First-In First Out Queues

- An ADT that comprises two basic operations: insert (put) a new item, and delete (get) the item that was least recently used

```c
void QUEUEinit(int);
int QUEUEempty();
void QUEUEput(Item);
Item QUEUEget();
```

typedef struct QUEUEnode* link;
struct QUEUEnode {Item item; link next;}
static link head;
link NEW(Item item, link next;)
{ link x = malloc(sizeof *x);
 x->item = item; x->next = next;
 return x;
}
First-class ADT

- Clients use a single instance of STACK or QUEUE
- Only one object in a given program
- Could not declare variables or use it as an argument

A first-class data type is one for which we can have potentially many different instances, and which can assign to variables which can declare to hold the instances

First-class data type - Complex numbers

- Complex numbers contains two parts
 - $(a + bi)$ where $i^2 = -1$;
 - $(a + bi) (c + di) = (ac - bd) + (ad + bc)i$

```c
typedef struct {float r; float i;} Complex;
Complex COMPLEXInit(float, float)
float Re(float, float);
float Im(float, float);
Complex COMPLEXmult(Complex, Complex)
```

Complex t, x, tx;
...
t = COMPLEXInit(cos(r), sin(r))
x = COMPLEXInit(? , ?)
tx = COMPLEXmult(t, x)
First-class data type – Queues

```c
typedef struct queue *Q;
void QUEUEinit(Q);
Q QUEUEinit(int);
int QUEUEempty(Q);
void QUEUEput(Q, Item);
Item QUEUEget(Q);
```

```c
Q queues[M];
for (i=0; i<M; i++)
    queues[i] = QUEUEinit(N);
for (i=0; i<M; i++)
    printf("%3d ", QUEUEget(queues[i]));
```

ADT

- ADTs are important software engineering tool
 - Many algorithms serve as implementations for fundamental
- ADTs encapsulate the algorithms that we develop, so that we can use the same code for many different applications
- ADTs provide a convenient mechanism for our use in the process of developing and comparing the performance of algorithms.

ADTs are important software engineering tool
- Many algorithms serve as implementations for fundamental
- ADTs encapsulate the algorithms that we develop, so that we can use the same code for many different applications
- ADTs provide a convenient mechanism for our use in the process of developing and comparing the performance of algorithms.
Recursion and Trees

- Recursive algorithm is one that solves a problem by solving one or more smaller instances of the same problem
 - Functions that call themselves
 - Can only solve a base case Recursive function calls itself
- If not base case
 - Break problem into smaller problem(s)
 - Launch new copy of function to work on the smaller problem (recursive call/recursive step)
 - Slowly converges towards base case
 - Function makes call to itself inside the return statement
 - Eventually base case gets solved
 - Answer works way back up, solves entire problem

Example of recursion

- Factorial of \(n \): \(n! = n \times (n-1) \times (n-2) \times \ldots \times 1 \)
 - Recursive relationship \((n! = n \times (n-1)!) \)

 \[
 \begin{align*}
 5! &= 5 \times 4! \\
 4! &= 4 \times 3! \\
 & \vdots
 \end{align*}
 \]
 - Base case \(1! = 0! = 1 \)
- Fibonacci number
 - Base case: \(F_0 = F_1 = 1 \)
 - \(F_n = F_{n-1} + F_{n-2} \)
Euclid’s algorithm
Greatest Common Divisor

- One of the oldest-known algorithm (over 2000 years)

Euclid’s method for finding the greatest common divisor

```c
int gcd(int m, int n){
    if (n==0) return m;
    return gcd(n, m%n);
}
```

Algorithm for pre-fix expression

```c
char *a; int i;
int eval()
{
    int x = 0;
    while (a[i] == ' ') i++;
    if (a[i] == '+')
        {i++; return eval() + eval(); }
    if (a[i] == '*')
        {i++; return eval() * eval(); }
    while ((a[i] >= '0') && (a[i] <= '9'))
        x = 10*x + (a[i++]-'0');
    return x;
}
```
Recursive vs. iterative solution

- In principle, a loop can be replaced by an equivalent recursive program
 - Recursive program usually is more natural way to express computation
- Disadvantage
 - Nested function calls –
 - Use built in pushdown stack
 - Depth will depend on input
 - Hence programming environment has to maintain a stack that is proportional to the push down stack
 - Space complexity could be high

Divide and Conquer

- Many recursive programs use recursive calls on two subsets of inputs (two halves usually)
 - Divide the problem and solve them – divide and conquer paradigm
 - Property 5.1: a recursive function that divides a problem size \(N \) intro two independent (nonempty) parts that it solves recursively calls itself less than \(N \) times
 - Complexity: \(T_N = T_k + T_{N-k} + 1 \)
Find max - Divide and Conquer

```c
Item max(Item a[], int l, int r)
{
    Item u, v;
    int m = (l+r)/2;
    if (l == r) return a[l];
    u = max(a, l, m);
    v = max(a, m+1, r);
    if (u > v) return u;
    else return v;
}
```

Dynamic programming

- When the sub-problems are not independent, the situation may be complicated
 - Time complexity can be very high
- Example
 - Fibonacci number
 - Base case: $F_0 = F_1 = 1$
 - $F_n = F_{n-1} + F_{n-2}$

```c
int fibonacci(int n){
    if (n<1) return 1;  // Base case
    return fibonacci(n-1) + fibonacci(n-2);
}
```
Recursion: Fibonacci Series

- Order of operations
 - return
 fibonacci(n - 1) +
 fibonacci(n - 2);

- Recursive function calls
 - Each level of recursion doubles the number of function calls
 - 30th number = $2^{30} \sim$ 4 billion function calls
 - Exponential complexity

Simpler Solution

- Linear!!

- Observation
 - We can evaluate any function by computing all the function values in order starting at the smallest, using previously computed values at each step to compute the current value
 - Bottom-up Dynamic programming
 - Applies to any recursive computation, provided that we can afford to save all the previously computed values
 - Top-down
 - Modify the recursive function to save the computed values and to allow checking these saved values
 - Memoization
Dynamic Programming

- Top-down: save known values
- Bottom-up: pre-compute values
 - Determining the order may be a challenge
 - Top-down preferable
 - It is a mechanical transformation of natural problem
 - The order of computing the sub-problems takes care of itself
 - We may not need to compute answers to all the sub-problems

```cpp
int F(int i)
{
    int t;
    if (knownF[i] != unknown)
        return knownF[i];
    if (i == 0) t = 0;
    if (i == 1) t = 1;
    if (i > 1) t = F(i-1) + F(i-2);
    return knownF[i] = t;
}
```

Dynamic programming
Knapsack problem

- Property: DP reduces the running times of a recursive function to be at most the time required to evaluate the function for all arguments less than or equal to the given argument
- Knapsack problem
 - Given
 - N types of items of varying size and value
 - One knapsack (belongs to a thief!)
 - Find: the combination of items that maximize the total value
Knapsack problem

<table>
<thead>
<tr>
<th>Item</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Val</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

```c
int knap(int cap)
{
    int i, space, max, t;
    for (i = 0, max = 0; i < N; i++)
        if ((space = cap - items[i].size) >= 0)
            if ((t = knap(space) + items[i].val) > max)
                max = t;
    return max;
}
```

```c
int knap(int M)
{
    int i, space, max, maxi, t;
    if (maxKnown[M] != unknown) return maxKnown[M];
    for (i = 0, max = 0; i < N; i++)
        if ((space = M - items[i].size) >= 0)
            if ((t = knap(space) + items[i].val) > max) { max = t; maxi = i; }
    maxKnown[M] = max; itemKnown[M] = items[maxi];
    return max;
}
```

Tree

- Trees are central to design and analysis algorithms
 - Trees can be used to describe dynamic properties
 - We build and use explicit data structures that are concrete realization of trees

General issues:
- Trees
- Rooted tree
- Ordered trees
- M-ary trees and binary trees
Tree

- Trees
 - Non-empty collection of vertices and edges
 - Vertex is a simple object (a.k.a. node)
 - Edge is a connection between two nodes
 - Path is a distinct vertices in which successive vertices are connected by edges
 - There is precisely one path between any two vertices
- Rooted tree: one node is designated as the root
- Forest
 - Disjoint set of trees

Definitions

- Binary tree is either an external node or an internal node connected to a pair of binary trees, which are called the left sub-tree and the right sub-tree of that node
 - Struct node {Item item; link left, link right;}
- M-ary tree is either an external node or an internal node connected to an ordered sequence of M-trees that are also M-ary trees
- A tree (or ordered tree) is a node (called the root) connected to a set of disjoint trees. Such a sequence is called a forest.
 - Arbitrary number of children
 - One for linked list connecting to its sibling
 - Other for connecting it to the sibling
A binary tree with N internal nodes has $N + 1$ external nodes
- Proof by induction
- $N = 0$ (no internal nodes) has one external node
- Hypothesis: holds for $N-1$
- $k, N - 1 - k$ internal nodes in left and right sub-trees (for k between 0 and $N-1$)
- $(k+1) + (N - 1 - k) = N + 1$
Binary tree

- A binary tree with \(N \) internal nodes has \(2N \) links
 - \(N-1 \) to internal nodes
 - Each internal node except root has a unique parent
 - Every edge connects to its parent
 - \(N+1 \) to external nodes
- Level, height, path
 - Level of a node is \(1 + \) level of parent (Root is at level 0)
 - Height is the maximum of the levels of the tree’s nodes
 - Path length is the sum of the levels of all the tree’s nodes
 - Internal path length is the sum of the levels of all the internal nodes

Tree traversal (binary tree)

- Preorder
 - Visit a node,
 - Visit left subtree,
 - Visit right subtree
- Inorder
 - Visit left subtree,
 - Visit a node,
 - Visit right subtree
- Postorder
 - Visit left subtree,
 - Visit right subtree
 - Visit a node