Some useful Information

Mapping of Turing machine to protection system

- O All Tape Symbols, States \Rightarrow rights
- O Tape cell \Rightarrow subject
- O Cell s_i has $A \implies s_i$ has A rights on itself
- O Cell $s_k \implies s_k$ has *end* rights on itself
- O State *p*, head at $s_i \implies s_i$ has *p* rights on itself
- O Distinguished right *own*: s_i *owns* s_{i+1} for $1 \le i < k$

Bell-Lapadula Rules

Let $L(S) = l_s$ be the security clearance of subject S, and let $L(O) = l_o$ be the security classification of object O. For all security classifications l_i , i = 0, ..., k - 1, $l_i < l_{i+1}$.

Simple Security Condition, Preliminary Version: S can read O if and only if $l_0 \le l_s$ and S has discretionary read access to O.

*-Property (Star Property), Preliminary Version: S can write O if and only if $l_s \leq l_o$ and S has discretionary write access to O.

Biba Rules

Biba's Model: Strict Integrity Policy (dual of Bell-LaPadula)

- $\circ \quad s \text{ can read } o \leftrightarrow i(s) \leq i(o)$
- $\circ \quad s \text{ can write } o \leftrightarrow i(o) \leq i(s)$
- o s_1 can execute $s_2 \leftrightarrow i(s_2) \leq i(s_1)$

Low-Water-Mark Policy

 $\circ \quad s \text{ can write } o \leftrightarrow i(o) \leq i(s)$

 $\circ \quad s \text{ reads } o \to i'(s) = min(i(s), i(o))$

 $\circ \quad s_1 \text{ can execute } s_2 \leftrightarrow i(s_2) \leq i(s_1)$

(prevents writing to higher level) (drops subject's level) (prevents executing higher level objects)

(no read-down)

(no write-up)

Chinese Wall Rules

CW-Simple Security Condition: S can read O if and only if any of the following holds.

- There is an object O' such that S has accessed O' and CD(O') = CD(O).
- For all objects O', O' \in PR(S) \Rightarrow COI(O') \neq COI(O).
- O is a sanitized object.
- $(O' \in PR(s) \text{ indicates } O' \text{ has been previously read by } s)$

CW-*-Property: A subject S may write to an object O if and only if both of the following conditions hold.

- The CW-simple security condition permits S to read O.
- For all unsanitized objects O', S can read $O' \Rightarrow CD(O') = CD(O)$.

Clark-Wilson Certification and Enforcement Rules

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform those CDIs in a valid state into a (possibly different) valid state.

Enforcement rule 1 (ER1): The system must maintain the certified relations, and must ensure that only TPs certified to run on a CDI manipulate that CDI.

Enforcement rule 2 (ER2): The system must associate a user with each TP and set of CDIs. The TP may access those CDIs on behalf of the associated user. If the user is not associated with a particular TP and CDI, then the TP cannot access that CDI on behalf of that user.

Certification rule 3 (CR3): The allowed relations must meet the requirements imposed by the principle of separation of duty.

Enforcement rule 3 (ER3): The system must authenticate each user attempting to execute a TP.

Certification rule 4 (CR4): All TPs must append enough information to reconstruct the operation to an append-only CDI.

Certification rule 5 (CR5): Any TP that takes as input a UDI may perform only valid transformations, or no transformations, for all possible values of the UDI. The transformation either rejects the UDI or transforms it into a CDI.

Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities associated with that TP. No certifier of a TP, or of an entity associated with that TP, may ever have execute permission with respect to that entity.

Lipner's Requiements

- 1. Users will not write their own programs, but will use existing production programs and databases.
- 2. Programmers will develop and test programs on a non-production system; if they need access to actual data, they will be given production data via a special process, but will use it on their development system.
- 3. A special process must be followed to install a program from the development system onto the production system.
- 4. The special process in requirement 3 must be controlled and audited.
- 5. The managers and auditors must have access to both the system state and the system logs that are generated.

Core RBAC

Permissions = $2^{\text{Operations x Objects}}$ UA \subseteq Users x Roles PA \subseteq Permissions x Roles assigned_users: Roles \rightarrow 2Users assigned_permissions: Roles \rightarrow 2Permissions Op(p): set of operations associated with permission p Ob(p): set of objects associated with permission p $user_sessions$: Users $\rightarrow 2^{\text{Sessions}}$ $session_user$: Sessions \rightarrow Users $session_roles$: Sessions $\rightarrow 2^{\text{Roles}}$ $session_roles(s) = \{r \mid (\text{session_user}(s), r) \in \text{UA})\}$ $avail_session_perms$: Sessions $\rightarrow 2^{\text{Permissions}}$

RBAC with general Role hierarchy

authorized_users: Roles $\rightarrow 2^{\text{Users}}$ • authorized_users(r) = {u | r' \ge r &(r', u) \in UA} authorized_permissions: Roles $\rightarrow 2$ Permissions • authorized_permissions(r) = {p | r \ge r' &(p, r') \in PA} RH \subseteq Roles x Roles is a partial order, called the inheritance relation & written as \ge . ($r_1 \ge r_2$) \rightarrow authorized_users(r_1) \subseteq authorized_users(r_2) & authorized_permissions(r_2) \subseteq authorized_permissions(r_1)

Static SoD

 $SSD \subseteq 2^{Roles} \ge N$ **In absence of hierarchy** Collection of pairs (*RS*, *n*) where *RS* is a role set, $n \ge 2$; *for all* (*RS*, *n*) \in *SSD*, *for all* $t \in RS$: $|t| \ge n \to \bigcap_{r \in t} assigned_users(r) = \emptyset$ **In presence of hierarchy** Collection of pairs (RS, n) where RS is a role set, $n \ge 2$; *for all* (*RS*, *n*) \in *SSD*, *for all* $t \in RS$: $|t| \ge n \to \bigcap_{r \in t} authorized_uers(r) = \emptyset$