IS 20610: Data Structures

Recursion, Divide and congquer
Dynamic programming,

Feb 2, 2004

\ Recursion and Trees

m Recursive algorithm is one that solves a problem by
solving one or more smaller instances of the same
problem
o Functions that call themselves
o Can only solve a base case Recursive function calls itself

m If not base case
o Break problem into smaller problem(s)

o Launch new copy of function to work on the smaller
problem (recursive call/recursive step)
0 Slowly converges towards base case
a Function makes call to itself inside the return statement

o Eventually base case gets solved
o Answer works way back up, solves entire problem

\ Algorithm for pre-fix expression

char *a; Iint I;
: eval) *+7612
nteval) owag 7
— U, eval () 7
while (a[i] =="") i++; eval () 6

I (a-'- —= ""l) / return 13=7+6
{i++; return eval() + eval(); } eval () 12

: . return 12 * 13
if (afi] =="*

{ I++; return eval() * eval(); }
while ((a[i] >='0") && (a[i] <='9"))
X = 10*x + (a[i++]-'0");
return x;

\ Recursive vs. 1terative solution

m |In principle, a loop can be replaced by an
equivalent recursive program

o Recursive program usually is more natural way to
express computation

m Disadvantage
o Nested function calls —

Use built in pushdown stack

Depth will depend on input

Hence programming environment has to maintain a
stack that is proportional to the push down stack

Space complexity could be high

 Divide and Conquer

m Many recursive programs use recursive calls
on two subsets of inputs (two halves usually)

a Divide the problem and solve them — divide and
conquer paradigm

o Property 5.1: a recursive function that divides a
oroblem size N intro two independent (nonempty)
parts that it solves recursively calls itself less than

N times
a Complexity: Ty=T,+ T, +1

 Find max- Divide and Conquer

.
1 1
------------- » 2 317
2 % 8 13 Item max(ltem a[], int |, int r)
v /3 " ! { Itemu, v;
2 3 17 int m = (I+r)/2;
3/ “\¢ . / “\12 if (I ==r) return a[l];
2 / /10 u = max(a, I, m);
Y2 2\ 3 1 NN\ 7 — :
¥ / s ¥ / s v = max(a, m+1, r);
2 3 1 7 if (u>v) return u;

else return v;

‘ Dynamic programming

m When the sub-problems are not independent
the situation may be complicated

o Time complexity can be very high

m Example
a Fibonacci number int fibanacci(int n){
m Basecase: F,=F, =1 if (n=<1) return 1; // Base case

B return fibonacci(n-1) + fibonacci(n-2);
u |:n - |:n-l + I:n-2 }

\ Recursion: Fibonaccl Series

s Order of operations
o return
fibonacci(n - 1) +
fibonacci(n - 2);

m Recursive function
calls

o Each level of recursion
doubles the number of
function calls

s 30" number = 230 ~
4 billion function calls

o Exponential complexity

f(3)

return

f(2)

/

f(1)

return

f(1)

f(0)

return 1

return O

\

return 1

\ Simpler Solution

i I F[O] = F[1] = 1;
= Linear!! _ For (i = 2; i<=N; i++);
m Observation F[O] = F[i-1] + F[i-2];

o We can evaluate any function by computing all the function
values in order starting at the smallest, using previously
computed values at each step to compute the current value
s Bottom-up Dynamic programming

0 Applies to any recursive computation, provided that we can afford
to save all the previously computed values

o Top-down

s Modify the recursive function to save the computed values
and to allow checking these saved values

o Memoization

‘ Dynamic Programming

s Top-down : save known values
s Bottom-up : pre-compute values

o Determining the order may be a int F(int i)

challenge { Intt;

if (knownF{[i] '= unknown)
s Top-down preferable return knownF[il;

a Itis a mechanical transformation of :I 8 == (B : - 2

natural problem (i > 1) t = F(i-1) + F(-2):
o The order of computing the sub- return knownFI[i] = t;

problems takes care of itself }

o We may not need to compute
answers to all the sub-problems

\ Dynamic programming
Knapsack problem

m Property: DP reduces the running times of a
recursive function to be at most the time required to
evaluate the function for all arguments less than or
equal to the given argument

s Knapsack problem
o Given

m N types of items of varying size and value
» One knapsack (belongs to a thief!)

o Find: the combination of items that maximize the total value

\ Knapsack problem

int knap(int cap)
{ inti, space, max, t;
for i =0, max = 0; i < N; i++)

Knapsack size: 17

012 3 4 if ((Space = cap - items]i].size) >= 0)
ltem ABC D E if ((t = knap(space) + items]i].val) > max)
Size 34 7 8 9 max =1,
val 4 510 11 13 \ return max;

int knap(int M)
{ inti, space, max, maxi, t;

if (maxKnown[M] != unknown) return maxKnown[M];

for (I =0, max = 0; i < N; i++)

if ((space = M-items]Ji].size) >= 0)
if ((t = knap(space) + itemsJi].val) > max) { max =t; maxi =i; }
~ maxKnown[M] = max; itemKnown[M] = items[maxi];

return max; }

‘ Tree

m Trees are central to design and analysis of
algorithms
o Trees can be used to describe dynamic properties

o We build and use explicit data structures that are
concrete realization of trees

General issues:

a Trees

o Rooted tree

o Ordered trees

o M-ary trees and binary trees

‘ Tree

m Trees root

o Non-empty collection of vertices and
edges parent

o Vertex is a simple object (a.k.a. node)

o Edge is a connection between two
nodes

o Path is a distinct vertices in which
successive vertices are connected by

edges
m There is precisely one path between G Q @

any two vertices
m Rooted tree: one node is designated /

as the root

© _®
o Disjoint set of trees ‘

Binary tree Leaves/terminal nodes

‘ Definitions

m Binary tree is either an external node or an internal node
connected to a pair of binary trees, which are called the left sub-
tree and the right sub-tree of that node
o Struct node {Item item; link left, link right;}

m M-ary tree Is either an external node or an internal node
connected to an ordered sequence of M-trees that are also M-ary
trees

m A tree (or ordered tree) is a node (called the root) connected to a
set of disjoint trees. Such a sequence is called a forest.

o Arbitrary number of children
m One for linked list connecting to its sibling
m Other for connecting it to the sibling

\ Example general tree

\ Binary trees

m A binary tree with N internal nodes has N+ 1

external nodes

o Proof by induction

o N =0 (no internal nodes) has one external node
o Hypothesis: holds for N-1
EI

K, N-1 -k internal nodes in left and right sub-trees
(for k between O and N-1)

o0 (ktD)+(N-1-K =N+1

\ Binary tree

s A binary tree with N internal nodes has 2N links

a

a

N-1 to internal nodes

s Each internal node except root has a unique parent
s Every edge connects to its parent

N+1 to external nodes

m Level, height, path

Q

a
a
a

Level of a node is 1 + level of parent (Root is at level 0)
Height is the maximum of the levels of the tree’s nodes
Path length is the sum of the levels of all the tree’s nodes

Internal path length is the sum of the levels of all the
Internal nodes

‘ Examples

m Levelof D ?
m Height of tree?
m Internal length?

m External length?

m Height of tree?
m Internal length?
m External length?

‘ Binary Tree

m External path length of any binary tree with N
Internodes Is 2N greater than the internal path
length

m The height of a binary tree with N internal
nodes is at least Ig N and at most N-1
o Worst case Is a degenerate tree: N-1

a Best case: balanced tree with 2' nodes at level i.
= Hence for height: 21 < N+1 = 2" — hence h is the heigth

‘ Binary Tree

m Internal path length of a binary tree with N
Internal nodes Is at least N Ig (N/4) and at
most N(N-1)/2
o Worst case : N(N-1)/2

0 Best case: (N+1) external nodes at height no more
than dg NU
s (N+1) dg NG- 2N < Nlg (N/4)

 Tree traversal (binary tree)

s Preorder Q

o Visit a node,
o Visit left subtree,
o Visit right subtree
m |norder e G
o Visit left subtree,

o Visit a node, e Q @
o Visit right subtree
m Postorder

o Visit left subtree, @ @

o Visit right subtree
o Visit a node

\ Recursive/Nonrecursive Preorder

void traverse(link h, void (*visit)(link))

{
If (h == NULL) return;
(*visit)(h);
traverse(h->l, visit);
} traverse(h->r, visit); void traverse(link h, void (*visit)(link))
{
STACKInit(max);
STACKpush(h);
while (ISTACKempty())
{

(*visit)(h = STACKpop());
if (h->r 1= NULL) STACKpush(h->r);
if (h->I = NULL) STACKpush(h->I);
}
}

| Recursive binary tree algorithms

m EXxercise on recursive algorithms:
o Counting nodes
o Finding height

‘ Sorting Algorithms

m Selection sort
o Find smallest element and put in the first place
o Find next smallest and put in second place
a ..

o Try out ! Complexity ? Recursive?

m Bubble sort

o Move through the elements exchanging adjacent
pairs Iif the first one is larger than the second

o Try out ! Complexity ?

\ Insertion sort

#define less(A, B) (key(A) < key(B))

u “People" #define exch(A, B) { ltemt=A; A=B; B =t; }
method #define compexch(A, B) if (less(B, A)) exch(A, B)
void insertion(ltem a[], int |, intr) {
int i;
276315 for (i = I+1; i <=r; i++)

compexch(a[l], a[i);

for (i = 42; i <=r; i++) {
intj =i; ltem v = a[il;
while (less(v, a[j-1])) {
} a[j] = afj-1]; j--;
af] =v;

}

}

