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Graph

n Weighted graph – call it networks 
n Shortest path between nodes s and t in a 

network
q Directed simple path from s to t with the property 

that no other such path has a lower weight
q Negative edges?

n Applications ?



Shortest Path

n The shortest path problem has several 
different forms:
q Source-sink SP:

n Given two nodes A and B, find the shortest path in the 
weighted graph from A to B.

q Single source SP:
n Given a node A, find the shortest path from A to every 

other node in the graph. 

q All Pair SP: 
n Find the shortest path between every pair of nodes in 

the graph



Basic concept in SP

n Relaxation
q At each step increment the SP information
q Path relaxation

n Test if traveling through a given vertex introduces a new 
shortest path between a pair of vertices

q Edge relaxation : special case of path relaxation
n Test if traveling through a given edge gives a new 

shortest path to its destination vertex
If (wt[w] > wt[v] + e.wt)

{ wt[w] = wt[v] + e.wt; st[w] = v;}
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Shortest Path

n Property 21.1
q If a vertex x is on a shortest path from s to t, then 

that path consists of a shortest path from s to x 
followed by a shortest path from x to t

n Dijkstra’s algorithm (similar to Prim’s MST)
q Start at source
q Include next edge that gives the shortest path 

from the source to a vertex not in the SP



Shortest path

To select the next node to visit, we must choose 
the node in the fringe that has the shortest path 
to A. The shortest path from the next closest 
node must immediately go to a visited node.

Visited nodes form a shortest 
path tree

Fringe node set



Dijkstra’s algorithm

n Complexity?
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Dijkstra’s algorithm

#define GRAPHpfs GRAPHspt
#define P (wt[v] + t->wt)
void GRAPHpfs(Graph G, int s, int st[], double 
wt[])

{ int v, w;  link t;
PQinit(); priority = wt;
for (v = 0; v < G->V; v++)

{ st[v] = -1; wt[v] = maxWT; PQinsert(v); }
wt[s] = 0.0; PQdec(s);
while (!PQempty())

if (wt[v = PQdelmin()] != maxWT)
for (t = G->adj[v]; t != NULL; t = t->next)

if (P < wt[w = t->v]) 
{ wt[w] = P; PQdec(w); st[w] = v; }

}



All-pairs shortest path

n Use Dijkstra’s algorithm from each vertex
q Complexity: VElgV

n Floyd’s algorithm
q Use extension of Warshall’s algorithm for 

transitive closure

q Complexity: V3



Floyd-Warshall Algorithm

n Dij
(k) = length of shortest path from i to j with 

intermediate vertices from {1, 2, ..., k}: 
n Dynamic Programming: recurrence

q Dij
(0) = Dij

q Dij
(k) =  min {Dij

(k-1) , Dik
(k-1) + Dkj

(k-1) } 

intermediate nodes in {1, 2, ..., k}
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The Floyd-Warshall algorithm

={
Floyd-Warshall(W)                    θ(n3)
1 n ← rows[W]
2 D(0) = W
3 for k← 1 to n
4 do for i← 1 to n
5 do for j ← 1 to n
6
7 return D(n)

calculate D(0) ,D(1) ,D(2), D(3) ,D(4) and 
D(5)
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Floyd-Warshall Algorithm

void GRAPHspALL(Graph G)
{ int i, s, t;

double **d = MATRIXdouble(G->V, G->V, 
maxWT);

int **p = MATRIXint(G->V, G->V, G->V);
for (s = 0; s < G->V; s++)

for (t = 0; t < G->V; t++)
if ((d[s][t] = G->adj[s][t]) < maxWT) 

p[s][t] = t;
for (i = 0; i < G->V; i++)

for (s = 0; s < G->V; s++)
if (d[s][i] < maxWT)

for (t = 0; t < G->V; t++)
if (d[s][t] > d[s][i]+d[i][t])

{ p[s][t] = p[s][i]; 
d[s][t] = d[s][i]+d[i][t]; } 

G->dist = d; G->path = p;
}



Complexity classes

n An algorithm A is of polynomial complexity if there 
exists a polynomial p(n) such that the computing 
time of A is O(p(n))

n Set P 
q set of decision problems solvable in polynomial time using 

deterministic algorithm
n Deterministic: result of each step is uniquely defined

n Set NP
q set of decision problem solvable in polynomial time using 

nondeterministic algorithm
n Non-deterministic: result of each step is a set of possibilities

n P ⊆ NP
q Problem is P = NP or P ≠ NP?



Complexity classes

n Satisfiability is in P iff P = NP
n NP-hard problems

q Reduction L1 reduces to L2
n Iff there is a way to solve L1 in deterministic polynomial time 

algorithm using deterministic algorithm that solves L2 in 
polynomial time

q A problem L is NP-hard iff satisfiability reduces to L

n NP-complete
q L is in NP
q L is NP-hard



Showing a problem NP-complete

n Show that it is in NP
n Show that it is NP-hard
q Pick problem L already known to be NP-hard
q Show that the problem can be reduced to L

n Example
q Show that traveling salesman problem is NP-

complete
q Known: directed Hamiltonian cycle problem is NP-

complete


