IS 2150 / TEL 2810 Introduction to Security

James Joshi Assistant Professor, SIS

Lecture 8 October 25, 2007

Basic Cryptography Network Security

Objectives

- Understand/explain/employ the basic cryptographic techniques
 - Review the basic number theory used in cryptosystems
 - Classical system
 - Public-key system
 - Some crypto analysis
 - Message digest

Secure Information Transmission (network security model)

Security of Information Systems (Network access model)

Gatekeeper – firewall or equivalent, password-based login

Internal Security Control – Access control, Logs, audits, virus scans etc.

Issues in Network security

- Distribution of secret information to enable secure exchange of information
- Effect of communication protocols needs to be considered
- Encryption if used cleverly and correctly, can provide several of the security services
- Physical and logical placement of security mechanisms
- Countermeasures need to be considered

Cryptology

Elementary Number Theory

- Natural numbers $N = \{1, 2, 3, ...\}$
- Whole numbers $W = \{0,1,2,3,...\}$
- Integers $Z = \{..., -2, -1, 0, 1, 2, 3, ...\}$
- Divisors
 - A number b is said to divide a if a = mb for some m where a, b, $m \in Z$
 - We write this as b | a
 - Read as "b divides a"

1

Divisors

- Some common properties
 - If $a \mid 1$, a = +1 or -1
 - If $a \mid b$ and $b \mid a$ then a = +b or -b
 - Any $b \in Z$ divides 0 if $b \neq 0$
 - If b|g and b|h then b|(mg + nh) where $b, m, n, g, h \in Z$
- Examples:
 - The positive divisors of 42 are 1,2,3,6,7,14,21,42
 - 3|6 and 3|21 => 3|21m+6n for $m,n \in Z$

1

Prime Numbers

- An integer p is said to be a prime number if its only positive divisors are 1 and itself
 - **2**, 3, 7, 11, ...
- Any integer can be expressed as a unique product of prime numbers raised to positive integral powers
- Examples
 - $7569 = 3 \times 3 \times 29 \times 29 = 3^2 \times 29^2$
 - $5886 = 2 \times 27 \times 109 = 2 \times 3^3 \times 109$
 - $\bullet 4900 = 7^2 \times 5^2 \times 2^2$
 - **100 = ?**
 - **250 = ?**
- This process is called *Prime Factorization*

Greatest common divisor (GCD)

- Definition: Greatest Common Divisor
 - This is the largest divisor of both a and b
- Given two integers a and b, the positive integer c is called their GCD or greatest common divisor if and only if
 - c | a and c | b
 - Any divisor of both a and b also divides c
- Notation: gcd(a, b) = c
- Example: gcd(49,63) = ?

Relatively Prime Numbers

- Two numbers are said to be relatively prime if their gcd is 1
 - Example: 63 and 22 are relatively prime
- How do you determine if two numbers are relatively prime?
 - Find their GCD or
 - Find their prime factors
 - If they do not have a common prime factor other than 1, they are relatively prime
 - Example: $63 = 9 \times 7 = 3^2 \times 7$ and $22 = 11 \times 2$

The modulo operation

- What is 27 mod 5?
- Definition
 - Let a, r, m be integers and let m > 0
 - We write $a \equiv r \mod m$ if m divides r a (or a r) and $0 \le r < m$
 - m is called the modulus
 - r is called the remainder
 - Note that a = m.q + r where q is another integer (quotient)

Modular Arithmetic

- We say that $a \equiv b \mod m$ if $m \mid a b \mid$
 - Read as: a is congruent to b modulo m
 - m is called the modulus
 - Example: 27 = 2 mod 5
- Note that b is the remainder after dividing a by m
 BUT
 - Example: $27 \equiv 7 \mod 5$ and $7 \equiv 2 \mod 5$
- $a \equiv b \mod m => b \equiv a \mod m$
 - Example: $2 \equiv 27 \mod 5$
- We usually consider the smallest positive remainder which is sometimes called the residue

Modulo Operation

- The modulo operation "reduces" the infinite set of integers to a finite set
- Example: modulo 5 operation
 - We have five sets
 - $\{...,-10, -5, 0, 5, 10, ...\} => a \equiv 0 \mod 5$
 - $\{...,-9,-4,1,6,11,...\} => a \equiv 1 \mod 5$
 - $\{..., -8, -3, 2, 7, 12, ...\} = a \equiv 2 \mod 5$, etc.
 - The set of residues of integers modulo 5 has five elements $\{0,1,2,3,4\}$ and is denoted Z_5 .

Modulo Operation

Properties

- $[(a \bmod n) + (b \bmod n)] \bmod n = (a + b) \bmod n$
- $[(a \bmod n) (b \bmod n)] \bmod n = (a b) \bmod n$
- $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$
- (-1) mod n = n 1
 - (Using b = q.n + r, with b = -1, q = -1 and r = n-1)

Brief History

- All encryption algorithms from BC till 1976 were secret key algorithms
 - Also called private key algorithms or symmetric key algorithms
 - Julius Caesar used a substitution cipher
 - Widespread use in World War II (enigma)
- Public key algorithms were introduced in 1976 by Whitfield Diffie and Martin Hellman

Cryptosystem

- \bullet (\mathcal{E} , \mathcal{D} , \mathcal{M} , \mathcal{K} , \mathcal{C})
 - \mathcal{E} set of encryption functions $e: \mathcal{M} \times \mathcal{K} \to C$
 - \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \rightarrow \mathcal{M}$
 - M set of plaintexts
 - $\mathcal K$ set of keys
 - C set of ciphertexts

4

Example

- Cæsar cipher
 - $\mathcal{M} = \{ \text{ sequences of letters } \}$
 - $\mathcal{K} = \{ i \mid i \text{ is an integer and } 0 \le i \le 25 \}$
 - $\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m_k \}$

$$E_k(m) = (m + k) \bmod 26$$

• $\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c_k \}$

$$D_k(c) = (26 + c - k) \mod 26$$

 $C = \mathcal{M}$

Cæsar cipher

- Let k = 9, m = "VELVET" (21 4 11 21 4 19)
 - $E_k(m) = (30\ 13\ 20\ 30\ 13\ 28) \mod 26$ ="4\ 13\ 20\ 4\ 13\ 2" = "ENUENC"
 - $D_k(m) = (26 + c k) \mod 26$ $= (21 \ 30 \ 37 \ 21 \ 30 \ 19) \mod 26$ $= "21 \ 4 \ 11 \ 21 \ 4 \ 19" = "VELVET"$

A	В	С	D	Е	F	G	Н	I	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Attacks

- Ciphertext only.
 - adversary has only Y;
 - goal ?
- Known plaintext.
 - adversary has X, Y;
 - goal ?
- Chosen plaintext:
 - adversary gets a specific plaintext enciphered;
 - goal ?

Classical Cryptography

Classical Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called symmetric cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
- Product ciphers
 - Combinations of the two basic types

4

Classical Cryptography

- $y = E_k(x)$: Ciphertext \rightarrow Encryption
- $x = D_k(y)$: Plaintext \rightarrow Decryption
- k = encryption and decryption key
- The functions $E_k()$ and $D_k()$ must be inverses of one another
 - $E_k(D_k(y)) = ?$
 - $D_k(E_k(x)) = ?$
 - $E_k(D_k(x)) = ?$

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is "HELLO WORLD"
 - Rearrange as

HLOOL

ELWRD

Ciphertext is HLOOL ELWRD

Attacking the Cipher

- Anagramming
 - If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition
 - Rearrange letters to form *n*-grams with highest frequencies

4

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010</p>
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

Arrange so that H and E are adjacent

HE

LL

OW

OR

LD

 Read off across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 - Plaintext is HELLO WORLD;
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Brute Force: Exhaustive search
 - If the key space is small enough, try all possible keys until you find the right one
 - Cæsar cipher has 26 possible keys
- Statistical analysis
 - Compare to 1-gram model of English

Statistical Attack

- Ciphertext is knoor zruog
- Compute frequency of each letter in ciphertext:

```
G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1
```

- Apply 1-gram model of English
 - Frequency of characters (1-grams) in English is on next slide

а	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	0	0.080	u	0.030
С	0.030	j	0.005	р	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
е	0.130	I	0.035	r	0.065	X	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

Statistical Analysis

- f(c) frequency of character c in ciphertext
- φ(/):
 - correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
 - $\varphi(I) = \sum_{0 < c < 25} f(c) p(c I)$
 - so here,

$$\varphi(i) = 0.1p(6-i) + 0.1p(7-i) + 0.1p(10-i) + 0.3p(14-i) + 0.2p(17-i) + 0.1p(20-i) + 0.1p(25-i)$$

- p(x) is frequency of character x in English
- Look for maximum correlation!

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	φ(/)	j	φ(/)	j	φ(/)	j	φ(/)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

4

The Result

- Ciphertext is knoor zruog
- Most probable keys, based on φ:

$$i = 6$$
, $\varphi(i) = 0.0660$

plaintext EBIIL TLOLA (How?)

$$i = 10, \varphi(i) = 0.0635$$

plaintext AXEEH PHKEW (How?)

$$i = 3, \varphi(i) = 0.0575$$

plaintext HELLO WORLD (How?)

$$i = 14$$
, $\varphi(i) = 0.0535$

Cæsar's Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder

Vigenère Cipher

- Like Cæsar cipher, but use a phrase
- Example
 - Message THE BOY HAS THE BALL
 - Key VIG
 - Encipher using Cæsar cipher for each letter:

key VIGVIGVIGVIGV
plain THEBOYHASTHEBALL
cipher OPKWWECIYOPKWIRG

Relevant Parts of Tableau

T 7

T

	Ġ	1	V
A	G	I	V
B	H	J	M
E	K	M	Z
H	N	P	C
${m L}$	R	T	G
0	U	W	J
S	Y	A	N
T	Z	В	0
Y	$\mathbf E$	H	T

- Tableau with relevant rows, columns only
- Example encipherments:
 - key V, letter T: follow V column down to T row (giving "O")
 - Key I, letter H: follow I column down to H row (giving "P")

Useful Terms

- period: length of key
 - In earlier example, period is 3
- tableau: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- polyalphabetic: the key has several different letters
 - Cæsar cipher is monoalphabetic

Attacking the Cipher

- Key to attacking vigenère cipher
 - determine the key length
 - If the keyword is n, then the cipher consists of n monoalphabetic substitution ciphers

key VIGVIGVIGVIGVVIGV plain THEBOYHASTHEBALL cipher OPKWWECIYOPKWIRG

key DECEPTIVEDECEPTIVE
plain WEAREDISCOVEREDSAVEYOURSELF
cipher ZICVTWQNGRZGVTWAVZHCQYGLMGJ

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable; Why?
 - Consider ciphertext DXQR. Equally likely to correspond to
 - plaintext DOIT (key AJIY) and
 - plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys must be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are not random

Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 64 bit key
 - outputs 64 bits of ciphertext
 - A product cipher
 - performs both substitution and transposition (permutation) on the bits
 - basic unit is the bit
- Cipher consists of 16 rounds (iterations) each with a round key generated from the user-supplied key

DES

- Round keys are 48 bits each
 - Extracted from 64 bits
 - Permutation applied
- Deciphering involves using round keys in reverse

Encipherment

The *f* Function

Controversy

- Considered too weak
 - Design to break it using 1999 technology published
 - Design decisions not public
 - S-boxes may have backdoors
- Several other weaknesses found
 - Mainly related to keys

DES Modes

- Electronic Code Book Mode (ECB):
 - Encipher each block independently
- Cipher Block Chaining Mode (CBC)
 - XOR each block with previous ciphertext block
 - Uses an initialization vector for the first one

CBC Mode Decryption

- CBC has self healing property
 - If one block of ciphertext is altered, the error propagates for at most two blocks

Self-Healing Property

Initial message

- 3231343336353837323134333635383732313433363538373231343336353837
- Received as (underlined 4c should be 4b)
 - ef7c4cb2b4ce6f3b f6266e3a97af0e2c 746ab9a6308f4256 33e60b451b09603d
- Which decrypts to

 - Incorrect bytes underlined; plaintext "heals" after 2 blocks

Public Key Cryptography

- Two keys
 - Private key known only to individual
 - Public key available to anyone
- Idea
 - Confidentiality:
 - encipher using public key,
 - decipher using private key
 - Integrity/authentication:
 - encipher using private key,
 - decipher using public one

Requirements

- 1. Given the appropriate key, it must be computationally easy to encipher or decipher a message
- It must be computationally infeasible to derive the private key from the public key
- It must be computationally infeasible to determine the private key from a chosen plaintext attack

Diffie-Hellman

- Compute a common, shared key
 - Called a symmetric key exchange protocol
- Based on discrete logarithm problem
 - Given integers n and g and prime number p, compute k such that $n = g^k \mod p$
 - Solutions known for small p
 - Solutions computationally infeasible as p grows large – hence, choose large p

4

Algorithm

- Constants known to participants
 - prime p; integer g other than 0, 1 or p–1
- Alice: (private = k_A , public = k_A)
- Bob: (private = k_B , public = k_B)
 - $K_A = g^{kA} \mod p$
 - $K_B = g^{kB} \mod p$
- To communicate with Bob,
 - Alice computes $S_{A,B} = K_B^{kA} \mod p$
- To communicate with Alice,
 - Bob computes $S_{B,A} = K_A^{kB} \mod p$
- $S_{A, B} = S_{B, A}$?

4

Example

- Assume p = 53 and g = 17
- Alice chooses $k_A = 5$
 - Then $K_4 = 17^5 \mod 53 = 40$
- Bob chooses $k_B = 7$
 - Then $K_B = 17^7 \mod 53 = 6$
- Shared key:
 - $K_B^{kA} \mod p = 6^5 \mod 53 = 38$
 - $K_A^{KB} \mod p = 40^7 \mod 53 = 38$

Exercise:

Let p = 5, g = 3
$$k_A = 4$$
, $k_B = 3$

$$K_A = ?, K_B = ?,$$

 $S = ?.$

RSA

- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n
- Totient function φ(n)
 - Number of + integers less than n and relatively prime to n
- Example: $\phi(10) = 4$
 - What are the numbers relatively prime to 10?
- $\phi(77)$?
- \bullet ϕ (p) ? When p is a prime number
- \bullet ϕ (pq) ? When p and q are prime numbers

4

Algorithm

- Choose two large prime numbers p, q
 - Let n = pq; then $\phi(n) = (p-1)(q-1)$
 - Choose e < n relatively prime to $\phi(n)$.
 - Compute d such that ed mod $\phi(n) = 1$
 - Public key: (e, n);
 - private key: d (or (d, n))
- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$

Confidentiality using RSA

Authentication using RSA

Confidentiality + Authentication

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message: ON to get NO

Cryptographic Checksums

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - k is smaller then n except in unusual circumstances
 - Keyed CC: requires a cryptographic key $h = C_{Key}(M)$
 - Keyless CC: requires no cryptographic key
 - Message Digest or One-way Hash Functions

$$h = H(M)$$

- Can be used for message authentication
 - Hence, also called Message Authentication Code (MAC)

Mathematical characteristics

- Every bit of the message digest function potentially influenced by every bit of the function's input
- If any given bit of the function's input is changed, every output bit has a 50 percent chance of changing
- Given an input file and its corresponding message digest, it should be computationally infeasible to find another file with the same message digest value

Definition

- Cryptographic checksum function $h: A \rightarrow B$:
 - 1. For any $x \in A$, h(x) is easy to compute
 - Makes hardware/software implementation easy
 - 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
 - One-way property
 - 3. It is computationally infeasible to find x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - 4. Alternate form: Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

4

Collisions

- If $x \neq x'$ and h(x) = h(x'), x and x' are a collision
 - Pigeonhole principle: if there are n containers for n+1 objects, then at least one container will have 2 objects in it.
 - Application: suppose n = 5 and k = 3. Then there are 32 elements of A and 8 elements of B, so
 - each element of B has at least 4 corresponding elements of A

Keys

- Keyed cryptographic checksum: requires cryptographic key
 - DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
 - MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

Message Digest

- MD2, MD4, MD5 (Ronald Rivest)
 - Produces 128-bit digest;
 - MD2 is probably the most secure, longest to compute (hence rarely used)
 - MD4 is a fast alternative; MD5 is modification of MD4
- SHA, SHA-1 (Secure Hash Algorithm)
 - Related to MD4; used by NIST's Digital Signature
 - Produces 160-bit digest
 - SHA-1 may be better
- SHA-256, SHA-384, SHA-512
 - 256-, 384-, 512 hash functions designed to be use with the Advanced Encryption Standards (AES)
- Example:
 - MD5(There is \$1500 in the blue bo) = f80b3fde8ecbac1b515960b9058de7a1
 - MD5(There is \$1500 in the blue box) = a4a5471a0e019a4a502134d38fb64729

- Make keyed cryptographic checksums from keyless cryptographic checksums
- h be keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of bytes. k is cryptographic key of length b bytes (from k)
 - If short, pad with 0s' to make b bytes; if long, hash to length b
- ipad is 00110110 repeated b times
- opad is 01011100 repeated b times
- HMAC- $h(k, m) = h(k' \oplus opad || h(k' \oplus ipad || m))$

Protection Strength

- Unconditionally Secure
 - Unlimited resources + unlimited time
 - Still the plaintext CANNOT be recovered from the ciphertext
- Computationally Secure
 - Cost of breaking a ciphertext exceeds the value of the hidden information
 - The time taken to break the ciphertext exceeds the useful lifetime of the information

Key Size (bits)	Number of Alternative Keys	Time required at 10 ⁶ Decryption/µs
32	$2^{32} = 4.3 \times 10^9$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	10 hours
128	$2^{128} = 3.4 \times 10^{38}$	5.4 x 10 ¹⁸ years
168	$2^{168} = 3.7 \times 10^{50}$	5.9 x 10 ³⁰ years

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
 - Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other