IS 2150 / TEL 2810 Introduction to Security

James Joshi Assistant Professor, SIS

> Lecture 4 September 20, 2007

Access Control Model Foundational Results

Back to .. Access Control Matrix

Protection System

- State of a system
 - Current values of
 - memory locations, registers, secondary storage, etc.
 - other system components
- Protection state (P)
 - A system state that is considered secure
- A protection system
 - Captures the conditions for state transition
 - Consists of two parts:
 - A set of generic rights
 - A set of commands

Protection System

- Subject (S: set of all subjects)
 - Eg.: users, processes, agents, etc.
- Object (O: set of all objects)
 - Eg.:Processes, files, devices
- Right (R: set of all rights)
 - An action/operation that a subject is allowed/disallowed on objects
 - Access Matrix A: $a[s, o] \subseteq R$
- Set of Protection States: (S, O, A)
 - Initial state $X_0 = (S_{0'}, O_{0'}, A_0)$

State Transitions

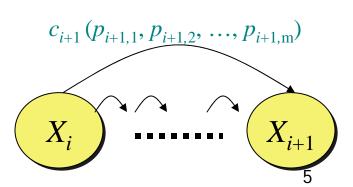
 $X_i \vdash \tau_{i+1} X_{i+1}$: upon transition τ_{i+1} , the system moves from state X_i to X_{i+1}

 $X \vdash^* Y$: the system moves from state X to Y after a set of transitions

*
X
Y

 X_i

 $X_i \vdash c_{i+1} (p_{i+1,1}, p_{i+1,2}, ..., p_{i+1,m}) X_{i+1}$: state transition upon a command For every command there is a sequence of state transition operations



Primitive commands (HRU)

Create subject s	Creates new row, column in ACM; s does not exist prior to this	
Create object o	Creates new column in ACM o does not exist prior to this	
Enter r into $a[s, o]$	Adds r right for subject s over object o Ineffective if r is already there	
Delete r from $a[s, o]$	Removes r right from subject s over object o	
Destroy subject s	Deletes row, column from ACM;	
Destroy object o	Deletes column from ACM	

Primitive commands (HRU)

Create subject s

Creates new row, column in ACM; s does not exist prior to this

Precondition: $s \notin S$

Postconditions:

$$S' = S \cup \{ s \}, O' = O \cup \{ s \}$$

$$(\forall y \in O')[a'[s, y] = \emptyset]$$
 (row entries for s)

$$(\forall x \in S')[a'[x, s] = \emptyset]$$
 (column entries for s)

$$(\forall x \in S)(\forall y \in O)[a^{\cdot}[x, y] = a[x, y]]$$

Primitive commands (HRU)

Enter r into a[s, o]

Adds r right for subject s over object o Ineffective if r is already there

Precondition: $s \in S$, $o \in O$

Postconditions:

$$S' = S_i O' = O$$

$$a'[s, o] = a[s, o] \cup \{r\}$$

$$(\forall x \in S')(\forall y \in O')$$

$$[(x, y) \neq (s, o) \rightarrow a'[x, y] = a[x, y]]$$

System commands

[Unix] process p creates file f with owner read and write (r, w) will be represented by the following:

```
Command create\_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]
End
```


System commands

Process p creates a new process q

```
Command spawn\_process(p, q)

Create subject q;

Enter own into a[p,q]

Enter r into a[p,q]

Enter w into a[p,q]

Enter r into a[q,r]

Enter w into a[q,r]

Parent and child can signal each other

End
```


System commands

 Defined commands can be used to update ACM

```
Command make\_owner(p, f)
Enter own into a[p,f]
End
```

- Mono-operational:
 - the command invokes only one primitive

Conditional Commands

Mono-operational + monoconditional

```
Command grant_read_file(p, f, q)

If own in a[p,f]

Then

Enter r into a[q,f]

End
```


Conditional Commands

Mono-operational + biconditional

```
Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]

Then

Enter r into a[q,f]

End
```

Why not "OR"??

Fundamental questions

- How can we determine that a system is secure?
 - Need to define what we mean by a system being "secure"
- Is there a generic algorithm that allows us to determine whether a computer system is secure?

What is a secure system?

- A simple definition
 - A secure system doesn't allow violations of a security policy
- Alternative view: based on distribution of rights to the subjects
 - Leakage of rights: (unsafe with respect to right r)
 - Assume that A representing a secure state does not contain a right r in any element of A.
 - A right r is said to be leaked, if a sequence of operations/commands adds r to an element of A, which did not contain r

What is a secure system?

- Safety of a system with initial protection state X_o
 - Safe with respect to r: System is safe with respect to r if r can never be leaked
 - Else it is called unsafe with respect to right

Safety Problem: formally

- initial state $X_O = (S_O, O_O, A_O)$
- Set of primitive commands c
- r is not in $A_0[s, o]$
- Can we reach a state X_n where
 - $\exists s,o$ such that $A_n[s,o]$ includes a right r not in $A_o[s,o]$?
 - If so, the system is not safe
 - But is "safe" secure?

Undecidable Problems

Decidable Problem

- A decision problem can be solved by an algorithm that halts on all inputs in a finite number of steps.
- Undecidable Problem
 - A problem that cannot be solved for all cases by any algorithm whatsoever

Decidability Results (Harrison, Ruzzo, Ullman)

Theorem:

• Given a system where each command consists of a single *primitive* command (mono-operational), there exists an algorithm that will determine if a protection system with initial state X₀ is safe with respect to right r.

- Proof: determine minimum commands k to leak
 - Delete/destroy: Can't leak (or be detected)
 - Create/enter: new subjects/objects "equal", so treat all new subjects as one
 - No test for absence
 - Tests on A[s₁, o₁] and A[s₂, o₂] have same result as the same tests on A[s₁, o₁] and A[s₁, o₂] = A[s₁, o₂] \cup A[s₂, o₂]
 - If *n* rights leak possible, must be able to leak k= $n(|S_0|+1)(|O_0|+1)+1$ commands
 - Enumerate all possible states to decide

Decidability Results (Harrison, Ruzzo, Ullman)

- It is undecidable if a given state of a given protection system is safe for a given generic right
- For proof need to know Turing machines and halting problem

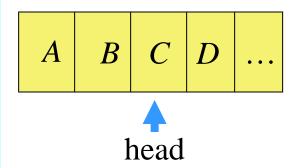
The halting problem:

 Given a description of an algorithm and a description of its initial arguments, determine whether the algorithm, when executed with these arguments, ever halts (the alternative is that it runs forever without halting).

- Theorem: It is undecidable if a given state of a given protection system is safe for a given generic right
- Reduce TM to Safety problem
 - If Safety problem is decidable then it implies that TM halts (for all inputs) – showing that the halting problem is decidable (contradiction)
- TM is an abstract model of computer
 - Alan Turing in 1936

Turing Machine

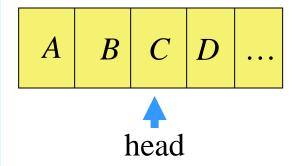
- TM consists of
 - A tape divided into cells; infinite in one direction
 - A set of tape symbols M
 - M contains a special blank symbol b
 - A set of states K
 - A head that can read and write symbols
 - An action table that tells the machine how to transition
 - What symbol to write
 - How to move the head ('L' for left and 'R' for right)
 - What is the next state



Current state is *k*Current symbol is *C*

Turing Machine

- Transition function $\delta(k, m) = (k', m', L)$:
 - in state k, symbol m on tape location is replaced by symbol m',
 - head moves to left one square, and TM enters state k'
- Halting state is q_f
 - TM halts when it enters this state

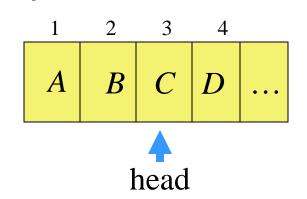


Current state is *k*Current symbol is *C*

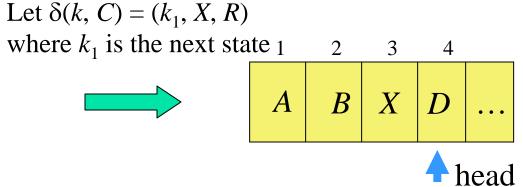
Let $\delta(k, C) = (k_1, X, R)$ where k_1 is the next state

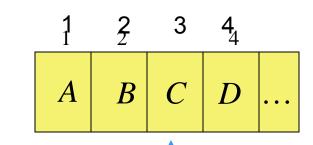
4

Turing Machine



Current state is *k*Current symbol is *C*





Current state is *k*

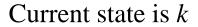
Current symbol is *C*

Proof: Reduce TM to safety problem

- Symbols, States ⇒ rights
- Tape cell ⇒ subject
- Cell s_i has $A \Rightarrow s_i$ has A rights on itself
- Cell $s_k \Rightarrow s_k$ has end rights on itself
- State p, head at $s_i \Rightarrow s_i$ has p rights on itself
- Distinguished Right own:
 - S_i owns $S_i + 1$ for $1 \le i < k$

	s_1	s_2	s_3	<i>s</i> ₄	
s_1	A	own			
s_2		В	own		
s_3			C k	own	
S_4				D end	

Command Mapping (Left move)



Current symbol is *C*

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

$$\delta(k, C) = (k_1, X, L)$$

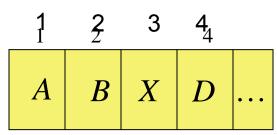
If head is not in leftmost

command
$$c_{k,C}(s_i, s_{i-1})$$

if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$
and C in $a[s_i, s_i]$
then
delete k from $A[s_i, s_i]$;
delete C from $A[s_i, s_i]$;
enter X into $A[s_i, s_i]$;
enter k_1 into $A[s_{i-1}, s_{i-1}]$;

	s_1	s_2	s_3	S_4	
s_1	A	own			
s_2		В	own		
s_3			C k	own	
s_4				D end	

Command Mapping (Left move)



Current state is k_1

Current symbol is *D* head

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{L})$$

$$\delta(k, C) = (k_1, X, L)$$

If head is not in leftmost

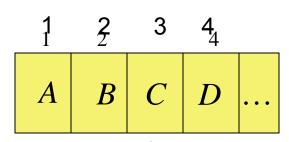
command
$$c_{k,C}(s_i, s_{i-1})$$

if own in $a[s_{i-1}, s_i]$ and k in $a[s_i, s_i]$
and C in $a[s_i, s_i]$
then
delete k from $A[s_i, s_i]$;
delete C from $A[s_i, s_i]$;
enter X into $A[s_i, s_i]$;
enter k_1 into $A[s_{i-1}, s_{i-1}]$;

If head is in leftmost both s_i , s_{i-1} are s_1

	s_1	s_2	s_3	S_4	
s_1	A	own			
s_2		$\mathbf{B} k_1$	own		
s_3			X	own	
S_4				D end	

Command Mapping (Right move)



Current state is *k*

Current symbol is *C*

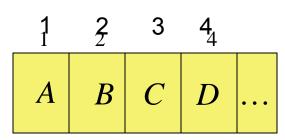
$$\delta(k, C) = (k_1, X, R)$$

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$$

command $c_{k,C}(s_i, s_{i+1})$
if own in $a[s_i, s_{i+1}]$ and k in
$a[s_i, s_i]$ and C in $a[s_i, s_i]$
then
delete k from $A[s_i,s_i]$;
delete C from $A[s_i, s_i]$;
enter X into $A[s_i,s_i]$;
enter k_1 into $A[s_{i+1}, s_{i+1}];$
end

	s_1	s_2	s_3	S_4	
s_1	A	own			
s_2		В	own		
s_3			C k	own	
s_4				D end	

Command Mapping (Right move)



Current state is k_1

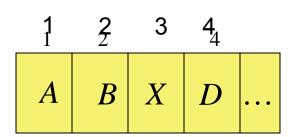
Current symbol is *C*

$$\delta(k, C) = (k_1, X, R)$$

$$\delta(k, \mathbf{C}) = (k_1, \mathbf{X}, \mathbf{R})$$

command $c_{k,C}(s_i, s_{i+1})$
if own in $a s_i, s_{i+1} $ and k in
$a[s_i, s_i]$ and C in $a[s_i, s_i]$
then
delete k from $A[s_i,s_i]$;
delete C from $A[s_i, s_i]$;
enter X into $A[s_i, s_i]$;
enter k_1 into $A[s_{i+1}, s_{i+1}];$
end

s_1	s_2	s_3	S_4	
A	own			
	В	own		
		X	own	
			$D k_1$ end	
		A own	A own B own	A own B own X own



Current state is k_1

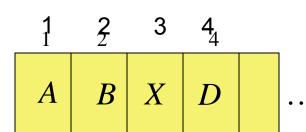
Current symbol is *C*

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, \mathbf{C}) = (k_2, \mathbf{Y}, \mathbf{R})$$

command crightmost _{k,C} (s_i , s_{i+1}) if end in $a[s_i$, s_i] and k_1 in $a[s_i$, s_i] and D
in $a[s_i,s_i]$
then
delete end from $a[s_i,s_i]$;
create subject s_{i+1} ;
enter own into $a[s_i, s_{i+1}];$
enter end into $a[s_{i+1}, s_{i+1}];$
delete k_1 from $a[s_i,s_i];$
delete D from $a[s_i,s_i];$
enter Y into $a[s_i, s_i]$;
enter k_2 into $A[s_i,s_i]$;
end

s_3	S_4	
\imath		
own		
X	own	
	$D k_1$ end	
	own	own X own



Current state is k_1

Current symbol is *D*

$$\delta(k_1, D) = (k_2, Y, R)$$
 at end becomes

$$\delta(k_1, D) = (k_2, Y, R)$$

command crightmost _{k,C} (s_i , s_{i+1}) if end in $a[s_i$, $s_i]$ and k_1 in $a[s_i$, $s_i]$ and D
if end in $a[s_i,s_i]$ and k_1 in $a[s_i,s_i]$ and D
in $a[s_i,s_i]$
then
delete end from $a[s_i,s_i]$;
create subject s_{i+1} ;
enter own into $a[s_i, s_{i+1}];$
enter end into $a[s_{i+1}, s_{i+1}];$
delete k_1 from $a[s_i,s_i]$;
delete D from $a[s_i, s_i]$;
enter Y into $a[s_i, s_i]$;
enter k_2 into $A[s_i,s_i]$;
end

	s_1	s_2	s_3	S_4	s_5
s_1	A	own			
s_2		В	own		
s_3			X	own	
S_4				Y	own
<i>S</i> ₅					$b k_1$ end

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - Only 1 right corresponds to a state
 - Thus, at most 1 applicable command in each configuration of the TM
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Leaks halting state ⇒ halting state in the matrix ⇒ Halting state reached
- Conclusion: safety question undecidable

Other results

- For protection system without the create primitives, (i.e., delete create primitive); the safety question is complete in P-SPACE
- It is undecidable whether a given configuration of a given monotonic protection system is safe for a given generic right
 - Delete destroy, delete primitives;
 - The system becomes monotonic as they only increase in size and complexity
- The safety question for biconditional monotonic protection systems is undecidable
- The safety question for monoconditional, monotonic protection systems is decidable
- The safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.
- Observations
 - Safety is undecidable for the generic case
 - Safety becomes decidable when restrictions are applied