
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 4
September 20, 2007

Access Control Model
Foundational Results



2

Back to ..
Access Control Matrix



3

Protection System
State of a system

Current values of 
memory locations, registers, secondary storage, etc.
other system components

Protection state (P)
A system state that is considered secure

A protection system 
Captures the conditions for state transition
Consists of two parts:

A set of generic rights
A set of commands



4

Protection System

Subject (S: set of all subjects)
Eg.: users, processes, agents, etc.

Object (O: set of all objects)
Eg.:Processes, files, devices

Right (R: set of all rights)
An action/operation that a subject is 
allowed/disallowed on objects
Access Matrix A: a[s, o] ⊆R

Set of Protection States: (S, O, A)
Initial state X0 = (S0, O0, A0)



5

State Transitions

XiXi Xi+1Xi+1

τi+1

Xi ├τi+1 Xi+1 : upon transition τi+1, the 
system moves from state Xi to Xi+1

X ├* Y : the system moves from 
state X to Y after a set of transitions XX YY

*

XiXi Xi+1Xi+1

ci+1 (pi+1,1, pi+1,2, …, pi+1,m)
Xi ├ ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : 
state transition upon a command

For every command there is a sequence 
of state transition operations



6

Primitive commands (HRU)

Deletes column from ACMDestroy object o

Deletes row, column from ACM;Destroy subject s

Removes r right from subject s over object  oDelete r from a[s, o]

Adds r right for subject s over object  o
Ineffective if r is already there

Enter r into a[s, o]

Creates new column in ACM
o does not exist prior to this

Create object o

Creates new row, column in ACM; 
s does not exist prior to this

Create subject s



7

Primitive commands (HRU)
Creates new row, column in ACM; 
s does not exist prior to this

Create subject s

Precondition: s ∉ S
Postconditions:
S´ = S ∪{ s }, O´ = O ∪{ s }

(∀y ∈ O´)[a´[s, y] = ∅] (row entries for s)

(∀x ∈ S´)[a´[x, s] = ∅] (column entries for s)

(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

Precondition: Precondition: ss ∉∉ SS
PostconditionsPostconditions::
S´ = S ∪{ s }, O´ = O ∪{ s }

(∀y ∈ O´)[a´[s, y] = ∅] (row entries for s)

(∀x ∈ S´)[a´[x, s] = ∅] (column entries for s)

(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]



8

Primitive commands (HRU)
Adds r right for subject s over object  o
Ineffective if r is already there

Enter r into a[s, o]

Precondition: s ∈ S, o ∈ O
Postconditions:
S´ = S, O´ = O

a´[s, o] = a[s, o] ∪ { r }

(∀x ∈ S´)(∀y ∈ O´) 

[(x, y)≠(s, o) → a´[x, y] = a[x, y]]

Precondition: Precondition: ss ∈∈ SS, , oo ∈∈ OO
PostconditionsPostconditions::
S´ = S, O´ = O

a´[s, o] = a[s, o] ∪ { r }

(∀x ∈ S´)(∀y ∈ O´) 

[(x, y)≠(s, o) → a´[x, y] = a[x, y]]



9

System commands

[Unix] process p creates file f with 
owner read and write (r, w) will be 
represented by the following:

Command create_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]

End



10

System commands

Process p creates a new process q
Command spawn_process(p, q)

Create subject q;
Enter own into a[p,q]
Enter r into a[p,q]
Enter w into a[p,q]
Enter r into a[q,r]
Enter w into a[q,r]

End

Parent and child can
signal each other
Parent and child can
signal each other



11

System commands

Defined commands can be used to update 
ACM

Command make_owner(p, f)
Enter own into a[p,f]

End

Mono-operational: 
the command invokes only one primitive



12

Conditional Commands

Mono-operational + mono-
conditional

Command grant_read_file(p, f, q)
If own in a[p,f]
Then 

Enter r into a[q,f]
End



13

Conditional Commands

Mono-operational + biconditional
Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]
Then 

Enter r into a[q,f]
End

Why not “OR”??



14

Fundamental questions

How can we determine that a system is 
secure?

Need to define what we mean by a system 
being “secure”

Is there a generic algorithm that allows 
us to determine whether a computer 
system is secure?



15

What is a secure system?
A simple definition

A secure system doesn’t allow violations of a security 
policy

Alternative view: based on distribution of rights to 
the subjects

Leakage of rights: (unsafe with respect to right r)
Assume that A representing a secure state does not 
contain a right r in any element of A.
A right r is said to be leaked, if a sequence of 
operations/commands adds r to an element of A, 
which did not contain r



16

What is a secure system?

Safety of a system with initial protection 
state Xo

Safe with respect to r:  System is safe with 
respect to r if r can never be leaked
Else it is called unsafe with respect to right 
r.



17

Safety Problem: 
formally

Given
initial state X0 = (S0, O0, A0)
Set of primitive commands c
r is not in A0[s, o]

Can we reach a state Xn where 
∃s,o such that An[s,o] includes a right r not 
in A0[s,o]?

- If so, the system is not safe
- But is “safe” secure?



18

Undecidable Problems

Decidable Problem
A decision problem can be solved by an 
algorithm that halts on all inputs in a finite 
number of steps. 

Undecidable Problem
A problem that cannot be solved for all 
cases by any algorithm whatsoever



19

Decidability Results
(Harrison, Ruzzo, Ullman)

Theorem:
Given a system where each command consists of 
a single primitive command (mono-operational), 
there exists an algorithm that will determine if a 
protection system with initial state X0 is safe with 
respect to right r.



20

Decidability Results
(Harrison, Ruzzo, Ullman)

Proof:  determine minimum commands k to leak
Delete/destroy:  Can’t leak (or be detected)
Create/enter:  new subjects/objects “equal”, so treat 
all new subjects as one

No test for absence
Tests on A[s1, o1] and A[s2, o2] have same result as the same tests 
on A[s1, o1] and A[s1, o2] = A[s1, o2] ∪A[s2, o2]

If n rights leak possible, must be able to leak k= 
n(|S0|+1)(|O0|+1)+1 commands
Enumerate all possible states to decide



21

Decidability Results
(Harrison, Ruzzo, Ullman)

It is undecidable if a given state of a 
given protection system is safe for a 
given generic right
For proof – need to know Turing 
machines and halting problem



22

Turing Machine & halting 
problem

The halting problem: 
Given a description of an algorithm and a Given a description of an algorithm and a 
description of its initial arguments, description of its initial arguments, 
determine whether the algorithm, when determine whether the algorithm, when 
executed with these arguments, ever halts executed with these arguments, ever halts 
(the alternative is that it runs forever (the alternative is that it runs forever 
without halting). without halting). 



23

Turing Machine & Safety 
problem

Theorem: It is undecidable if a given state of 
a given protection system is safe for a given 
generic right
Reduce TM to Safety problem

If Safety problem is decidable then it implies that 
TM halts (for all inputs) – showing that the halting 
problem is decidable (contradiction)

TM is an abstract model of computer
Alan Turing in 1936



24

Turing Machine

TM consists of
A tape divided into cells; infinite in one 
direction
A set of tape symbols M

M contains a special blank symbol b
A set of states K
A head that can read and write symbols 
An action table that tells the machine 
how to transition

What symbol to write
How to move the head (‘L’ for left and 
‘R’ for right)
What is the next state

A B C …

head

Current state is k
Current symbol is C

D



25

Turing Machine

Transition function δ(k, m) = 
(k′, m′, L):

in state k, symbol m on tape 
location is replaced by symbol 
m′, 
head moves to left one square, 
and TM enters state k′

Halting state is qf
TM halts when it enters this 
state

A B C …

head

Current state is k
Current symbol is C

D

Let δ(k, C) = (k1, X, R)
where k1 is the next state
Let δ(k, C) = (k1, X, R)
where k1 is the next state



26

Turing Machine
1 2 3 4

Let δ(k, C) = (k1, X, R)
where k1 is the next state

A B C …

head

Current state is k
Current symbol is C

D A B X …

1 2 3 4

head

D

A B ? …

1 2 3 4

head

?

Let δ(k1, D) = (k2, Y, L)
where k2 is the next state

?

?



27

TM2Safety
Reduction 

Proof:  Reduce TM to safety 
problem 

Symbols, States ⇒ rights
Tape cell ⇒ subject
Cell si has A ⇒ si has A rights on 
itself
Cell sk ⇒ sk has end rights on itself
State p, head at si ⇒ si has p rights 
on itself
Distinguished Right own:  

si owns si+1 for 1 ≤ i < k

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k
Current symbol is C

D

1 2 3 4



28

Command Mapping
(Left move)

δ(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k
Current symbol is C

D

1 2 3 4

δ(k, C) = (k1, X, L)δ(k, C) = (k1, X, L)



29

Command Mapping
(Left move)

δ(k, C) = (k1, X, L)

If head is not in leftmost
command ck,C(si, si-1)
if own in a[si-1, si] and k in a[si, si] 

and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si-1, si-1];

End

s1 s2 s3 s4

s4

s3

s2

s1 A

B k1

X

D end

own

own

own

A B X …

1 2 4

head
Current state is k1

Current symbol is D

D

1 2 3 4

δ(k, C) = (k1, X, L)δ(k, C) = (k1, X, L)

If head is in leftmost both si, si-1are s1If head is in leftmost both si, si-1are s1



30

Command Mapping
(Right move)

δ(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

own

A B C …

1 2 4

head
Current state is k
Current symbol is C

D

1 2 3 4

δ(k, C) = (k1, X, R)δ(k, C) = (k1, X, R)



31

Command Mapping
(Right move)

δ(k, C) = (k1, X, R)

command ck,C(si, si+1)
if own in a[si, si+1] and k in

a[si, si] and C in a[si, si]
then

delete k from A[si,si];
delete C from A[si,si];
enter X into A[si,si];
enter k1 into A[si+1, si+1];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B C …

1 2 4

head
Current state is k1

Current symbol is C

D

1 2 3 4

δ(k, C) = (k1, X, R)δ(k, C) = (k1, X, R)



32

Command Mapping
(Rightmost move)

δ(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own

A B X …

1 2 4

head
Current state is k1

Current symbol is C

D

1 2 3 4

δ(k1, C) = (k2, Y, R)δ(k1, C) = (k2, Y, R)



33

Command Mapping
(Rightmost move)

δ(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(si,si+1)
if end in a[si,si] and k1 in a[si,si] and D 

in a[si,si]
then

delete end from a[si,si];
create subject si+1;
enter own into a[si,si+1];
enter end into a[si+1, si+1];
delete k1 from a[si,si];
delete D from a[si,si];
enter Y into a[si,si];
enter k2 into A[si,si];

end

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own

A B X …

1 2 4

head
Current state is k1

Current symbol is D

D

1 2 3 4

δ(k1, D) = (k2, Y, R)δ(k1, D) = (k2, Y, R)

b k1end

own

s5

s5



34

Rest of Proof
Protection system exactly simulates a TM

Exactly 1 end right in ACM
Only 1 right corresponds to a state
Thus, at most 1 applicable command in 
each configuration of the TM

If TM enters state qf, then right has leaked
If safety question decidable, then represent 
TM as above and determine if qf leaks

Leaks halting state ⇒ halting state in the 
matrix ⇒ Halting state reached

Conclusion: safety question undecidable



35

Other results
For protection system without the create primitives, (i.e., delete 
create primitive); the safety question is complete in P-SPACE
It is undecidable whether a given configuration of a given 
monotonic protection system is safe for a given generic right

Delete destroy, delete primitives; 
The system becomes monotonic as they only increase in size 
and complexity

The safety question for biconditional monotonic protection 
systems is undecidable
The safety question for monoconditional, monotonic protection 
systems is decidable
The safety question for monoconditional protection systems 
with create, enter, delete (and no destroy) is decidable.
Observations

Safety is undecidable for the generic case
Safety becomes decidable when restrictions are applied


