
1

Welcome to IS 2610

Introduction

Course Information

n Lecture:
q James B D Joshi
q Mondays: 3:00-5.50 PM

n One (two) 15 (10) minutes break(s)

q Office Hours: Wed 1:00-3:00PM/Appointment

n Pre-requisite
q one programming language

2

Course material

n Textbook
q Algorithm in C (Parts 1-5 Bundle)- Third Edition by Robert

Sedgewick, (ISBN: 0-201-31452-1, 0-201-31663-3),
Addison-Wesley

n References
q Introduction to Algorithms, Cormen, Leiserson, and Rivest,

MIT Press/McGraw-Hill, Cambridge (Theory)
q Fundamentals of Data Structures by Ellis Horowitz, Sartaj

Sahni, Susan Anderson-Freed Hardcover/
March 1992 / 0716782502

q The C Programming language, Kernigham & Ritchie
(Programming)

q Other material will be posted (URLs for tutorials)

Course outline

n Introduction to Data Structures and Analysis of Algorithms
q Analysis of Algorithms
q Elementary/Abstract data types
q Recursion and Trees

n Sorting Algorithms
q Selection, Insertion, Bubble, Shellsort
q Quicksort
q Mergesort
q Heapsort
q Radix sort

n Searching
q Symbol tables
q Balanced Trees
q Hashing
q Radix Search

n Graph Algorithms

3

Grading

n Quiz 10% (in the beginning of the class; on
previous lecture)

n Homework/Programming Assignments 40%
(typically every week)

n Midterm 25%
n Comprehensive Final 25%

Course Policy

n Your work MUST be your own
q Zero tolerance for cheating
q You get an F for the course if you cheat in anything however

small – NO DISCUSSION
n Homework

q There will be penalty for late assignments (15% each day)
q Ensure clarity in your answers – no credit will be given for

vague answers
q Homework is primarily the GSA’s responsibility
q Solutions/theory will be posted on the web

n Check webpage for everything!
q You are responsible for checking the webpage for updates

4

Overview

n Algorithm
q A problem-solving method suitable for implementation as a

computer program
n Data structures

q Objects created to organize data used in computation
n Data structure exist as the by-product or end product of

algorithms
q Understanding data structure is essential to understanding

algorithms and hence to problem-solving
q Simple algorithms can give rise to complicated data-structures
q Complicated algorithms can use simple data structures

Why study Data Structures (and
algorithms)
n Using a computer?

q Solve computational problems?
q Want it to go faster?
q Ability to process more data?

n Technology vs. Performance/cost factor
q Technology can improve things by a constant factor
q Good algorithm design can do much better and may be cheaper
q Supercomputer cannot rescue a bad algorithm

n Data structures and algorithms as a field of study
q Old enough to have basics known
q New discoveries
q Burgeoning application areas
q Philosophical implications?

5

Simple example

n Algorithm and data structure to do
matrix arithmetic
q Need a structure to store matrix values
n Use a two dimensional array: A[M, N]

q Algorithm to find the largest element
largest = A[0][0];
for (i=0; i < M; i++)

for (i=0; i < N; i++)
if (A[i][j]>largest) then

largest= A[i][j];

How many times does the if statement gets executed?
How many times does the statement “largest= A[i][j]” gets

Another example: Network Connectivity

n Network Connectivity
q Nodes at grid points
q Add connections

between pairs of nodes
q Are A and B connected?

A

B

6

Network Connectivity

4 84 8

7 37 3

5 95 9

5 65 6

2 32 3

8 08 0

4 94 9

(5-6)5 6

(2-3-4-9)2 9

6 16 1

(2-3-4-8-0)0 2

3 43 4

EvidenceOUTIN

Union-Find Abstraction

n What are the critical operations needed to support
finding connectivity?
q N objects – N can be very large

n Grid points

q FIND: test whether two objects are in same set
n Is A connected to B?

q UNION: merge two sets
n Add a connection

n Define Data Structure to store connectivity
information and algorithms for UNION and FIND

7

Quick-Find algorithm

n Data Structure
q Use an array of integers – one

corresponding to each object
n Initialize id[i] = i

q If p and q are connected they have the
same id

n Algorithmic Operations
q FIND: to check if p and q are connected,

check if they have the same id
q UNION: To merge components

containing p and q, change all entries
with id[p] to id[q]

n Complexity analysis:
q FIND: takes constant time
q UNION: takes time proportional to N

Quick-find

p-q array entries
3-4 0 1 2 4 4 5 6 7 8 9
4-9 0 1 2 9 9 5 6 7 8 9
8-0 0 1 2 9 9 5 6 7 0 9
2-3 0 1 9 9 9 5 6 7 0 9
5-6 0 1 9 9 9 6 6 7 0 9
5-9 0 1 9 9 9 9 9 7 0 9
7-3 0 1 9 9 9 9 9 9 0 9
4-8 0 1 0 0 0 0 0 0 0 0
6-1 1 1 1 1 1 1 1 1 1 1

8

Complete algorithm

#include <stdio.h>
#define N 10000
main()
{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;
while (scanf(“d% %d\n”, &p, &q) == 2

{
if (id[p] == id[q]) continue;
for (pid = id[p], i = 0; i < N; i++)

if (id[i] == pid) id[i] = id[q];
printf(“s %d\n”, p, q);

}
}

n Complexity (M x N)
q For each of M union operations we iterate for loop at N times

Quick-Union Algorithm

n Data Structure
q Use an array of integers – one corresponding to each object

n Initialize id[i] = i
q If p and q are connected they have same root

n Algorithmic Operations
q FIND: to check if p and q are connected, check if they have the

same root

q UNION: Set the id of the p’s root to q’s root
n Complexity analysis:

q FIND: takes time proportional to the depth of p and q in tree
q UNION: takes constant times

9

Complete algorithm

#include <stdio.h>
#define N 10000
main()
{ int i, p, q, t, id[N];

for (i = 0; i < N; i++) id[i] = i;
while (scanf(“d% %d\n”, &p, &q) == 2

{

printf(“s %d\n”, p, q);
}

}

Quick-Union

p-q array entries s
3-4 0 1 2 4 4 5 6 7 8 9
4-9 0 1 2 4 9 5 6 7 8 9
8-0 0 1 2 4 9 5 6 7 0 9
2-3 0 1 9 4 9 5 6 7 0 9
5-6 0 1 9 4 9 6 6 7 0 9
5-9 0 1 9 4 9 6 9 7 0 9
7-3 0 1 9 4 9 6 9 9 0 0
4-8 0 1 9 4 9 6 9 9 0 0
6-1 1 1 9 4 9 6 9 9 0 0

3
1 2 4 5 6 7 8 90

3

1 2
4

5 6 7 890

3

1 2
4

5 6 7
8

9 0

3

1
2 4

5 6 7
8

9 0

3

1
2 4 5

6 7
8

9 0

3

1
2 4

5
6

7
8

9 0

3

1
2 4

5
6 7 8

9 0

3

1
2 4

5
6 7 8

9
0

3

1

2 4
5
6 7 8

9
0

10

Complexity of Quick-Union

n Less computation for UNION and more computation
for FIND

n Quick-Union does not have to go through the entire
array for each input pair as does the Union-find

n Depends on the nature of the input
q Assume input 1-2, 2-3, 3-4,…
q Tree formed is linear!

n More improvements:
q Weighted Quick-Union
q Weighted Quick-Union with Path Compression

Analysis of algorithm

n Empirical analysis
q Implement the algorithm
q Input and other factors

n Actual data
n Random data (average-case behavior)
n Perverse data (worst-case behavior)

q Run empirical tests

n Mathematical analysis
q To compare different algorithms
q To predict performance in a new environment
q To set values of algorithm parameters

11

Growth of functions

n Algorithms have a primary parameter N that affects
the running time most significantly
q N typically represents the size of the input– e.g., file size,

no. of chars in a string; etc.
n Commonly encounterd running times are

proportional to the following functions
q 1 :Represents a constant
q Log N :Logarithmic
q N :Linear time
q N log N :Linearithmic(?)
q N 2 :Quadratic
q N 3 :Cubic
q 2N :Exponential

Some common functions

1000000000000

10000000000

100000000

1000000

10000

100

N 2

?99317996610003210

210x10= 104210444664100107

1042110331033

20

17

13

lg N

1000

316

100

N 0.5

?397267426199315691000000

?275880161660964100000

?176563313287710000

2NN (lg N) 2N lg NN

12

Special functions and mathematical
notations
n Floor function : x

q Largest integer less than or equal to x
q e.g., 5.16 = ?

n Ceiling function: x
q Smallest integer greater than or equal to x
q e.g., 5.16 = ?

n Fibonacci: FN= FN-1+ FN-2 ; with F0 =F1 = 1
q Find F2 = ? F4 = ?

n Harmonic: HN= 1 + ½ + 1/3 +…+1/N
n Factorial: N! = N.(N-1)!
n loge N = ln N; log2 N = lg N

Big O-notation – Asymptotic expression

n g(N) = O(f(N)) (read g(N) is said to be O(f(N))) iff
there exist constants c0 and N0 such that 0 =g(N)
=c0 f(N) for all N >N0

n Can N2 =O(n) ?
n Can 2N =O(NM) ?

N0

g(N)

f(N)

N >N0

13

Big-O Notation

n Uses
q To bound the error that we make when we ignore small

terms in mathematical formulas
n Allows us to focus on leading terms
n Example:

q N2 + 3N + 4 = O(N2), since N2 + 3N + 4 < 2N2 for all n > 10
q N2 + N + N lg N + lg N + 1 = O(N 2)

q To bound the error that we make when we ignore parts of a
program that contribute a small amount to the total being
analyzed

q To allow us to classify algorithms according to the upper
bounds on their total running times

Ω(f(n)) and Θ(f(n))

n g(N) = Ω(f(N)) (read g(N) is said to be Ω(f(N)))
iff there exist constants c0 and N0 such that 0 =
g(N) =c0 f(N) for all N >N0

n g(N) = Θ(f(N)) (read g(N) is said to be Ω(f(N))) iff
there exist constants c0, c1 and N0 such that c1 f(N)
=g(N) =c1 f(N) for all N >N0

14

Basic Recurrences

n Principle of recursive decomposition
q decomposition of problems into one or more smaller ones

of the same type
q Use solutions for the sub-problems to get solution of the

problem
n Example 1:

q Loops through a loop and eliminates one item
q CN = CN-1 + N, for N =2 with C1 = 1

= CN-2 + (N-1) + N
= CN-3 + (N-2) + (N-1) + N
…
= 1 + 2 + … + (N-2) + (N-1) + N = N (N+1)/2

q Therefore, CN = O(N2)

Basic Recurrences

n Recurrence relations
q Captures the dependence of the running time of an

algorithm for an input of size N on its running time for small
inputs

n Example 2:
q formula for recursive programs for that halves the input in

one step
n CN = CN/2 + 1, for N = 2 with C1 = 1; let CN = lg N , and N = 2n.

= CN/2 + 1 + 1
= CN/4 + 1 + 1 + 1
…
= CN/N + n = 1 + n

q Therefore, CN = O(n) = O(lg N)

15

Basic Recurrences

n let CN = lg N , and N = 2n

q Show that CN = N lg N for
n CN = 2CN/2 + N,. for N =2 with C1 = 0;

