPM and HRU?
 - SPM has no revocation (delete/destroy)
- HRU without delete/destroy (monotonic HRU)
 - MTAM subsumes monotonic mono-operational HRU

Extended Schematic Protection Model

- Adds “joint create”: new node has multiple parents
 - Allows more natural representation of sharing between mutually suspicious parties
 - Create joint node for sharing
- Monotonic ESPM and Monotonic HRU are equivalent