Introduction to Computer Security

Access Control Matrix
Take-grant model

September 9, 2004

Protection System

- State of a system
 - Current values of: memory locations, registers, secondary storage, etc.
 - Other system components
- Protection state (P)
 - A system state that is considered secure
- A protection system
 - Describes the conditions under which a system is secure (in a protection state)
 - Consists of two parts:
 - A set of generic rights
 - A set of commands
- State transition
 - Occurs when an operation (command) is carried out
Protection System

- Subject (S: set of all subjects)
 - Active entities that carry out an action/operation on other entities; Eg.: users, processes, agents, etc.
- Object (O: set of all objects)
 - Eg.: Processes, files, devices
- Right
 - An action/operation that a subject is allowed/disallowed on objects

Access Control Matrix Model

- Access control matrix
 - Describes the protection state of a system.
 - Characterizes the rights of each subject
 - Elements indicate the access rights that subjects have on objects
- ACM is an abstract model
 - Rights may vary depending on the object involved
- ACM is implemented primarily in two ways
 - Capabilities (rows)
 - Access control lists (columns)
Access Control Matrix

<table>
<thead>
<tr>
<th>Capabilities</th>
<th>Access Control List</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>β₁ → [o, r, w]</td>
</tr>
<tr>
<td></td>
<td>β₂ → [o, r, w]</td>
</tr>
<tr>
<td>s2</td>
<td>β₁ → [o, r, w]</td>
</tr>
<tr>
<td></td>
<td>β₂ → [o, r, w]</td>
</tr>
<tr>
<td>s3</td>
<td>β₁ → [o, r, w]</td>
</tr>
<tr>
<td></td>
<td>β₂ → [o, r, w]</td>
</tr>
</tbody>
</table>

Access Control List

<table>
<thead>
<tr>
<th>Access Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>β₁</td>
</tr>
<tr>
<td>β₂</td>
</tr>
<tr>
<td>β₃</td>
</tr>
<tr>
<td>β₄</td>
</tr>
<tr>
<td>β₅</td>
</tr>
<tr>
<td>β₆</td>
</tr>
</tbody>
</table>

Access Control Matrix

<table>
<thead>
<tr>
<th>Hostnames</th>
<th>Telegraph</th>
<th>Nob</th>
<th>Toadfax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>own</td>
<td>ftp</td>
<td>ftp</td>
</tr>
<tr>
<td></td>
<td>ftp, nsf, mail, own</td>
<td>ftp, nsf, mail</td>
<td>ftp, nsf, mail, own</td>
</tr>
</tbody>
</table>

- **telegraph** is a PC with ftp client but no server
- **nob** is provides NFS but not to Toadfax
- **nob** and **toadfax** can exchange mail
Boolean Expression Evaluation

- ACM controls access to database fields
 - Subjects have attributes
 - Verbs define type of access
 - Rules associated with objects, verb pair
- Subject attempts to access object
 - Rule for object, verb evaluated, grants or denies access

Example

- Subject annie
 - Attributes role (artist), groups (creative)
- Verb paint
 - Default 0 (deny unless explicitly granted)
- Object picture
 - Rule:
 - paint: ‘artist’ in subject.role and ‘creative’ in subject.groups and time.hour ≥ 0 and time.hour < 5
ACM at 3AM and 10AM

At 3AM, time condition met; ACM is:

 ... picture ...

 annie

 ... paint ...

At 10AM, time condition not met; ACM is:

 ... picture ...

 annie

Access Controlled by History

- Statistical databases need to
 - answer queries on groups
 - prevent revelation of individual records

- Query-set-overlap control
 - Prevent an attacker to obtain individual piece of information using a set of queries C
 - A parameter $r (\geq 2)$ is used to determine if a query should be answered

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Teacher</td>
<td>45</td>
<td>40K</td>
</tr>
<tr>
<td>Bob</td>
<td>Aide</td>
<td>20</td>
<td>20K</td>
</tr>
<tr>
<td>Cathy</td>
<td>Principal</td>
<td>37</td>
<td>60K</td>
</tr>
<tr>
<td>Dilbert</td>
<td>Teacher</td>
<td>50</td>
<td>50K</td>
</tr>
<tr>
<td>Eve</td>
<td>Teacher</td>
<td>33</td>
<td>50K</td>
</tr>
</tbody>
</table>
Access Controlled by History

- Query 1:
 - sum_salary(position = teacher)
 - Answer: 140K
- Query 2:
 - sum_salary(age > 40 & position = teacher)
 - Should not be answered as Matt’s salary can be deduced

Can be represented as an ACM

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celia</td>
<td>Teacher</td>
<td>45</td>
<td>40K</td>
</tr>
<tr>
<td>Leonard</td>
<td>Teacher</td>
<td>50</td>
<td>50K</td>
</tr>
<tr>
<td>Matt</td>
<td>Teacher</td>
<td>33</td>
<td>50K</td>
</tr>
</tbody>
</table>

Solution: Query Set Overlap Control (Dobkin, Jones & Lipton ’79)

- Query valid if intersection of query coverage and each previous query < r
- Can represent as access control matrix
 - Subjects: entities issuing queries
 - Objects: Powerset of records
 - $O_s(i)$: objects referenced by s in queries $1..i$
 - $A[s,o] = \text{read iff } \bigwedge_{q \in O_s(i-1)} |q \cap o| < r$
Query 1: $O_1 = \{\text{Celia, Leonard, Matt}\}$ so the query can be answered. Hence
- $A[\text{asker, Celia}] = \{\text{read}\}$
- $A[\text{asker, Leonard}] = \{\text{read}\}$
- $A[\text{asker, Matt}] = \{\text{read}\}$

Query 2: $O_2 = \{\text{Celia, Leonard}\}$ but $|O_2 \cap O_1| = 2$; so the query cannot be answered
- $A[\text{asker, Celia}] = \emptyset$
- $A[\text{asker, Leonard}] = \emptyset$

State Transitions

- Let initial state $X_0 = (S_0, O_0, A_0)$
- Notation
 - $X_i \vdash \tau_{i+1} X_{i+1}$: upon transition τ_{i+1}, the system moves from state X_i to X_{i+1}
 - $X \vdash^* Y$: the system moves from state X to Y after a set of transitions
 - $X_i \vdash c_{i+1}(p_{i+1,1}, p_{i+1,2}, \ldots, p_{i+1,m}) X_{i+1}$: state transition upon a command
- For every command there is a sequence of state transition operations
Primitive commands (HRU)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create subject s</td>
<td>Creates new row, column in ACM;</td>
</tr>
<tr>
<td>Create object o</td>
<td>Creates new column in ACM</td>
</tr>
<tr>
<td>Enter r into $a[s, o]$</td>
<td>Adds r right for subject s over object o</td>
</tr>
<tr>
<td>Delete r from $a[s, o]$</td>
<td>Removes r right from subject s over object o</td>
</tr>
<tr>
<td>Destroy subject s</td>
<td>Deletes row, column from ACM;</td>
</tr>
<tr>
<td>Destroy object o</td>
<td>Deletes column from ACM</td>
</tr>
</tbody>
</table>

Create Subject

- **Precondition:** $s \not\in S$
- **Primitive command:** `create subject s`
- **Postconditions:**
 - $S^* = S \cup \{s\}$, $O^* = O \cup \{s\}$
 - $(\forall y \in O^*)[a^*[s, y] = \emptyset]$ (row entries for s)
 - $(\forall x \in S^*)[a^*[x, s] = \emptyset]$ (column entries for s)
 - $(\forall x \in S)(\forall y \in O)[a^*[x, y] = a[x, y]]$
Create Object

- Precondition: $o \notin O$
- Primitive command: `create object` o
- Postconditions:
 - $S' = S$, $O' = O \cup \{ o \}$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$ (column entries for o
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Add Right

- Precondition: $s \in S$, $o \in O$
- Primitive command: `enter` r into $a[s, o]$
- Postconditions:
 - $S' = S$, $O' = O$
 - $a'[s, o] = a[s, o] \cup \{ r \}$
 - $(\forall x \in S' \setminus \{ s \})(\forall y \in O' \setminus \{ o \})$

 $[a'[x, y] = a[x, y]]$
Delete Right

- Precondition: \(s \in S, \ o \in O \)
- Primitive command: \textit{delete r from} \(a[s, o] \)
- Postconditions:
 \(S' = S, \ O' = O \)
 \(a'[s, o] = a[s, o] - \{ r \} \)
 \((\forall x \in S' - \{ s \})(\forall y \in O' - \{ o \}) \]
 \(a'[x, y] = a[x, y] \)

Destroy Subject

- Precondition: \(s \in S \)
- Primitive command: \textit{destroy subject} \(s \)
- Postconditions:
 \(S' = S - \{ s \}, \ O' = O - \{ s \} \)
 \((\forall y \in O')[a'[s, y] = \emptyset] \) (row entries removed)
 \((\forall x \in S')[a'[x, s] = \emptyset] \) (column entries removed)
 \((\forall x \in S')(\forall y \in O') [a'[x, y] = a[x, y]] \)
Destroy Object

- Precondition: \(o \in O \)
- Primitive command: **destroy object** \(o \)
- Postconditions:
 - \(S' = S, O' = O - \{ o \} \)
 - \((\forall x \in S')[a'[x, o] = \emptyset] \) (column entries removed)
 - \((\forall x \in S')(\forall y \in O') [a'[x, y] = a[x, y]] \)

System commands using primitive operations

- process \(p \) creates file \(f \) with owner read and write \((r, w) \) will be represented by the following:
 - Command **create_file** \((p, f) \)
 - Create object \(f \)
 - Enter \(own \) into \(a[p, f] \)
 - Enter \(r \) into \(a[p, f] \)
 - Enter \(w \) into \(a[p, f] \)
 - End

- Defined commands can be used to update ACM
 - Command **make_owner** \((p, f) \)
 - Enter \(own \) into \(a[p, f] \)
 - End

- Mono-operational: the command invokes only one primitive
Conditional Commands

- Mono-operational + mono-conditional
 Command `grant_read_file(p, f, q)`
  ```
  If own in a[p,f]
  Then
  Enter r into a[q,f]
  End
  ```
 Why not “OR”??

- Mono-operational + biconditional
 Command `grant_read_file(p, f, q)`
  ```
  If r in a[p,f] and c in a[p,f]
  Then
  Enter r into a[q,f]
  End
  ```

Attenuation of privilege

- Principle of attenuation
 - A subject may not give rights that it does not posses to others

- Copy
 - Augments existing rights
 - Often attached to a right, so only applies to that right
 - r is read right that cannot be copied
 - rc is read right that can be copied Also called the grant right

- Own
 - Allows adding or deleting rights, and granting rights to others
 - Creator has the own right
 - Subjects may be granted own right
 - Owner may give rights that he does not have to others on the objects he owns (chown command)
 - Example: John owns file f but does not have read permission over it. John can grant read right on f to Matt.
Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being “secure”
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

- A simple definition
 - A secure system doesn’t allow violations of a security policy
- Alternative view: based on distribution of rights to the subjects
 - Leakage of rights: (unsafe with respect to)
 - Assume that \(A \) representing a secure state does not contain a right \(r \) in any element of \(A \).
 - A right \(r \) is said to be leaked, if a sequence of operations/commands adds \(r \) to an element of \(A \), which not containing \(r \)
- Safety of a system with initial protection state \(X_0 \)
 - Safe with respect to \(r \): System is safe with respect to \(r \) if \(r \) can never be leaked
 - Else it is called unsafe with respect to right \(r \).
Safety Problem: formally

- Given
 - Initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c
 - r is not in $A_0[s, o]$
- Can we reach a state X_n where
 - $\exists s, o$ such that $A_n[s, o]$ includes a right r not in $A_0[s, o]$?

- If so, the system is not safe
- But is “safe” secure?

Decidability Results
(Harrison, Ruzzo, Ullman)

- Theorem: Given a system where each command consists of a single primitive command (monoperational), there exists an algorithm that will determine if a protection system with initial state X_0 is safe with respect to right r.

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can’t leak (or be detected)
 - Create/enter: new subjects/objects “equal”, so treat all new subjects as one
 - No test for absence
 - Tests on $A[s_1, o_1]$ and $A[s_2, o_2]$ have same result as the same tests on $A[s_1, o_1]$ and $A[s_2, o_2] ∪ A[s_2, o_2]$?

- If n rights leak possible, must be able to leak $n(|S_0|+1)(|O_0|+1)+1$ commands
- Enumerate all possible states to decide
Decidability Results
(Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof – need to know Turing machines and halting problem

What is the implication?

- Safety decidable for some models
 - Are they practical?
- Safety only works if maximum rights known in advance
 - Policy must specify all rights someone could get, not just what they have
 - Where might this make sense?
- Next: Example of a decidable model
 - Take-Grant Protection Model
Take-Grant Protection Model

- System is represented as a directed graph
 - Subject: ⬠
 - Either: ⬠
 - Object: ⬠
 - Labeled edge indicate the rights that the source object has on the destination object
- Four graph rewriting rules ("de jure", "by law", "by rights")
 - The graph changes as the protection state changes according to
 1. Take rule: if \(t \in \gamma \), the take rule produces another graph with a transitive edge \(\alpha \subseteq \beta \) added.
 2. Grant rule: if \(g \in \gamma \), the take rule produces another graph with a transitive edge \(\alpha \subseteq \beta \) added.
 3. Create rule:
 4. Remove rule:

\[
\begin{align*}
\text{Take rule:} & \quad \text{if } t \in \gamma, \text{ the take rule produces another graph with a transitive edge } \alpha \subseteq \beta \text{ added.} \\
\text{Grant rule:} & \quad \text{if } g \in \gamma, \text{ the take rule produces another graph with a transitive edge } \alpha \subseteq \beta \text{ added.} \\
\text{Create rule:} & \quad \text{if } x \text{ creates } \alpha \text{ to new vertex } y \\
\text{Remove rule:} & \quad \text{if } x \text{ removes } \alpha \text{ to } y
\end{align*}
\]
Take-Grant Protection Model: Sharing

- Given G_0, can vertex x obtain α rights over y?
 - $\text{Can}_x(x,y,G_0)$ is true iff
 - $G_0 \models G_z$ using the four rules, &
 - There is an α edge from x to y in G_n
- tg-path: v_0, \ldots, v_n with t or g edge between any pair of vertices v_i, v_{i+1}
 - Vertices tg-connected if tg-path between them
- Theorem: Any two subjects with tg-path of length 1 can share rights

Any two subjects with tg-path of length 1 can share rights

- Four possible length 1 tg-paths
 1. Take rule
 2. Grant rule
 3. Lemma 3.1
 4. Lemma 3.2
Any two subjects with \textit{tg-path} of length 1 can share rights

\textbf{Lemma 3.1}
\begin{itemize}
 \item \textbf{Sequence:}
 \begin{itemize}
 \item Create
 \item Take
 \item Grant
 \item Take
 \end{itemize}
 \item \textbf{Can_share} \((\alpha, x, y, G_0)\)
\end{itemize}

\textbf{Other definitions}

\begin{itemize}
 \item \textbf{Island:} Maximal \textit{tg}-connected subject-only subgraph
 \begin{itemize}
 \item \textbf{Can_share} all rights in island
 \item \textbf{Proof:} Induction from previous theorem
 \end{itemize}
 \item \textbf{Bridge:} \textit{tg}-path between subjects \(v_0\) and \(v_n\) with edges of the following form:
 \begin{itemize}
 \item \(t_{_},*, t_{_}^*\)
 \item \(t_{_},*, g_{_}, t_{_}^*\)
 \item \(t_{_},*, g_{_}, t_{_}^*\)
 \end{itemize}
\end{itemize}
Theorem: Can_share(α,x,y,G₀)
(for subjects)

- Subject_can_share(α, x, y, G₀) is true iff x and y are subjects and
 - there is an α edge from x to y in G₀
 OR if:
 - ∃ a subject s ∈ G₀ with an s-to-y α edge, and
 - ∃ islands I₁, …, Iₙ such that x ∈ I₁, s ∈ Iₙ, and there is a bridge from Iᵢ to Iᵢ₊₁
What about objects?

Initial, terminal spans

- \(x \) \textit{initially spans} to \(y \) if \(x \) is a subject and there is a \(tg \)-path between them with \(t \) edges ending in a \(g \) edge (i.e., \(t_{\cdots}g_{\cdots} \))
 - \(x \) can grant a right to \(y \)
- \(x \) \textit{terminally spans} to \(y \) if \(x \) is a subject and there is a \(tg \)-path between them with \(t \) edges (i.e., \(t_{\cdots}^* \))
 - \(x \) can take a right from \(y \)

\[\text{Theorem: Can_share}(\alpha,x,y,G_0)\]

- Can_share\((\alpha,x,y,G_0)\) iff there is an \(\alpha \) edge from \(x \) to \(y \) in \(G_0 \) or if:
 - \(\exists \) a vertex \(s \in G_0 \) with an \(s \) to \(y \) \(\alpha \) edge,
 - \(\exists \) a subject \(x' \) such that \(x' = x \) or \(x' \text{ initially spans} \) to \(x \),
 - \(\exists \) a subject \(s' \) such that \(s' = s \) or \(s' \text{ terminally spans} \) to \(s \), and
 - \(\exists \) islands \(I_1, \ldots, I_n \) such that \(x' \in I_1, s' \in I_n \) and there is a bridge from \(I_j \) to \(I_{j+1} \).