IS 2150 / TEL 2810 Introduction to Security

James Joshi Assistant Professor, SIS

> Lecture 5 September 27, 2007

Security Policies Confidentiality Policies

Re-Cap

- Decidable vs Undecidable?
- Safety leakage of rights
- HRU results:
 - Systems with mono-operational commands
 - $k <= n^*(?)(?) + 1?$
 - Generic Safety problem
 - Turing machine ? Safety

Today's Objectives

- Understanding/defining security policy and nature of trust
- Overview of different policy models
- Understand and analyze the lattice structure
- Define/Understand existing Bell-LaPadula model
 - how lattice helps?

Security Policies

Security Policy

- Defines what it means for a system to be secure
- Formally: Partitions a system into
 - Set of secure (authorized) states
 - Set of non-secure (unauthorized) states
- Secure system is one that
 - Starts in authorized state
 - Cannot enter unauthorized state

Secure System - Example

- Is this Finite State Machine Secure?
 - A is start state ?
 - B is start state ?
 - C is start state ?
 - How can this be made secure if not?
 - Suppose A, B, and C are authorized states ?

Additional Definitions:

- Security breach: system enters an unauthorized state
- Let X be a set of entities, I be information.
 - / has confidentiality with respect to X if no member of X can obtain information on /
 - / has integrity with respect to X if all members of X trust
 - Trust *I*, its conveyance and storage (data integrity)
 - / maybe origin information or an identity (authentication)
 - / is a resource its integrity implies it functions as it should (assurance)
 - / has availability with respect to X if all members of X can access /
 - Time limits (quality of service)

Confidentiality Policy

- Also known as *information flow*
 - Transfer of rights
 - Transfer of information without transfer of rights
 - Temporal context
- Model often depends on trust
 - Parts of system where information *could* flow
 - Trusted entity must participate to enable flow
- Highly developed in Military/Government

Integrity Policy

- Defines how information can be altered
 - Entities allowed to alter data
 - Conditions under which data can be altered
 - Limits to change of data
- Examples:
 - Purchase over \$1000 requires signature
 - Check over \$10,000 must be approved by one person and cashed by another
 - Separation of duties : for preventing fraud
- Highly developed in commercial world

Trust

- Theories and mechanisms rest on some trust assumptions
- Administrator installs patch
 - 1. Trusts patch came from vendor, not tampered with in transit
 - 2. Trusts vendor tested patch thoroughly
 - Trusts vendor's test environment corresponds to local environment
 - 4. Trusts patch is installed correctly

Trust in Formal Verification

- Formal verification provides a formal mathematical proof that given input *i*, program *P* produces output *o* as specified
- Suppose a security-related program S formally verified to work with operating system O
- What are the assumptions?

Security Mechanism

- Policy describes what is allowed
- Mechanism
 - Is an entity/procedure that enforces (part of) policy
- Example Policy: Students should not copy homework
 - Mechanism: Disallow access to files owned by other users

Security Model

- A model that represents a particular policy or set of policies
 - Abstracts details relevant to analysis
 - Focus on specific characteristics of policies
 - E.g., Multilevel security focuses on information flow control

Security policies

- Military security policy
 - Focuses on confidentiality
- Commercial security policy
 - Primarily Integrity
 - Transaction-oriented
 - Begin in consistent state
 - "Consistent" defined by specification
 - Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to beginning (consistent) state

Access Control

- Discretionary Access Control (DAC)
 - Owner determines access rights
 - Typically *identity-based access control*: Owner specifies other users who have access
- Mandatory Access Control (MAC)
 - Rules specify granting of access
 - Also called *rule-based access control*

Access Control

- Originator Controlled Access Control (ORCON)
 - Originator controls access
 - Originator need not be owner!
- Role Based Access Control (RBAC)
 - Identity governed by role user assumes

Lattice Confidentiality Policies

- Sets
 - Collection of unique elements
 - Let S, T be sets
 - Cartesian product: S x T = {(a, b) | a ∈ A, b ∈ B}
 - A set of order pairs
- Binary relation R from S to T is a subset of S x T
- Binary relation R on S is a subset of S x S

- If $(a, b) \in R$ we write aRb
 - Example:
 - R is "less than equal to" (\leq)

- Example of R on S is {(1, 1), (1, 2), (1, 3), ????)
- (1, 2) $\in R$ is another way of writing 1 \leq 2

- Properties of relations
 - Reflexive:
 - if aRa for all $a \in S$
 - Anti-symmetric:
 - if aRb and bRa implies a = b for all $a, b \in S$
 - Transitive:
 - if a R b and b R c imply that a R c for all a, b, $c \in S$
 - Exercise:
 - Which properties hold for "less than equal to" (≤)?
 - Draw the Hasse diagram
 - Captures all the relations

- Total ordering:
 - when the relation orders all elements
 - E.g., "less than equal to" (≤) on natural numbers
- Partial ordering (poset):
 - the relation orders only some elements not all
 - E.g. "less than equal to" (≤) on complex numbers; Consider (2 + 4i) and (3 + 2i)

• Upper bound $(u, a, b \in S)$

- *u* is an upper bound of *a* and *b* means *aRu* and *bRu*
- Least upper bound : lub(a, b) closest upper bound
- Lower bound ($l, a, b \in S$)
 - *l* is a lower bound of a and b means *lRa* and *lRb*
 - Greatest lower bound : glb(a, b) closest lower bound

- A lattice is the combination of a set of elements S and a relation R meeting the following criteria
 - R is reflexive, antisymmetric, and transitive on the elements of S
 - For every $s, t \in S$, there exists a greatest lower bound
 - For every $s, t \in S$, there exists a lowest upper bound
- Some examples
 - $S = \{1, 2, 3\} \text{ and } R = \leq ?$
 - $S = \{2+4i; 1+2i; 3+2i, 3+4i\}$ and $R = \leq ?$

Confidentiality Policy

- Also known as information flow policy
 - Integrity is secondary objective
 - Eg. Military mission "date"
- Bell-LaPadula Model
 - Formally models military requirements
 - Information has sensitivity levels or classification
 - Subjects have clearance
 - Subjects with clearance are allowed access
 - Multi-level access control or mandatory access control

Bell-LaPadula: Basics

- Mandatory access control
 - Entities are assigned security levels
 - Subject has security clearance $L(s) = I_s$
 - Object has security classification $L(O) = I_O$
 - Simplest case: Security levels are arranged in a linear order $I_i < I_{i+1}$
- Example

Top secret > Secret > Confidential > Unclassified

"No Read Up"

- Information is allowed to flow up, not down
- Simple security property:
 - s can read o if and only if
 - $I_o \leq I_s$ and
 - s has discretionary read access to o
 - Combines mandatory (security levels) and discretionary (permission required)
 - Prevents subjects from reading objects at higher levels (*No Read Up rule*)

"No Write Down"

- Information is allowed to flow up, not down
- *property
 - s can write o if and only if
 - $I_s \leq I_o$ and
 - s has write access to o
 - Combines mandatory (security levels) and discretionary (permission required)
 - Prevents subjects from writing to objects at lower levels (*No Write Down rule*)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can *read* which objects? And *write*?
- Claire cannot read which objects? And *write*?
- Ulaley can *read* which objects? And *write*?

Access Rules

- Secure system:
 - One in which both the properties hold
- Theorem:
 - Let Σ be a system with secure initial state σ_0 ,
 - *T* be a set of state transformations
 - If every element of *T* follows rules, every state σ_i secure
 - Proof induction

Categories

- Total order of classifications not flexible enough
 - Alice cleared for missiles; Bob cleared for warheads; Both cleared for targets
- Solution: Categories
 - Use set of compartments (from power set of compartments)
 - Enforce "need to know" principle
 - Security levels (security level, category set)
 - (Top Secret, {Nuc, Eur, Asi})
 - (Top Secret, {Nuc, Asi})

Lattice of categories

- Combining with clearance:
 - (L, C) dominates $(L', C) \Leftrightarrow L' \leq L'$ L and $C' \subseteq C$
 - Induces lattice of security levels
- Examples of levels
 - (Top Secret, {Nuc,Asi}) dom (Secret, {Nuc}) ?
 - (Secret, {Nuc, Eur}) dom (Topsecret, {Nuc,Eur}) ?
 - (Top Secret, {Nuc}) dom
 (Confidential, {Eur}) ?

Exercise: Hesse diagram for: compartments: NUC, US, EU;

Exercise: Hesse diagram for: Security levels: TS, S, C Compartments US, EU;

Access Rules

- *Simple Security Condition*: *S* can read *O* if and only if
 - S dominate O and
 - S has read access to O
- *-Property: S can write O if and only if
 - O dom S and
 - S has write access to O
- Secure system: One with above properties
- Theorem: Let Σ be a system with secure initial state σ_0 , T be a set of state transformations
 - If every element of T follows rules, every state σ_i secure

Communication across level

- Communication is needed between
 - Subject at higher level and a subject at the lower levels
 - Need write down to a lower object
- One mechanism
 - Subjects have max and current levels
 - max must dominate current
 - Subjects decrease clearance level

Read & write

Conventional use

- "Read" allowing information to flow from object being read to the subject reading
 - Read includes Execute
- "Write" allowing information to flow from the subject writing to the object being written
 - Write includes Append
- Could change based on the requirement and the model instantiated based on that.

Problem: No write-down

Cleared subject can't communicate to non-cleared subject

- Any write from l_i to l_k , i > k, would violate *-property
 - Subject at l_i can only write to l_i and above
- Any read from l_k to l_i, i > k, would violate simple security property
 - Subject at l_k can only read from l_k and below
- Subject at level l_i can't write something readable by subject at l_k
 - Not very practical

Principle of Tranquility

- Should we change classification levels?
- Raising object's security level
 - Information once available to some subjects is no longer available
 - Usually assumes information has already been accessed
 - Simple security property violated? Problem?
Principle of Tranquility

- Lowering object's security level
 - Simple security property violated?
 - The declassification problem
 - Essentially, a "write down" violating *-property
 - Solution: define set of trusted subjects that sanitize or remove sensitive information before security level is lowered

Types of Tranquility

- Strong Tranquility
 - The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- Weak Tranquility
 - The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Example

- DG/UX System
 - Only a trusted user (security administrator) can lower object's security level
 - In general, process MAC labels cannot change
 - If a user wants a new MAC label, needs to initiate new process
 - Cumbersome, so user can be designated as able to change process MAC label within a specified range

DG/UX Labels

Lowest upper bound: IMPL_HIGreatest lower bound: IMPL_LO

DG/UX

- Once you login
 - MAC label that of user in Authorization and Authentication (A&A) Databases
- When a process begins
 - It gets its parent's MAC label
- Reading up and writing up not allowed

DG/UX

- S:MAC_A creates O
 - If O:MAC_B already exists
 - Fails if MAC_B dom MAC_A
- Creating files in a directory
 - Only programs with the same level as the directory can create files in the directory
 - Problems with /tmp and /var/mail
 - Solution: use multilevel directory:
 - a directory with a subdirectory for each level (hidden)
 - If process with MAC_A creates a file put in subdirecotry with label MAC_A
 - Reference to parent directory of a file refers to the hidden directory

DG/UX

Provides a range of MAC labels

- Called MAC Tuples: [Lower, Upper]
 - [(S, {Europe}), (TS, {Europe})]
 - [(S, Ø), (TS, {Nuclear, Europe, Asia})]
 - Objects can have a tuple as well as a required MAC label
 - Tuple overrides
 - A process can read an object if its MAC label grants it read access to the upper bound
 - A process can read an object if its MAC label grants it write access to the lower bound

Multiview Model of MLS

44

Biba's Integrity Policy Model

- Based on Bell-LaPadula
 - Subject, Objects have
 - Integrity Levels with dominance relation
 - Higher levels
 - more reliable/trustworthy
 - More accurate

Biba's model

- Strict Integrity Policy (dual of Bell-LaPadula)
 - s can read $o \leftrightarrow i(s) \leq i(o)$ (no read-down)
 - s can write $o \leftrightarrow i(o) \leq i(s)$ (no write-up)
 - s_1 can execute $s_2 \leftrightarrow i(s_2) \leq i(s_1)$

Low-water-mark

- Low-Water-Mark Policy
 - *s* can write $o \leftrightarrow i(o) \leq i(s)$
 - prevents writing to higher level
 - s reads $o \rightarrow i'(s) = min(i(s), i(o))$
 - drops subject's level
 - *s*₁ can execute *s*₂ ↔ *i*(*s*₂) ≤ *i*(*s*₁)
 Why?

Summary

- Trust assumptions should be properly understood
- Lattice structure provides basis for representing information flow or confidentiality policies

Need to know

Biba's integrity model is dual of BLP