
The Generalized Temporal Role Based 
Access Control Model

Security Management
Lecture 7

March 21, 2006



Outline

Introduction and Motivation
Overview of the Generalized Temporal 
RBAC Model
Expressiveness and Design 
Considerations
Related Work
Conclusion and Future Work



Research Motivation
Insider attack is a major threat in 
organizational systems (CSI/FBI Survey)
Traditional discretionary and mandatory 
access control (DAC & MAC) approaches 
have limitations
Context-based access control is a critical 
need for emerging applications



Research Motivation
“To realize the Department of 
Defense's vision for the Global 
Information Grid (GIG), 
information assurance (IA) 
requirements include robust 
identity, authentication and 
privilege management, policy for 
dynamic access control, security 
management, and 'persistence 
monitoring' or continual 
monitoring throughout the 
network, according to Daniel G. 
Wolf, the director of information 
assurance for the National 
Security Agency (NSA).”



Security Management in 
Multidomain Environment

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

User’s access requests User’s authorization

Local Policy Base

Access Control Module

Local Policy Base

Access Control Module

Global Policy Base

Access Control Module

Trust 
Management

Tightly-coupled
(Federated system)

Lightly-coupled

Application (e.g., workflow) Application (e.g., workflow)

Application (e.g. workflow)

Application (e.g., workflow) Application (e.g., workflow)



Role Based Access Control 
(RBAC)

RBAC is a promising approach for addressing 
diverse security needs
Access control in organizations is based on 
“roles that individual users take on as part of 
the organization”
A role is “is a collection of permissions”
Constraints are applied to all the links



NIST Constrained RBAC

Permissions

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

PA

RH
(role hierarchy)Static

Separation 
of Duty

Dynamic
Separation 

of Duty



Advantages of RBAC
Allows efficient security management 
Supports principle of least privilege
Separation of duty constraints 
Policy-neutral and provides generality
Encompasses traditional discretionary and 
mandatory policies
Suitable for use in multidomain environments 
such as digital government, multi-enterprise 
venture and international coalition



Time-based Access Control 
Requirement

Organizational functions and services with 
temporal requirements

A part-time staff is authorized to work only 
between 9am-2pm on weekdays
A day doctor must be able to perform his/her 
duties between 8am-8pm
An external auditor needs access to organizational 
financial data for a period of three months
A video library allows access to a subscriber to 
view at most three movies every week
In an insurance company, an agent needs access 
to patient history until a claim has been settled



What to model in Generalized 
Temporal RBAC (GTRBAC)?

Triggers and Events
Temporal constraints 

Roles, user-role and role-permission assignment 
constraints
Activation constraints (cardinality, active 
duration,..)

Temporal role hierarchy
Time-based Separation of duty constraints



States of a Role in GTRBAC

Disabled

Enabled Active

enable

disable disable

deactivate

deactivate

activate

activate

EnabledEnabled ActiveActive

DisabledDisabled



Event and Trigger
Simple events

enable r disable r
assignU r to u deassignU r to u
assignP p to r deassignP p to r
activate r for u deactivate r for u

Prioritized event pr:E, where pr ∈ Prios
Status

Role, assignment status – e.g.. enabled(r); p_assigned(p ,r)
Triggers: E1 ,…, En , C1 ,…, Ck → pr:E after ∆t , where Ei
are events, Ci are status expressions
Example:
enable DayDoctor → enable DoctorInTraining after 1 hour

User/administrator run-time request: pr:E after ∆t 



Temporal Constraints: Roles, User-role 
and Role-permission Assignments

Periodic time
(I, P) : 〈[begin, end], P〉 is a set of intervals
P is an infinite set of recurring intervals

Calendars: 
Hours, Days, Weeks, Months, Years

Examples
all.Weeks + {2, …, 6}.Days + 10.Hours ⊲

12.hours
- Daytime (9am to 9pm) of working days



Temporal Constraints: Roles, User-role 
and Role-permission Assignments

Periodicity: (I, P, pr:E)
([1/1/2000, ∝], Daytime, enable DayDoctor)
([1/1/2001, ∝], {Mon,Wed}, assignU DayDoctor
to Smith)

Duration constraint: (D, pr:E)
(Five hours, enable DoctorInTraining)
activate DayDoctor for Smith → enable
DoctorInTraining after 1 hour



Activation Time Constraints
Active role duration

Total duration for role activation
1. Per role: Dactive, [Ddefault], activeR_total r
2. Per user role: Duactive, u, activeUR_total r

Max active role duration per activation 
1. Per role: Dmax, activeR_max r
2. Per user role: Dumax, u, activeUR_max r

Cardinality
Total number of role activations

1. Per role: Nactive, [Ndefault], activeR_n r
2. Per user role: Nuactive, u, activeUR_n r

Max number of concurrent activations 
1. Per role: Nmax, [Ndefault], activeR_con r
2. Per user role: Numax, u , activeUR_con r



Example GTRBAC access policy for a 
healthcare system

(activate DayNurse for Elizabeth → enable NurseInTraining after 10 min)b.

(enable DayNurse → enable c1) a.3

c1 = (6 hours, 2 hours, enable NurseInTraining)b.

(assignU Ami to NurseInTraining); (assignU Elizabeth to DayNurse)a.2

([10am, 3pm], assignU Carol to DayDoctor)c.

((M, W, F), assignU Adams to DayDoctor), ((T, Th, S, Su), assignU Bill to
DayDoctor);
((M, W, F), assignU Alice to NightDoctor), ((T, Th, S, Su), assignU Ben to
NightDoctor)

b.

(DayTime, enable DayDoctor), (NightTime, enable NightDoctor)a.1



Example of Activation Time 
Constraint

Video library offers 600 hours of total time per week
A, B and C subscribe for 100  hours each
D subscribes for 250 hours
E subscribes for 50 hours

(Weekly, 300, 100, activeR_total MV1) 
B

D

E

(Weekly, 250, activeR_total MV2)

(Weekly, 50, activeR_total MV3) 

C

A

MV3

MV2

MV1

Video 
Database



GTRBAC Execution Model for 
Handling Anomalies

GTRBAC specification can encounter two possible 
anomalies

Simultaneous occurrence of conflicting events
Arbitrary triggering of interdependent triggers can create 
ambiguity

Conflict resolution
Higher priority takes precedence
Disabling event takes precedence when the priorities of the 
conflicting events are the same

disable r takes precedence over enable r
More specific constraint overrides



GTRBAC Execution Model
Event 

Dependency
Analysis

Run-time
action 
handler

remove undesirable
dependencies, policy may be flawed

External events
(run-time events)System

State Priority-based
conflict resolution

Safe schedule of events



Conflicts in GTRBAC

GTRBAC specification can generate 3 types of 
conflicts

Type 1: between events of same type but 
opposite nature, 

e.g., enable r vs. disable r
Type 2: between events of dissimilar types 

e.g., activate r for u vs. de-assign r to u OR 
disable r

Type 3: between constraints
(a)(X, pr:E) vs. (X, q:E) or (X’,q:Conf(E)) 
(b) Per-role vs. per-user-role constraints



Handling Conflicts
Type 1 and Type 3(a)

Higher priority takes precedence 
Disabling event  takes precedence if priorities are the same

e.g., disable r takes precedence over enable r
Type 2

activation event has lower precedence
Type 3(b)

per-user-role constraints takes precedence
Example

{H:enable r0 ,H:disable r0 , VH:enable r1, H:disable r1, 
VH:(s:activate r1 for u)} 
After resolution 
{H:disable r0 , VH:enable r1, VH:(s:activate r1 for u)}



Ambiguous Event Dependency

A set of triggers may give rise to ambiguous 
semantics
Example: 

tr1: enable R1 → disable R2
tr2: enable R2 → disable R1

Let the runtime requests be: {enable R1; enable R2}, 
1. tr1 fires:  {enable R1; disable R2} 

(Intuitively, tr1 blocks tr2)
2. tr2 fires:  {enable R2; disable R1} 

(Intuitively, tr2 blocks tr1) 
Solution: Detect ambiguity using Labeled dependency graph

two symmetric 
possibilities

two symmetric 
possibilities



Dependency  Graph Analysis
Labeled Dependency Graph

Directed graph (N, E)
N: set of prioritized events that occur in the head of some 
trigger
E: set of triples of the form (X, l, Y)

For all triggers [B →p:E]
For all events E’ in the body B, and for all nodes q:E’ in N
<q:E’, + , p:E>
<r:conf(E’), -, p:E> for all [r:conf(E’)] in N such that q <= r

Dependency Graph for the Example:

.
-

-
disable R1 disable R2



Safe Set of Triggers

A set of triggers T is safe if its labeled 
dependency graph has no cycles with 
label “-”.
Theorem: If a T is safe, then there 
exists exactly one execution model.
Complexity of DAG-based safeness 
algorithm : O(|T|2).



Role Hierarchy in GTRBAC

Useful for efficient security management of 
an organization
No previous work has addressed the effect of 
temporal constraints on role hierarchies
GTRBAC-based temporal role hierarchies 
allow

Separation of permission inheritance and role 
activation semantics that facilitate management of 
access control
Capturing the effects of the presence of temporal 
constraints on hierarchically related roles



Axioms

Axioms:  For all r ∈ Roles, u ∈
Users, p ∈ Permissions, s ∈
Sessions, and time instant t ≥ 0, the 
following  implications hold:

1. p_assigned(p, r, t)→ can_be_acquired(p, r, t)
2. u_assigned(u, r, t) → can_activate(u, r, t)
3. can_activate(u, r, t) ∧ can_be_acquired(p, r, 

t) →
can_acquire(u, p, t)



Unrestricted Hierarchies 
formal definitions

Unrestricted I-hierarchy(x≥ty) 
∀p, (x≥ty) ∧ can_be_acquired(p, y, t)→
can_be_acquired(p, x, t)
Unrestricted A-hierarchy (x≽ty)
∀u, (x≽ty) ∧ can_activate(u, x, t) → can_activate (u,y, t)
Unrestricted IA-hierarchy (x≿ty)
(x≿y) → (x≥ty) ∧ (x≽ty)

Consistency Property:
Let <f> ∈{≥t, ≽t, ≿t} and <f’> ∈ {≥t, ≽t, ≿t}/{<f>}. Let x and y be 
distinct roles such that x <f> y; then the condition ¬(y <f’> x) must 
hold.



Types of role Hierarchy

Permission-inheritance hierarchy (I-hierarchy)
Senior inherits juniors’ permissions
User assigned to senior cannot activate juniors

Role-Activation hierarchy (A-hierarchy)
Senior does not inherit juniors’ permissions
User assigned to senior can activate junior
Advantage: SOD constraint can be defined on hierarchically 
related roles

Activation Inheritance hierarchy (IA-hierarchy)
Senior inherits juniors’ permissions
User assigned to senior can activate junior



Types of Role Hierarchy

Programmer Programmer

(a) IA Hierarchy (c) I Hierarchy

Software
Engineer

Software
Engineer

Combination of roles that 
can be activated by u:
{ (Software Engineer)}

Combination of roles that can be 
activated by u

{(Software Engineer), 
(Software Engineer, Programmer),
(Programmer) }

u assigned to

Programmer

Software
Engineer

(b) A Hierarchy

u assigned to u assigned to



Weakly Restricted temporal role 
hierarchy

Software
Engineer

Programmer
(PP )

τ1
τ2

(i) (ii)

Enabling intervals of Software Engineer and Programmer roles  

Weakly Restricted: One role needs to be enabled for 
the inheritance/activation semantics  to apply

In IW, a user assigned to SE can inherit PP in  τ2.
In AW, a user assigned to SE can activate P in τ1.



Restricted Hierarchies

(x ≿s,t y) ↔ (x ≥s,t y) ∧ (x≽s,t y)(x ≿s,t y)IAs-hierarchy

∀p, (x ≽s,t y) ∧ enabled(x, t) ∧ enabled (y, t) ∧
can_activate(u, x, t) → can_activate(u, y, t)

(x ≽s,t y)As –hierarchy

∀p, (x≥s,t y) ∧ enabled(x, t) ∧ enabled (y, t) ∧
can_be_acquired (p, y, t) → can_be_acquired (p, x,t)

(x ≥s,t y)Is-hierarchy

Strongly Restricted

(x ≿w,t y) ↔ (x ≥w,t y) ∧ (x ≽w,t y)(x≿w,t y)IAw-ierarchy

∀p, (x≽w,t y) ∧ enabled(y, t) ∧ can_activate(u, x, t) →
can_activate(u, y, t)(x≽w,ty)Aw-hierarchy

∀p, (x ≥w,t y) ∧ enabled (x, t) ∧ can_be_acquired(p, y, t)
→ can_be_acquired (p, x, t)

(x≥w,t y)Iw-hierarchy

Weakly Restricted



Temporal Role Hierarchy Example

DayDoctor
(9am-9pm)

NightDoctor
(9pm-9am)

PartTimeDoctor
{(3pm-6pm), (7am-10am)}

Is Is

9am 9pm 9am 9pmNightDoctor DayDoctorDayDoctor

7am 10amPartTimeDoctor



Hierarchy Constraint Expressions

Hierarchy h ∈{I, A, IA}:
Periodicity: (I, P, enable h), 
Duration:([I, P| D], Dh, enable h); That is
(I, P, Dh, enable h), (D, Dh, enable h) or (Dh, 
enable h)

Example:
(≥t is an I-hierarchy and h = (ProjManager ≥t

ProjEngineer))

enable r → enable h after 10 min



Activation Constraints and 
Temporal Role Hierarchy

Let P be a permission set for a Software package 
Only 5 user licenses for the package has been obtained
P is assigned to Programmer role, 
Suppose, we use an activation time cardinality constraint of 5 
on Programmer

Let SE be senior of Programmer
With I or IA-hierarchy: The use of P by more than 5 users at a 
time can be easily violated
With A-hierarchy: The use of P by more than 5 users at a time 
is controlled

Here the cardinality constraint is said to be 
permission-oriented



Activation Constraints and 
Temporal Role Hierarchy

Requirement: At the most 5 nurses and 3 doctors 
on active duty; no restriction on permission use

Apply cardinality of 5 on Nurse role and 3 on Doctor role

Let Doctor be senior of Nurse
With A-hierarchy: 3 doctors and 5 nurses can be 
active at a time but,  doctors will not be able to 
acquire Nurse’s permissions.
With I or IA-hierarchy: 3 doctors and 5 nurses can 
be active at a time, and doctors will also acquire 
Nurse’s permissions.

Here the cardinality constraint is said to be 
user-oriented



Time-based Cardinality, Dependency 
and Separation of Duty Constraints

Generic cardinality expression framework
Status predicates to capture all the states of 
GTRBAC (14)
Evaluation function and Projection functions 

Control flow dependency constraints
Time-based SoD constraints

Systematic categorization
Various time-based semantics



Cardinality Constraints Examples

(Daytime,|Π1eval(u_assignedSet(u, “Nurse”, t)| ≤ n)
Number of users assigned to Nurse role in Daytime cannot exceed n

5

Set of roles that u can activate at 
time t cannot be more than n.|Π2eval(can_activate(“u”, r,"t”))| ≤ n)4

Number of roles assigned to “u” at 
time “t” cannot be more than n|Π2eval(u_assigned(“u”,r,“t”))| ≤ n3

Number of roles disabled at time 
“t” cannot be more than n.|Π1eval(¬enabled(r, “t”)|  ≤ n2

Number of roles enabled at time 
“t” cannot be less than n|Π1eval(enabled(r, “t”)|  ≥ n1



Control Flow Dependency Constraints
Typically used in workflow based systems
Pre-condition Constraint

An event can happen only if another has already happened
([I, P], pre, Y, pr:E after ∆t for ∆d) 
E.g.,(Sat, pre, activate Manager for John, enable Employee)

Post-condition Constraint
If an event happens then another event must happen
([I, P], post, Y, pr:E after ∆t for ∆d)
E.g., (Sat, post, activate SysAdmin for Smith, enable SysAudit
after 30 min)

Precedence
If two events happen then one must always precede another



GTRBAC Separation of Duty 
Constraints

Important for real world commercial workflow 
applications and is generally used to prevent fraud
Categorization of GTRBAC SoDs

Role enabling Sods
User-role assignment SoDs
Role-permission assignment SoDs
Activation time SoDs
Possibilistic role activation SoDs
Possibilistic permission acquisition SoDs



Role Enabling and User-role 
Assignment SoDs

Role enabling SoD constraints (enabled())
(I, P, EN , R) : No two roles in R can be enabled at the same time
∀r1, r2∈ R, SoD ∧ enabled(r1, t) →¬enabled(r2, t)

(I, P, DIS , R) : No two roles in R can be disabled at the same time
∀r1, r2∈ R, SoD ∧ ¬enabled(r1, t) → enabled(r2, t)

User assignment SoD constraints (u_assigned)
UAS-SoD1 (I, P, UAS1, U, R)

No two roles in R can be assigned to a user in U at the same time
UAS-SoD2 (I, P, UAS2, U, R)

No two users in U can be assigned a role in R at the same time
UAS-SoD3(I, P, UAS3, U, R)

Different users in U cannot be assigned different roles in R at the same 
time



User-role assignment SoDs
UAS-SoD1 does not allow c; UAS-SoD2 does not 
allow b; UAS-SoD3 does not allow a

u1 r1

u2 r2

u1 r1

u2 r2

r1

u2 r2

u1 r1

u2 r2

u1
u1 r1

u2 r2

u1 r1

u2 r2

(a) (b) (c)



User-assignment SoDs (Contd.)
UAS-SoD4= UAS-SoD2 ∧ UAS-SoD3

Roles in R can be assigned to only one user in U
Example: one user must complete all the sub tasks

UAS-SoD5 = UAS-SoD1∧UAS-SoD3
Users in U can be assigned only one role in R
Example: A team should be assigned only one consultancy 
job (e.g., role ConsultantForBankA)

UAS-SoD6= UAS-SoD1 ∧ UAS-SoD2
A user in U can be assigned to only one role in R (and vice 
versa)
Example: A group of consultants should be assigned to 
different consultancy jobs (e.g., user A is assigned to role 
ConsultantForBankA, user B is assigned to role 
ConsultantForBankB, etc.)



Other GTRBAC SoDs
Activation Time SoDs (active())

SoDs involving active roles and sessions
Examples

No two roles in R can be in active state in session(s) of a user 
in U at the same time
No two users in U can have a role in R active at the same time

Possibilistic Activation SoDs (can_activate()):
Captures implicit /explicit user assignments (A-hierarchy)
Similar to user assignment SoDs and

Possibilistic Acquisition SoDs (can_be_acquired())
Captures implicit/explicit permission assignment (I-
hierarchy)
Example: A user in U cannot acquire different permissions in 
P at the same time. 



Time-based Semantics of SoD
Constraints

Consider (I, P, UAS1 , U, R)
a user in U cannot be assigned to two roles in R

(I, P, UAS1 , U, R) has various forms
Weak form: At an instant in (I, P), if a user is assigned to a 
role in R, at that instant he cannot be assigned to another 
role in R
Strong form: For each interval in (I, P), if there is an instant 
in which a user is assigned to a role,  for no other instant in 
that interval can he be assigned to another role in R
Extended Strong form: At an instant in (I, P), if a user is 
assigned to a role in R, at no other instant in (I, P) can he be 
assigned to another role in R



X-GTRBAC
A Policy Specification Language

An XML conformant specification 
language for GTRBAC
Allows identity or credential based 
dynamic assignment of roles to users
Allows expressing multidomain policies 
through role mapping



X-GTRBAC
A Policy Specification Language

<!-- Policy Definition--> ::=
<Policy [policy_id = “(value)”]>

<PolicyName> (name)  </PolicyName>
[<!--XCredType Definition Sheet>]    
[<!--XTemporalConstraint Definition Sheet>]    
<!-- XML User Sheet>    
<!-- XML Role Sheet>    
<!-- XML Permission Sheet>    
<!-- XML User-Role Assignment>    
<!-- XML Role-Permssion Assignment>    
[<!-- XSoD Definition Sheet>]    
[<!-- XHierachy Definition Sheet>]    
[<!-- Local Policy Definitions-->]
[<!-- Policy Relationship Definitions>]

</Policy>

<!-- Policy Definition--> ::=
<Policy [policy_id = “(value)”]>

<PolicyName> (name)  </PolicyName>
[<!--XCredType Definition Sheet>]    
[<!--XTemporalConstraint Definition Sheet>]    
<!-- XML User Sheet>    
<!-- XML Role Sheet>    
<!-- XML Permission Sheet>    
<!-- XML User-Role Assignment>    
<!-- XML Role-Permssion Assignment>    
[<!-- XSoD Definition Sheet>]    
[<!-- XHierachy Definition Sheet>]    
[<!-- Local Policy Definitions-->]
[<!-- Policy Relationship Definitions>]

</Policy>



An XML instance of XUS
<XUS>

<Users>
<User user_id=“j1">

<UserName >John</ UserName >
<CredType cred_type_id ="C100">

< type_name >Nurse</type_name>
<CredExpr>   

<age> 30 </age>
<field> opthalmology </field>
<level> 5 </level>
<status> single </status>

</CredExpr>
</CredType>        
< MaxRoles>2</MaxRoles>

</User >
….

<Users>
</XUS>



An XML instance of XRS
<XRS>

<Role role_id = "R100">
<RoleName> Nurse </ RoleName >
<Senior HType = “IA”> Eye_Doctor
</ Senior>
<Cardinality> 8 </ Cardinality >

</Role>                         
<Role role_id = "R200">

<RoleName> Eye_Doctor </RoleName>
< Junior HType = “IA”> Nurse
</ Junior>
<Senior HType = “A”> Eye_Surgeon
</Senior>
<Cardinality> 6 </Cardinality>

</Role>                        
</XRS >



Periodicity and Duration 
Expressions

<XTempConstDef>    
<PeriodicTimeExpr pt_expr_id="PTQuarterWeekOne" 

i_expr_id="Year2003">         
<StartTimeExpr>

<Year>all</Year>
<MonthSet>

<Month>1</Month>
<Month>4</Month>
<Month>7</Month>
<Month>10</Month>

</MonthSet>
<WeekSet>

<Week>1</Week>            
</WeekSet>        

</StartTimeExpr>
</PeriodicTimeExpr>
.............
</XTempConstDef>

<DurationExpr
d_expr_id="SixWeeks">
<cal>Weeks</cal>
<len>6</len>

</DurationExpr>    



X-GTRBAC Architecture

RBAC 
Module

UR ,PR DataSet
{TRIG DataSet}

Session
DataSet

XML
Sessions

Log

GTRBAC 
Processor

Policy 
Loader

XML 
Processor

XML/SOAP

Authorization

XML/SOAP

Access
Request

Document 
Composition 

Module

Document 
Composition 

Module

XML 
Policy Base

Policy
Validation

Module

XML
Parser

DOM

Validation support is provided by Apache Xalan XSLT engine built into JAXP



Policy Design Issue
GTRBAC constraint set is not minimal
Constraint design considerations

Usability: Clarity of Semantics, Manageability
Complexity of specification

n.H indicates n hierarchical relationsn.H

n per-user-role (per-role) time constraintn.Aur (n.Ar)

n temporal constraints on user- assignmentn.Tur (n.Trp)

n temporal constraints on (n) rolesn.Tr

n default assignmentsn.S

n rolesn.R

DescriptionComplexity 
parameter



GTRBAC Configuration C: 
(T, Users, Roles, Permissions, RH), where T is the set 
of constraints, RH is a A-hierarchy.

Activity-equivalent configurations
C1 ≈ C2:

u can acquire p at t in C1

There exists a minimum set of constraint types

Activity-equivalence

)()(
21

pupu
C

t

C

t
⇒⇔⇒



GTRBAC Family of Models 

GTRBAC0

GTRBAC1, A GTRBAC1, P GTRBAC1, U

GTRBAC2

{Per-role constraint, 
role enabling, trigger}

{Per-user-role 
constraint}

{user-role assignment 
constraint}

Level 0  
Minimal Model

Level 1

Level 2

All constraints

{role-permission 
assignment constraint}

n.T

Alternative 1: n.S + n.T + n.R

Alternative 2: p.S + s.T + s.R, 
where 1 ≤ p ≤ n2n-1;  1 ≤ s ≤ (2n -1)



Approach to transformation
Temporal constraint on user-role assignment is 
changed to role enabling constraint
Two approaches

Simple approach: 
PEu of each u-r assignment becomes enabling constraint for r

Minimal Disjoint Set Approach: 
PEu of each u-r assignment becomes enabling time constraint 
for a set of new roles

- First compute Minimal Disjoint Set (MDS) of all PEis
- Create new roles associated with each element of MDS

User u is assigned to new roles that have elements of MDS that 
correspond to PEu

Same for the permission role assignment



MDS Approach:Relations on periodic 
expressions

Containment: PE1 is 
contained in PE2

All instants in PE1 is in PE2
Equivalence: PE1 and PE2 
have same time instants
Overlapping: At least one 
time instant is common to 
both PE1 and PE2
Disjoint: No common time 
instants in PE1 and PE2

PE1, PE2 overlaps with PE PE3 is contained in PE
PE4 is disjoint from PE PE5 is equivalent to PE

PE

PE1

PE2

PE3

PE4

PE5



Minimal Disjoint Set (MDS) &
Minimal Subset (MS) of PE over MDS

Let PE = {PE1, PE2,.., PEn}
MDSPE = minm{{PE’i | 1 ≤ i ≤ m} such that 

PE’ 1, PE’2, ..., PE’ m are pair-wise disjoint 
PE’ 1 ∪ PE’2 ∪ ... ∪ PE’ m = PE1 ∪ PE2 ∪ ... ∪ PEn, 
If PE’i contains a time instant of PEj then it does not 
contain a time instant that is not in PEj

Bounds:  1 ≤ | MDSPE | ≤ (2n -1)
MS of PEj ∈PE over the MDSPE

subset of MDSPE  that collectively contains all the 
time instants of PEj

Bounds:  n ≤ ∑|MSPEi| ≤ n2n-1



Example
Let PE = {PEA, PEB, PEC, PED, PEE}, where 

PEA = {Sun, Mon, Tue, Wed, Thu, Fri};  
PEB = {Sun, Tue}, 
PEC = {Sun, Tue, Thu, Fri},  
PED = {Sun, Mon, Tue, Wed, Sat}, 
PEE = {Thu, Fri}. 

MDS of PE is 
{PE1, PE2, PE3, PE4} = {{Sun, Tue}, {Thu, Fri}, {Mon, Wed}, 
{Sat}}

MS values are as follows:
MS of PEA : {PE1, PE2, PE3};
MS of PEB : {PE1}
MS of PEC : {PE1, PE2};
PED : {PE1, PE3, PE4}
PEE: {PE2}



Algorithm TransformMDS- Replacing 
temporal constraint on user-role assignment by 
temporal roles

Input: Cin Output: Cout
1. Cout ={T’, Roles’, RH’}= Cin={T, Roles, RH};
2. FOR each r ∈ Roles DO
3. Let PE = {PE1, PE2…, PEn} & U = {u1, u2…, un} be s.t. (PEi, assign r

to ui) ∈T’;
4. Compute MDS of PE;  Let the computed MDS = {PE’1, PE’2…, PE’n};
5. FOR i = 1 to n DO
6. Compute MSPEi for PEi
8. FOR each PE’i ∈ MDS DO
9. Create a unique role ri;
10. FOR all uk ∈ U such that PE’i ∈ MSPEk for PEk DO
11. Add default assignment (assign ri to uk) in T’.
12. Add constraint (PEi, enable ri ) in T’.
13. Remove constraint (PEi, assign r to ui)  from T’;
14. Roles’ = Roles’ ∪ {ri}; 
15. RH’ = RH’ ∪ {r ≺ri};



Simple & MDS approaches
Cin

Algo: transformPRAlgo: transformPR

Algo: transformURAlgo: transformUR

C’out

Cout ≈ Cin
Level 0

Replace temporal 
constraints on p-r by 
that on role-enabling
-Change triggers
-Change hierarchies

Replace temporal 
constraints on p-r by 
that on role-enabling
-Change triggers
-Change hierarchies

Replace temporal 
constraints on u-r by 
that on role-enabling
-Change triggers
-Change hierarchies
Replace activation 
constraints

Replace temporal 
constraints on u-r by 
that on role-enabling
-Change triggers
-Change hierarchies
Replace activation 
constraints

Algo: transformMDSAlgo: transformMDS

-Compute MDS
-Create new roles
-Compute MS
-Assign users to MS 
elements
-Change triggers
-Change hierarchies

-Compute MDS
-Create new roles
-Compute MS
-Assign users to MS 
elements
-Change triggers
-Change hierarchies



D a y
D o c to r

P E A =  { S u n , M o n , T u e , W e d , T h u , F ri}  

P E B =  { S u n , T u e }

P E C =  { S u n , T u e , T h u , F ri}

P E D =  { S u n , M o n , T u e , W e d , S a t}

P E E =  { T h u , F ri}  

C

D

E

B

D a y
D o c to r

P E A =  { S u n , M o n , T u e , W e d , T h u , F ri}  

P E B =  { S u n , T u e}

P E C =  { S u n , T u e , T h u , F ri}

P E D =  { S u n , M o n , T u e , W e d , S a t} ,

P E E =  { T h u , F ri}  

C

D

E

B

D a y
D o c to r

P E ’” 1 =  { S u n , T u e}  

P E ’” 2 =  { T h u , F ri}  

A A

P E ’” 3 =  { M o n , W e d }  

P E ’” 4 =  { S a t}  

A

C

D

E

B

(a ) (b )

(c )

Example

TransformMDS

Simple

Alternative (b): n.S + n.T + n.R + n.HAlternative (c): p.S + s.T + s.R+ s.H, 
where n ≤ p ≤ n2n-1;  1 ≤ s ≤ (2n -1)



Design Guidelines
GTRBAC1,U is better than 
alternative b as the policy 
representation is less complex in 
terms of number of roles and 
hierarchies
GTRBAC1,U is flexible – one can 
schedule role enabling and user 
assignments separately
when pn and sn are close to n and 
1, alternative c may be better than 
GTRBAC1,U representation

Alternative (b): 
n.S + n.TR + n.R + n.H
Alternative (b): 
n.S + n.TR + n.R + n.H

Alternative (c): 
p.S + s.TR + s.R + s.H
where 
n ≤ pn ≤ n2n-1;  
1 ≤ sn ≤ (2n -1)

Alternative (c): 
p.S + s.TR + s.R + s.H
where 
n ≤ pn ≤ n2n-1;  
1 ≤ sn ≤ (2n -1)



Replacing per-user-role by per-role

(Weekly, 100, C, activeUR_total MV)
D

C

E

A

B

(a)

(Weekly, 100, A, activeUR_total MV) 
(Weekly, 100, B, activeUR_total MV) 

(Weekly, 600, activeR_total MV) 

MV

(Weekly, 250, D, activeUR_total MV)
(Weekly, 50, E, activeUR_total MV)

Video 
Database

D

E

(Weekly, 300, 100, activeR_total MV3) 

(Weekly, 250, activeR_total MV4) 

(Weekly, 50, activeR_total MV5) 

MV

MV5

MV3

MV4

(Weekly, 600, activeR_total MV) 

(b)

Video 
Database

C

(Weekly, 300, 100, activeR_total MV2) 
MV2

(Weekly, 300, 100, activeR_total MV1) 
MV1A

B

Alternative (a): n.Aur, where Aur user-role activation

Alternative (a): n.Ar, n.R + n.H



Replacing per-user-role by per-role

B
(W eekly , 300 , 100 , activeR _to ta l M V 1) 

V ideo  
D atabase

C

A

M V

M V 2

M V 1

E

D (W eekly , 250 , D , activeU R _to ta l M V 2)

(W eekly , 50 , E , activeU R _to ta l M V 2)

(W eekly , 600 , activeR _tota l M V ) 

B

C

A

M V

M V 2

M V 1

E
(W eekly , 50 , activeR _tota l M V 2)

(W eekly , 600 , ac tiveR _to ta l M V ) 

D

(W eekly , 300 , 100 , activeR _to ta l M V 1) 

(W eekly , 250 , activeR _tota l M V 2)
M V 2

(a)

(b)

GTRBAC1,A representation: (nx - ny).AUR + ny.AR + c.(b.ny+ 1).(R+ H); 
where,(1) nx = |Dm| and ny = |D’| , such that (1) D’ ⊆ Dm, and (2) if d ∈D’ then Cm(d) > 1; (2) b =1  if (n > nx); b =0 

otherwise; (3) c =1  if (n > nx>0); c = 0 otherwise.

GTRBAC1,A representation: (nx - ny).AUR + ny.AR + c.(b.ny+ 1).(R+ H); 
where,(1) nx = |Dm| and ny = |D’| , such that (1) D’ ⊆ Dm, and (2) if d ∈D’ then Cm(d) > 1; (2) b =1  if (n > nx); b =0 

otherwise; (3) c =1  if (n > nx>0); c = 0 otherwise.



Design Guidelines

Per-role constraint with default value 
If there are many common durations, 

per-user-role constraint 
Per-user requirements vary significantly
More flexibility (e.g., requirements vary 
constantly)

Hybrid approach (b in previous slide) 
can give balanced representations



Related Work
OASIS RBAC Model [Bacon, 02]  

Precondition on role activation to support active security
No triggers

RSL2000 Constraint Specification Language [Ahn et. al., 2000], 
Need for activation hierarchy [Sandhu, 1999]

Identified its usefulness in expressing MAC
Separation Duty Constraints 

Listing of useful set of SoD Constraints 
[Simon et. al., 1997],[Gligor et. al., 1998]

None address timing issues 
GTRBAC SoDs subsume all the SoD constraints identified 
GTRBAC Triggers and SoDs provide a technical foundation for 
enforcing history based SoD constraints



Conclusion

Role based access control can be used 
to support diverse set of access control 
requirements
Time-based access is a crucial 
requirement in emerging applications
GTRBAC’s constraint set is not minimal–
however, they are beneficial for 
practical use



Current and Future work
Secure Interoperation

Integer Programming approach (for tightly coupled 
environments)
Trust-based access management (loosely coupled 
environment)

Issues related to Grid, P2P
GTRBAC - extended to LoT-RBAC

Implementation in mobile environment (near completion)
Policy evolution and hybrid hierarchy management

Administrative tools and techniques
Extension of the policy design work to generate tools 
for efficient RBAC policy administration



Relevant References
James B. D. Joshi, Elisa Bertino, Usman Latif, Arif Ghafoor, "Generalized Temporal Role Based 

Access Control Model," IEEE Transactions on Knowledge and Data Engineering Vol 7, No. 
1, Jan, 2005. 

James B. D. Joshi, Elisa Bertino, Arif Ghafoor, "Analysis of Expressiveness and Design Issues 
for the Generalized Temporal Role Based Access Control Model," Transactions on 
Dependable and Secure Computing, April-June 2005.

James B. D. Joshi, Rafae Bhatti, Elisa Bertino, Arif Ghafoor, “An Access Control Language for 
Multidomain Environments”, IEEE Internet Computing, Nov-Dec, 2004 

Rafae Bhatti, James B. D. Joshi, Elisa Bertino, Arif Ghafoor, "XML-Based Specification for Web 
Services Document Security", IEEE Computer, Vol. 37, Number 4, April, 2004, pp 41-49.

Rafae Bhatti, James B. D. Joshi, Elisa Bertino, Arif Ghafoor, "X-GTRBAC: An XML-based 
Policy Specification Framework and Architecture for Enterprise-Wide Access Control", ACM 
Transactions on Information and System Security, Vol. 8, No. 2, Pages 187-227, May 2005.

Basit Shafiq, James B. D. Joshi, Elisa Bertino, Arif Ghafoor, "Secure Interoperation in a Multi-
Domain Environment Employing RBAC Policies," IEEE Transactions on Knowledge and 
Data Engineering. 

Smithi Piromruen, James B. D. Joshi, “An RBAC Framework for Time Constrained Secure 
Interoperation in Multi-domain Environment,” IEEE Workshop on Object-oriented Real-time 
Databases (WORDS-2005), 2005.

Suroop M. Chandran, James B. D. Joshi, “LoT-RBAC: A  Location and Time-based RBAC 
Model”, accepted  the 6th International Conference on Web Information Systems 
Engineering, November 20-22, 2005, New York City, New York


