Priority Queue, Heapsort, Searching

March 15, 2004
Priority Queues

- Applications require that we process records with keys in order
 - Collect records
 - Process one with largest key
 - Maybe collect more records

- Applications
 - Simulation systems (event times)
 - Scheduling (priorities)

- Priority queue: A data structure of items with keys that support two basic operations: Insert a new item; Delete the item with the largest key
Priority Queue

- Build and maintain the following operations
 - Construct the queue
 - Insert a new item
 - Delete the maximum item
 - Change the priority of an arbitrary specified item
 - Delete an arbitrary specified item
 - Join two priority queues into one large one
Priority Queue: Elementary operations

```c
#include <stdlib.h>
#include "Item.h"
static Item *pq;
static int N;
void PQinit(int maxN)
    { pq = malloc(maxN*sizeof(Item)); N = 0; }
int PQempty()
    { return N == 0; }
void PQinsert(Item v)
    { pq[N++] = v; }
Item PQdelmax()
    { int j, max = 0;
      for (j = 1; j < N; j++)
          if (less(pq[max], pq[j])) max = j;
      exch(pq[max], pq[N-1]);
      return pq[--N];
    }
```
Heap Data Structure

- Def 9.2
 - A tree is heap-ordered if the key in each node is larger than or equal to the keys in all of that node’s children (if any). Equivalently, the key in each node of a heap-ordered tree is smaller than or equal to the key in that node’s parent (if any)

- Property 9.1
 - No node in a heap-ordered tree has a key larger than the key at the root.

- Heap can efficiently support the basic priority-queue operations
Heap Data Structure

- **Def 9.2**
 - A heap is a set of nodes with keys arranged in a complete heap-ordered binary tree, [represented as an array].

- A complete tree allows using a compact array representation
 - The parent of node i is in position $\lfloor i/2 \rfloor$
 - The two children of the node i are in positions $2i$ and $2i + 1$.

- Disadvantage of using arrays?
Algorithms on Heaps

- **Heapifying**
 - Modify heap to violate the heap condition
 - Add new element
 - Change the priority
 - Restructure heap to restore the heap condition

Priority of child becomes greater
Bottom-up heapify

- First exchange T and R
- Then exchange T and S

```
fixUp(Item a[], int k)
{
    while (k > 1 && less(a[k/2], a[k]))
    {
        exch(a[k], a[k/2]); k = k/2;
    }
}
```
Top-down heapify

- Exchange with the larger child

Priority of parent becomes smaller

```c
fixDown(Item a[], int k, int N)
{ int j;
  while (2*k <= N)
  { j = 2*k;
    if (j < N && less(a[j], a[j+1])) j++;
    if (!less(a[k], a[j])) break;
    exch(a[k], a[j]); k = j;
  }
}
```
Heap-based priority Queue

- Property 9.2
 - Insert requires no more than \(lg \ n \)
 - one comparison at each level
 - Delete maximum requires no more than \(2 \ lg \ n \)
 - two comparisons at each level

```c
#include <stdlib.h>
#include "Item.h"
static Item *pq;
static int N;
void PQinit(int maxN)
{   pq = malloc((maxN+1)*sizeof(Item)); N = 0;
}
int PQempty()
{   return N == 0;
}
void PQinsert(Item v)
{   pq[++N] = v; fixUp(pq, N);
}
Item PQdelmax()
{   exch(pq[1], pq[N]);
    fixDown(pq, 1, N-1);
    return pq[N--];
}
Sorting with a priority Queue

- Use PQinsert to put all the elements on the priority queue
- Use PQdelmax to remove them in decreasing order

Heap construction takes $< n \ lg \ n$

```c
void PQsort(Item a[], int l, int r)
{
 int k;
 PQinit();
 for (k = l; k <= r; k++) PQinsert(a[k]);
 for (k = r; k >= l; k--) a[k] = PQdelmax();
}
```
void heapsort(Item a[], int l, int r)
{
    int k, N = r-l+1; Item* pq = a + l -1;
    for (k = N/2; k >= 1; k--)
        fixDown(pq, k, N);
    while (N > 1)
    {
        exch(pq[1], pq[N]);
        fixDown(pq, 1, --N);
    }
}
Bottom-up Heap

- Note: most nodes are at the bottom
- Bottom up heap construction takes linear time
Radix Sort

- Decompose keys into pieces
  - Binary numbers are sequence of bytes
  - Strings are sequence of characters
  - Decimal number are sequence of digits

- Radix sort:
  - Sorting methods built on processing numbers one piece at a time
  - Treat keys as numbers represented in base R and work with individual digits
    - R = 10 in many applications where keys are 5- to 10-digit decimal numbers
    - Example: postal code, telephone numbers, SSN
Radix Sort

- If keys are integers
  - Can use $R = 2$, or a multiple of 2
- If keys are strings of characters
  - Can use $R = 128$ or 256 (aligns with a byte)
- Radix sort is based on the abstract operation
  - Extract the $i^{th}$ digit from a key
- Two approaches to radix sort
  - Most-significant-digit (MSD) radix sorts (left-to-right)
  - Least-significant-digit (LSD) radix sorts (right-to-left)
The key to understanding Radix sorts is to recognize that
- Computers generally are built to process bits in groups called machine words (groups of bytes)
- Sort keys are commonly organized as byte sequences
- Small byte sequence can also serve as array indices or machine addresses

Hence an abstraction can be used
Bits, Bytes and Word

- Def: A byte is a fixed-length sequence of bits; a string is a variable-length sequence of bytes; a word is a fixed-length sequence of bytes

```c
#define bitsword 32
#define bitsbyte 8
#define bytesword 4
#define R (1 << bitsbyte)

#define digit(A, B) (((A) >> (bitsword-((B)+1)*bitsbyte)) & (R-1))

// Another possibility
#define digit(A, B) A[B]
```
Binary Quicksort

- Partition a file based on leading bits
- Sort the sub-files recursively

```c
quicksortB(int a[], int l, int r, int w)
{
 int i = l, j = r;
 if (r <= l || w > bitsword) return;
 while (j != i)
 {
 while (digit(a[i], w) == 0 && (i < j)) i++;
 while (digit(a[j], w) == 1 && (j > i)) j--;
 exch(a[i], a[j]);
 }
 if (digit(a[r], w) == 0) j++;
 quicksortB(a, l, j-1, w+1);
 quicksortB(a, j, r, w+1);
}

void sort(Item a[], int l, int r)
{
 quicksortB(a, l, r, 0);
}
```
## Binary Quicksort

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
</tr>
<tr>
<td>111</td>
<td>010</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>010</td>
<td>111</td>
</tr>
</tbody>
</table>
MSD Radix Sort

- Binary Quicksort is a MSD with \( R = 2 \);
- For general \( R \), we will partition the array into \( R \) different bins/buckets
LSD Radix Sort

- Examine bytes
  Right to left

now sob cab ace
for nob wab ago
tip cab tag and
Symbol Table

- A symbol table is a data structure of items with keys that supports two basic operations: *insert* a new item, and *return* an item with a given key
- Examples:
  - Account information in banks
  - Airline reservations
Symbol Table ADT

- Key operations
  - Insert a new item
  - Search for an item with a given key
  - Delete a specified item
  - Select the $k^{th}$ smallest item
  - Sort the symbol table
  - Join two symbol tables

```c
void STinit(int);
int STcount();
void STinsert(Item);
Item STsearch(Key);
void STdelete(Item);
Item STselect(int);
void STsort(void (*visit)(Item));
```
Key-indexed ST

- Simplest search algorithm is based on storing items in an array, indexed by the keys

```c
static Item *st;
static int M = maxKey;
void STinit(int maxN)
 { int i;
 st = malloc((M+1)*sizeof(Item));
 for (i = 0; i <= M; i++) st[i] = NULLitem;
 }

int STcount()
 { int i, N = 0;
 for (i = 0; i < M; i++)
 if (st[i] != NULLitem) N++;
 return N;
 }

void STinsert(Item item)
 { st[key(item)] = item; }

Item STsearch(Key v)
 { return st[v]; }

void STdelete(Item item)
 { st[key(item)] = NULLitem; }

Item STselect(int k)
 { int i;
 for (i = 0; i < M; i++)
 if (st[i] != NULLitem)
 if (k-- == 0) return st[i];
 }

void STsort(void (*visit)(Item))
 { int i;
 for (i = 0; i < M; i++)
 if (st[i] != NULLitem) visit(st[i]);
 }
```
Sequential Search based ST

- When a new item is inserted, we put it into the array by moving the larger elements over one position (as in insertion sort)
- To search for an element
  - Look through the array sequentially
  - If we encounter a key larger than the search key – we report an error
Binary Search

- Divide and conquer methodology
  - Divide the items into two parts
  - Determine which part the search key belongs to and concentrate on that part
    - Keep the items sorted
    - Use the indices to delimit the part searched.

```c
Item search(int l, int r, Key v)
{ int m = (l+r)/2;
 if (l > r) return NULLItem;
 if eq(v, key(st[m])) return st[m];
 if (l == r) return NULLItem;
 if less(v, key(st[m]))
 return search(l, m-1, v);
 else return search(m+1, r, v);
}
Item STsearch(Key v)
{ return search(0, N-1, v); }
```