
1

1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 7
October 11, 2007

Role based
Access Control

Take Grant Model

2

2

Objective
Define/understand/represent formally

Take grant model
Role-based Access Control model

Analyze/deduce (in TG or RBAC models)
stealing of permissions
Conspiracy
Static/Dynamic separation of duty

Understand key issue related to secure
interoperation

3

3

Access control in organizations is based on
“roles that individual users take on as part of
the organization”

Access depends on function, not identity
Example:

Allison is bookkeeper for Math Dept. She has access to
financial records. If she leaves and Betty is hired as the
new bookkeeper, Betty now has access to those records.
The role of “bookkeeper” dictates access, not the identity
of the individual.

Role Based Access Control
(RBAC)

4

4

RBAC

u1

u2

un

o1

o2

om

u1

u2

un

o1

o2

om

Role
r

n+ m
assignments

n×m
assignments

Users Permission Users Permissions

(a) (b)

Administrator

Employee

Engineer

Senior
Engineer

Senior
Administrator

Manager

Total number
Of assignments

Possible?

Total number
Of assignments

Possible?

5

5

Permissions

RBAC (NIST Standard)

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

role_sessions
(many-to-many)

PA

What model entity would relate to
the traditional notion of subject?

What model entity would relate to
the traditional notion of subject?

Total number of subjects possible?Total number of subjects possible?

Role vs Group?Role vs Group?

6

6

Core RBAC (relations)
Permissions = 2Operations x Objects

UA ⊆ Users x Roles

PA ⊆ Permissions x Roles

assigned_users: Roles →
2Users

assigned_permissions: Roles
→ 2Permissions

Op(p): set of operations
associated with permission p

Ob(p): set of objects
associated with permission p

user_sessions: Users → 2Sessions

session_user: Sessions → Users

session_roles: Sessions → 2Roles

session_roles(s) =
{r | (session_user(s), r) ∈ UA)}

avail_session_perms: Sessions →
2Permissions

7

7

Permissions

RBAC with Role Hierarchy

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

role_sessions
(many-to-many)

PA

RH
(role hierarchy)

8

8

RBAC with
General Role Hierarchy

authorized_users: Roles→ 2Users

authorized_users(r) = {u | r’ ≥ r &(r’, u) ∈ UA}

authorized_permissions: Roles→ 2Permissions

authorized_permissions(r) = {p | r ≥ r’ &(p, r’) ∈PA}

RH ⊆ Roles x Roles is a partial order
called the inheritance relation
written as ≥.

(r1 ≥ r2) → authorized_users(r1) ⊆ authorized_users(r2) &
authorized_permisssions(r2) ⊆ authorized_permisssions(r1)

What do these mean?What do these mean?

9

9

Example

A dm inistrator

E m ployee

E ngineer

Senior
E ngineer

Senior
A dm inistrator

M anager

px, py

p1, p2

pa, pb px, pye1, e2

px, pye3, e4

px, pye5

px, pye6, e7

px, pye8, e9

px, pye10

pm, pn

po

pp

authorized_users(Employee)?
authorized_users(Administrator)?
authorized_permissions(Employee)?
authorized_permissions(Administrator)?

authorized_users(Employee)?
authorized_users(Administrator)?
authorized_permissions(Employee)?
authorized_permissions(Administrator)?

10

10

Constrained RBAC

Permissions

Users Roles Operations Objects

Sessions

UA

user_sessions
(one-to-many)

PA

RH
(role hierarchy)Static

Separation
of Duty

Dynamic
Separation

of Duty

11

11

Static Separation of Duty

SSD ⊆2Roles x N
In absence of hierarchy

Collection of pairs (RS, n) where RS is a role set, n ≥ 2
for all (RS, n) ∈ SSD, for all t ⊆RS:

|t| ≥ n → ∩r∈t assigned_users(r)= ∅

In presence of hierarchy
Collection of pairs (RS, n) where RS is a role set, n ≥ 2;

for all (RS, n) ∈ SSD, for all t ⊆RS:
|t| ≥ n → ∩r∈t authorized_uers(r)= ∅

Describe!

Describe!

12

12

Dynamic Separation of Duty
DSD ⊆2Roles x N

Collection of pairs (RS, n) where RS is a role set,
n ≥ 2;

A user cannot activate n or more roles from RS
What is the difference between SSD or DSD
containing:

(RS, n)?

Consider (RS, n) = ({r1, r2, r3}, 2)?
If SSD – can r1, r2 and r3 be assigned to u?
If DSD – can r1, r2 and r3 be assigned to u?

13

13

Can we represent BLP using
RBAC?

L

M1

H

M2BLP RBAC?

14

14

Advantages of RBAC
Allows Efficient Security Management

Administrative roles, Role hierarchy
Principle of least privilege allows minimizing
damage
Separation of Duty constraints to prevent
fraud
Allows grouping of objects / users
Policy-neutral - Provides generality
Encompasses DAC and MAC policies

15

15

RBAC’s Benefits

16

16

Cost Benefits

Saves about 7.01 minutes per
employee, per year in administrative
functions

Average IT admin salary - $59.27 per
hour
The annual cost saving is:

$6,924/1000;
$692,471/100,000

How do we get this?How do we get this?

17

17

Take Grant Model

18

18

Take-Grant Protection Model

System is represented as a directed graph
Subject:
Object:
Labeled edge indicates the rights that the source
object has on the destination object

Four graph rewriting rules (“de jure”, “by
law”, “by rights”)

The graph changes as the protection state
changes according to these rules

Either:

19

19

Take rule

if t ∈γ, the take rule produces another
graph with a transitive edge α ⊆ β
added.

γ

α

βγ β
├├

x z y x z y

x takes (α to y) from z

20

20

Grant Rule

if g ∈γ, the grant rule produces another graph with a
transitive edge α ⊆ β added.

γ

α

βγ β
├├

x z y x z y

z grants (α to y) to x

21

21

Create and Remove
α

3. Create rule: ├├

x x y

x creates (α to new vertex) y

4. Remove rule: ├├
β -α

x y

β

x y

x removes (α to) y

22

22

Exercise

Write a function using HRU operations
that implement the

Take rule: call it TG_Take(??)
Grant rule: call it TG_Grant(??)

23

23

Take-Grant Protection Model:
Sharing

Given G0, can vertex x obtain α rights over y?
Can_share(α,x, y,G0) is true iff

G0├* Gn using the four rules, &
There is an α edge from x to y in Gn

tg-path: v0,…,vn with t or g edge between
any pair of vertices vi, vi+1

Vertices tg-connected if tg-path between them

Theorem: Any two subjects with tg-path of
length 1 can share rights

24

24

Any two subjects with tg-path of
length 1 can share rights

Four possible length
1 tg-paths

1. Take rule

2. Grant rule

3. Lemma 3.1?

4. Lemma 3.2?

{t} β ⊇ α

β ⊇ α{g}

β ⊇ α{t}

{g} β ⊇ α

Can_share(α, xx, , yy,G0)

x yz

25

25

Any two subjects with tg-path of
length 1 can share rights

Lemma 3.1
Sequence:

Create
Take
Grant
Take

β ⊇ α

α

{t}

Can_share(α, xx, , yy,G0)

g
tg

α

x y

β ⊇ α{t}

z

Now prove lemma 3.2!Now prove lemma 3.2!

26

26

Other definitions
Island: Maximal tg-connected subject-only
subgraph

Can_share all rights in island
Proof: Induction from previous theorem

Bridge: tg-path between subjects v0 and vn
with edges of the following form:

t→*, t←*
t→* g→ t←*
t→*, g←, t←*

27

27

Bridge

g tt

v0 vn α
By lemma 3.1

By grant By take

α
α

α

28

28

Theorem: Can_share(α,x,y,G0)
(for subjects)

Subject_can_share(α, x, y,G0) is true iff if x and y are
subjects and

there is an α edge from x to y in G0
OR if:
∃ a subject s ∈ G0 with an ss--to-yy α edge, and
∃ islands I1, …, In such that xx ∈ I1, s ∈ In, and there is
a bridge from Ij to Ij+1

x s α

α
α

α

yII11
II22

IInn

29

29

What about objects?
Initial, terminal spans

x initially spans to y if x is a subject and there
is a tg-path between them with t edges
ending in a g edge (i.e., t→*g→)

xx can grant a right to yy

x terminally spans to y if x is a subject and
there is a tg-path between them with t edges
(i.e., t→*)

xx can take a right from yy

30

30

Theorem:
Can_share(α,x,y,G0)

Can_share(α,x, y,G0) iff there is an α edge from x to y in G0 or if:
∃ a vertex ss ∈ G0 with an ss to yy α edge,
∃ a subject xx’’ such that xx’’=x=x or xx’’ initially spans to xx,
∃ a subject ss’’ such that ss’’=s=s or ss’’ terminally spans to ss, and
∃ islands II1, …, IIn such that xx’’ ∈ II1, ss’’ ∈ IIn, and there is a
bridge from Ij to Ij+1

x’ s’ α
α

α

α

yII11
II22

IInn

s

x

xx’’ can grant a right to can grant a right to xx ss’’ can take a right from can take a right from ss

31

31

Theorem: Can_share(α,x,y,G0)

Corollary: There is an O(|V|+|E|) algorithm to test
can_share:

Decidable in linear time!!

Protection state of the rules evolves
Following application on rules
Thus can characterize what set of states can be
generated

32

32

One example protection
problem

Sharing through a Trusted Entity
Let p and q be two processes
Let b be a buffer that they share to communicate
Let s be third party (e.g. operating system) that
controls b

g

g

q

b
s

rw
rw

rw

urw

vrw

g

g

q

s

urw

vrw

Witness
• S creates ({r, w}, to new object) b
• S grants ({r, w}, b) to p
• S grants ({r, w}, b) to q

p p

33

33

Theft in Take-Grant Model
Can_steal(α,x,y,G0) is true if there is no α edge from
x to y in G0 and ∃ sequence G1, …, Gn s. t.:

∃ α edge from x to y in Gn,,
∃ rules ρ1,…, ρn that take Gi-1├ ρi Gi , and
∀ v,w ∈ Gi, 1≤i<n, if ∃ α edge from v to y in G0 then ρi
is not “v grants (α to y) to w”

- Disallows owners of α rights to y from transferring
those rights

- Does not disallow them to transfer other rights
- Trojan horse??

34

34

A witness to theft

Can u receive (α to w)?
u cannot grant (α to w) to anybody

g

s

w

t

t

ααu

v

35

35

Conspiracy
Theft indicates cooperation: which subjects are
actors in a transfer of rights, and which are not?
Next question is

How many subjects are needed to enable
Can_share(α,x,y,G0)?

Note that a vertex x
Can pass rights to any vertex to which it initially spans

(t→*g→)
Can take rights from any vertex to which it terminally
spans

(t→*)

36

36

Conspiracy
Access set A(y) with focus y (y is subject) is union of

set of vertices y,
vertices to which y initially spans, and
vertices to which y terminally spans

Deletion set δ(y,y’): All z ∈ A(y) ∩ A(y’) for which
y initially spans to z and y’ terminally spans to z
y terminally spans to z and y’ initially spans to z
z=y & z=y’

37

37

Conspiracy

Conspiracy graph H of G0:
Represents the paths along which subjects can
transfer rights

For each subject in G0, there is a corresponding
vertex h(x) in H
if δ(y,y’) not empty, edge from h(y) to h(y’)

38

38

Example:
draw the conspiracy graph

t g g t

g

t
gt gg

a b c d

e

f h i j

x

y

z

r

How many minimum conspirators involved in Can_share(α,x,y,G0)?How many minimum conspirators involved in Can_share(α,x,y,G0)?

39

39

Policy Composition

40

40

Problem: Consistent Policies

Policies defined by different organizations
Different needs
But sometimes subjects/objects overlap

Can all policies be met?
Different categories

Build lattice combining them
Different security levels

Need to be levels – thus must be able to order
What if different DAC and MAC policies need to be
integrated?

41

41

Secure Interoperability

Principles of secure interoperation [Gong, 96]

Principle of autonomy
If an access is permitted within an individual system, it
must also be permitted under secure interoperation

Principle of security
If an access is not permitted within an individual system,
it must not be permitted under secure interoperation

Interoperation of secure systems can create
new security breaches

42

42

a

b

c
a

b

Secure Interoperability
(Example)

X

Y

Z

A

B C

D

X

Y

Z

A

B C

D

d

F12 = {a, b} F12 = {a, b, c, d}

1 1 22

(1) F12 = {a, b, d}
Direct access

(2) F12 = {c}
Indirect accessF12 - permitted access between

systems 1 and 2

43

43

Summary

RBAC is a promising approach
Lot of efforts currently expended for this

Take Grant
Restricted model – easy to analyze

but usefulness?

Secure interoperation
Growing problem

