
IS 2610: Data Structures

Graph

April 12, 2004

Graph

n Weighted graph – call it networks
n Shortest path between nodes s and t in a

network
q Directed simple path from s to t with the property

that no other such path has a lower weight
q Negative edges?

n Applications ?

Shortest Path

n The shortest path problem has several
different forms:
q Source-sink SP:

n Given two nodes A and B, find the shortest path in the
weighted graph from A to B.

q Single source SP:
n Given a node A, find the shortest path from A to every

other node in the graph.

q All Pair SP:
n Find the shortest path between every pair of nodes in

the graph

Basic concept in SP

n Relaxation
q At each step increment the SP information
q Path relaxation

n Test if traveling through a given vertex introduces a new
shortest path between a pair of vertices

q Edge relaxation : special case of path relaxation
n Test if traveling through a given edge gives a new

shortest path to its destination vertex
If (wt[w] > wt[v] + e.wt)

{ wt[w] = wt[v] + e.wt; st[w] = v;}

Relaxation

Edge relaxation

w

v

s

w

v

s

ws

ws

v

v

Path relaxation

Shortest Path

n Property 21.1
q If a vertex x is on a shortest path from s to t, then

that path consists of a shortest path from s to x
followed by a shortest path from x to t

n Dijkstra’s algorithm (similar to Prim’s MST)
q Start at source
q Include next edge that gives the shortest path

from the source to a vertex not in the SP

Shortest path

To select the next node to visit, we must choose
the node in the fringe that has the shortest path
to A. The shortest path from the next closest
node must immediately go to a visited node.

Visited nodes form a shortest
path tree

Fringe node set

Dijkstra’s algorithm

n Complexity?

Fringe
v0v1, v0v2, v0v4

v0v1, v0v4, v2v3

v0v1, v0v4, v3v1 (v3v4?)
v0v4

v0 v1 v4

v2 v3 v5

10

15

20

45

Dijkstra’s algorithm

#define GRAPHpfs GRAPHspt
#define P (wt[v] + t->wt)
void GRAPHpfs(Graph G, int s, int st[], double
wt[])

{ int v, w; link t;
PQinit(); priority = wt;
for (v = 0; v < G->V; v++)

{ st[v] = -1; wt[v] = maxWT; PQinsert(v); }
wt[s] = 0.0; PQdec(s);
while (!PQempty())

if (wt[v = PQdelmin()] != maxWT)
for (t = G->adj[v]; t != NULL; t = t->next)

if (P < wt[w = t->v])
{ wt[w] = P; PQdec(w); st[w] = v; }

}

All-pairs shortest path

n Use Dijkstra’s algorithm from each vertex
q Complexity: VElgV

n Floyd’s algorithm
q Use extension of Warshall’s algorithm for

transitive closure

q Complexity: V3

Floyd-Warshall Algorithm

n Dij
(k) = length of shortest path from i to j with

intermediate vertices from {1, 2, ..., k}:
n Dynamic Programming: recurrence

q Dij
(0) = Dij

q Dij
(k) = min {Dij

(k-1) , Dik
(k-1) + Dkj

(k-1) }

intermediate nodes in {1, 2, ..., k}

j
i

Dik
(k-1) Dkj

(k-1)k

Dij
(k-1)

The Floyd-Warshall algorithm

={
Floyd-Warshall(W) θ(n3)
1 n ← rows[W]
2 D(0) = W
3 for k← 1 to n
4 do for i← 1 to n
5 do for j ← 1 to n
6
7 return D(n)

calculate D(0) ,D(1) ,D(2), D(3) ,D(4) and
D(5)

12

2

1 3

3 4
7 8

2 1

)(k
ijd

ijw
),min()1()1()1(−−− + k

kj
k

ik
k

ij ddd

if k = 0
if k ≥ 1

),min()1()1()1()(−−− +← k
kj

k
ik

k
ij

k
ij dddd

4

2

Floyd-Warshall Algorithm

void GRAPHspALL(Graph G)
{ int i, s, t;

double **d = MATRIXdouble(G->V, G->V,
maxWT);

int **p = MATRIXint(G->V, G->V, G->V);
for (s = 0; s < G->V; s++)

for (t = 0; t < G->V; t++)
if ((d[s][t] = G->adj[s][t]) < maxWT)

p[s][t] = t;
for (i = 0; i < G->V; i++)

for (s = 0; s < G->V; s++)
if (d[s][i] < maxWT)

for (t = 0; t < G->V; t++)
if (d[s][t] > d[s][i]+d[i][t])

{ p[s][t] = p[s][i];
d[s][t] = d[s][i]+d[i][t]; }

G->dist = d; G->path = p;
}

Complexity classes

n An algorithm A is of polynomial complexity if there
exists a polynomial p(n) such that the computing
time of A is O(p(n))

n Set P
q set of decision problems solvable in polynomial time using

deterministic algorithm
n Deterministic: result of each step is uniquely defined

n Set NP
q set of decision problem solvable in polynomial time using

nondeterministic algorithm
n Non-deterministic: result of each step is a set of possibilities

n P ⊆ NP
q Problem is P = NP or P ≠ NP?

Complexity classes

n Satisfiability is in P iff P = NP
n NP-hard problems

q Reduction L1 reduces to L2
n Iff there is a way to solve L1 in deterministic polynomial time

algorithm using deterministic algorithm that solves L2 in
polynomial time

q A problem L is NP-hard iff satisfiability reduces to L

n NP-complete
q L is in NP
q L is NP-hard

Showing a problem NP-complete

n Show that it is in NP
n Show that it is NP-hard
q Pick problem L already known to be NP-hard
q Show that the problem can be reduced to L

n Example
q Show that traveling salesman problem is NP-

complete
q Known: directed Hamiltonian cycle problem is NP-

complete

