
INFSCI 2610 Data Structures
Homework 1

Due Date: By 5:00PM, Thursday, Jan 22

1. Do the following problems from the book [20]

Exercises 2.40 and 2.43

2. Linked List exercise [40]: In this exercise you will start with the code given in the book
and implement some new functions.

Start with the following program code from the book:

list.h : Defines the basic list processing interfaces (Program 3.12). Here you will use int
data type for “itemType”.

list.c : Implements the basic list processing interfaces.

Now, create a client program file client.c (with the main() function). In client.c,
implement the following functions:
(a) Swap an arbitrary pair of nodes (call it swap (?, ?)). That is, your program should

ask the user to indicate the elements he wants swapped (ith and j th). Provided they are
valid, your program should:

Print the original values
Swap the nodes (do not simply swap the values)
Print the new values.

(b) Write a function to split the linked list into two lists (call split(?)), such that the first
list contains the elements that were at odd positions in the original list and the second
list contains the elements that were in the even positions of the original list. You are
not to create any new list!

3. Infix Calculator [40]: In this exercise you will implement the Stack ADT in the book

and extend the code provided in the book to write an infix calculator that allows the
following operations: *, /, +, / and %. Essentially, you have to put together the code in
programs 4.1, 4.2, and 4.3.

a. Program STACK.h: gives you the basic interfaces. For this exercise you can define

the Item data type in STACK.h file itself - no need to make a separate header file
Item.h as indicated in the text.

b. Program 4.2 implements + and *. You will add code for the others.
c. Program 4.3 gives you the Infix-to-postfix conversion. You will add the code for the

others.

The objective of this exercise is to have you compose together the pieces that are already
there and write the missing pieces. This should not be difficult, given that other operators
are already implemented there.

(Extra Credit: 10)

 Implement the unary operator “–“ as well. You can use any technique you want.

