IS 2935/TEL 2810 Introduction to Computer Security
Homework 1
Due Date: By Midnight September 10, 2004

1. [30 Points] Do the following problems from Chapter 1, Section 1.12: 1, 4, 7

2. [50 Points] Exercise on Propositional/Predicate logic & Induction

 1. Show that \(p \rightarrow q \) is equivalent to \(\neg p \lor q \) using truth table.
 2. Do the following from Exercise 34.4 (page 956-957): 2(a), 2(b), 3, 4(a), 4(b)

3. [20 Points] Exercise on Lattice

 Let \(S_n \) denote a set of all binary numbers containing \(n \) digits. For \(a \in S_n \), we can write \(a = a_1 \ a_2 \ldots \ a_n \) where \(a_i \)'s are binary digits. Let relation \(\preceq \) be the “dominance” relation on \(S_n \). For every \(a, b \in S_n \) we say \(a \) is dominated by \(b \) (written as \(a \preceq b \)) if \(a_i \leq b_i \) for all \(i = 1 \) to \(n \) (here \(\leq \) is the “less than or equal to” relation on binary digits, i.e., \(0 \leq 0, 0 \leq 1, 1 \leq 1 \))

 For example \(S_1 = \{ 0, 1 \} \); Here \(0 \preceq 1 \). As a lattice diagram, it can be represented as

 \[
 \begin{array}{c}
 1 \\
 \bullet \\
 0 \\
 \end{array}
 \]

 Similarly, \(S_2 = \{ 00, 01, 10, 11 \} \) (set of all binary numbers containing 2 digits). The lattice formed by \(\preceq \) over \(S_3 \) can be represented as

 \[
 \begin{array}{c}
 11 \\
 \bullet \\
 10 \\
 \bullet \\
 01 \\
 \bullet \\
 00 \\
 \end{array}
 \]

 Does relation \(\preceq \) over \(S_3 \) form a total ordering or partial ordering? Represent the ordering diagrammatically (as above and as was done in class).