1S 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 4
September 20, 2007

Access Control Model
Foundational Results

1

o A

Back to ..
Access Control Matrix

Protection System

= State of a system

= Current values of
= memory locations, registers, secondary storage, etc.
= Other system components

= Protection state (P)

= A system state that is considered secure
= A protection system

= Captures the conditions for state transition

= Consists of two parts:
= A set of generic rights
= A set of commands

i Protection System

Subject (S: set of all subjects)
= EQ.: users, processes, agents, etc.

Object (O: set of all objects)
= EQ.:Processes, files, devices

Right (/. set of all rights)

= An action/operation that a subject is
allowed/disallowed on objects

= Access Matrix A: 4[s, o] © R

Set of Protection States: (S, O, A)
= Initial state X, = (S, O, Ay

i State Transitions

Ti+1
X. Ftiq X\, : upon transition 1, the
system moves from state X; to X, ° @

X Y : the system moves from
state X to Y after a set of transitions

X; FCig (P11 Piv12s -++r Pisam) Xiwp :
state transition upon a command
For every command there is a sequence
of state transition operations

i Primitive commands (HRU)

Creates new row, column in ACM;

Create subjects . . .
s does not exist prior to this

Creates new column in ACM

Create object o . . :
0 does not exist prior to this

Adds r right for subject s over object o

Enter rinto aJs, o L
s, o] Ineffective if r is already there

Delete r from a[s, o] | Removes r right from subject s over object o

Destroy subject s Deletes row, column from ACM,;

Destroy object o Deletes column from ACM

i Primitive commands (HRU)

Creates new row, column in ACM;

Create subject s . . .
s does not exist prior to this

Precondition: s ¢ S

Postconditions:

S =5U{s}, 0O =0{s}

(Vy e O)[a [s, V] = <] (row entries for s)

(Vx e §)[a [x s] =] (column entries for s)

(Vxe S)(Vye Ola [x 1= dax J]

i Primitive commands (HRU)

Adds r right for subject s over object o

Enter r into afs, 0 o
[s. o] Ineffective if r is already there

Precondition: s S, o O
Postconditions:

S =S 0 =0

als ol=4s ou{r}

(Vxe S)(Vye O)

[(x, V)#(s, 0) > a [x) = alx J]

i System commands

= [Unix] process p creates file f with
owner read and write (r, w) will be
represented by the following:

Command create_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]

End

i System commands

= Process p creates a new process g
Command spawn_process(p, q)
Create subject q;
Enter own into a[p,q]
Enter r into a[p,q]
Enter w into a[p,q]
Enter r into a[q,r]) Parent and child can
Enter w into a[q,r] signal each other
End

10

i System commands

= Defined commands can be used to update
ACM

Command make_owner(p, f)
Enter own into a[p,f]
End

= Mono-operational:
= the command invokes only one primitive

11

i Conditional Commands

= Mono-operational + mono-
conditional

Command grant read file(p, f. g)
If ownin a[p, A
Then
Enter rinto a[g, A
End

12

i Conditional Commands

= Mono-operational + biconditional

Command grant read file(p, 1, q)

If rin a[p,f] and cin a[p, A
Then
Enter rinto a[g, A
End

= Why not “OR”??

13

i Fundamental questions

= How can we determine that a system Is
secure?

= Need to define what we mean by a system
being “secure”

= IS there a generic algorithm that allows
us to determine whether a computer
system Is secure?

14

What Is a secure system?

= A simple definition
= A secure system doesn’t allow violations of a security
policy
= Alternative view: based on distribution of rights to
the subjects

= Leakage of rights: (unsafe with respect to right r)

= Assume that A representing a secure state does not
contain a right rin any element of A.

= A right ris said to be leaked, If a sequence of
operations/commands adds 7 to an element of A,
which did not contain r

15

i What is a secure system?

= Safety of a system with initial protection
state X,

= Safe with respect to r: System Is safe with
respect to rif rcan never be leaked

= Else it is called unsafe with respect to right
r.

16

Safety Problem:
i formally

s Glven
= Initial state X, = (S, O, A))
= Set of primitive commands ¢
= /IS not in As, 0]
= Can we reach a state X, where
= 15,0 such that A,[s,0] includes a right 7 not
in A s, 0]?

If so, the system is not safe
But is “safe” secure?

17

i Undecidable Problems

s Decidable Problem

= A decision problem can be solved by an
algorithm that halts on all inputs in a finite
number of steps.

s Undecidable Problem

= A problem that cannot be solved for all
cases by any algorithm whatsoever

18

Decidablility Results
i (Harrison, Ruzzo, Ullman)

s [heorem:

= Glven a system where each command consists of
a single primitive command (mono-operational),
there exists an algorithm that will determine if a
protection system with initial state X, is safe with
respect to right r.

19

Decidablility Results
(Harrison, Ruzzo, Ullman)

= Proof: determine minimum commands & to leak
= Delete/destroy: Can't leak (or be detected)

= Create/enter: new subjects/objects “equal”, so treat
all new subjects as one
= No test for absence

= Tests on A[s,, 0,] and A[s,, 0,] have same result as the same tests
on A[s,, 0,] and A[s,, 0,] = A[s;, 0,] UA[S,, 0,]

= If nrights leak possible, must be able to leak A=
(] S,|+1)(] Oyl +1)+1 commands

= Enumerate all possible states to decide

20

Decidability Results
i (Harrison, Ruzzo, Ullman)

= |t IS undecidable If a given state of a
given protection system is safe for a
given generic right

= For proof — need to know Turing
machines and halting problem

21

Turing Machine & halting

i problem

= The halting problem:

= Given a description of an algorithm and a
description of its initial arguments,
determine whether the algorithm, when
executed with these arguments, ever halts
(the alternative is that it runs forever
without halting).

22

Turing Machine & Safety

i problem

= Theorem: It Is undecidable If a given state of
a given protection system is safe for a given
generic right

= Reduce TM to Safety problem

« If Safety problem is decidable then it implies that

TM halts (for all inputs) — showing that the halting
problem is decidable (contradiction)

= TM Is an abstract model of computer
= Alan Turing in 1936

23

Turing Machine

+

= M consists of

A tape divided into cells; infinite in one
direction

A set of tape symbols V/

= M contains a special blank symbol 6
A set of states K
A head that can read and write symbols

An action table that tells the machine
how to transition

« What symbol to write

= How to move the head (‘L’ for left and
‘R’ for right)
= What is the next state

g
head

Current stateisk
Current symbol isC

24

i Turing Machine

= Transition function 8(&, m) =

(K, m, L):
= in state &, symbol /7 on tape Al B C|D
location is replaced by symbol
pe £
! head
= head moves to left one square,
and TM enters state X Current stateisk

' i Current symbol is C
= Halting state Is g; urrent symbol is

= M halts when it enters this
state

Let o(k, C) = (k, X, R)
wherek, isthe next state

25

Turing Machine

1 2 3 4

Al B|C|D

L
head

Current state isk
Current symbol isC

Let 5(k, C) = (ky, X, R)

wherek, isthe next state 1

>

2

3

4

Let 5(k;, D) = (K, Y, L)

wherek, is the next state

Al B| X |D
4head

123@4

Al Bl ? |? |?
?

TM2Safety

i Reduction

Proof: Reduce TM to safety
problem

Symbols, States = rights
Tape cell = subject

Cell s;has A = s;has Arights on
itself

Cell s, = s, has end rights on itself

State p, head at s;,= s; has p rights
on itself

Distinguished Right own:.
« Ssowmns s+1forlsi<k

A

C | D|..

Current state isk

Current symbol is

£

- head

own

own

CKk

own

D end

Command Mapping alelelpl.
i (Left move) Current stateisk 4

Current symbol isC head
3(k, C) = (ky, X, L) |

6(k, C) = (&, X, L)

If head is not in leftmost S, | S,| S3 | Sa

command ¢, ~(S;, Si 1)
If ownin a[s; ,, S(,:] and k'in a[s;, s;]

and Cin al[si, s;] S, | A [own
then
deletek from A[s;,s]; S, B |[own

delete C from A[s,,si];

enter X into A[s;,si];
enter k, into A[s, 1, S,..]; S3 Ck | own

End
Sy D end

1 2 3 4
Command Mapping sl mlwle

i (Left move) Current stateisk 4

Current symbol isD head
3(k, C) = (ky, X, L) |

6(k, C) = (&, X, L)

If head 1s not In leftmost

command ¢, (S;, Si.1) 51| S2| S3 | 4
if owninals;, 5] andKin a[s;, s

and Cin a[s,,] S; | A jown
then

deletek from A[s;,s]; S, B 4| own

delete C from A[s s]

enter X into A[s; s]
enter Kk, into A[s; ;, S;.4]; S3 X own

End
Sy D end

If head isin leftmost both s;, s; ;are s,

Command Mapping [, Jelol
i (nght mOVe) Current state isk A

Current symbol isC head

5(k C) = (k;, X, R) 3(k, C) = (ki X, R)|
command ¢, (S;, Si+1)
if own in a[s;, s;,;] and kin 51 | S2| S3 | S4
als;, Si and Cin als;, Si]
then S; | A |own
deletek from A[s;,s]; S, B |own
delete C from A[s s]
enter X into A[s; s,] S3 Ck | own

ter k; Into A
engn - 0 [S'ﬂ’ Sival 54 D end

Command Mapping [] .lclol
i (nght mOVe) Current stateisk; A

Current symbol is C head

5(k C) = (k;, X, R) 3(k, C) = (ki X, R)|
command ¢, (S;, Si+1)
if own in a[s;, s;,;] and kin 51 | S2| S3 | S4

als;, Si] and Cin als;, Si] A

deletek from A[s;,si]; S, B |own

delete C from A[s s]

enter X into A[s; s,] S3 X | own
engnter k, Into A[s,+l, Sii1l; S, Dt end

Command Mapping Al B/ X |D|.
(nghtmOSt mOve) Current stateisk, 4
Current symbol isC head
5(k,, D) = (k,, Y, R) at end becomes 3(ky, C) = (k, Y, R) |

command crightmost, ~(S;,S;1)
If end in a[s;,s;] and k; In a[s;,s;] and D

then alsisi S1 | S2| S3 | 54
deleteend from a[s;,s}];
create subject s;,.; S| A [own
enter own into aJ[s;,s;,l;
enter end into a[s,, 4, Si,41; S, B |own

deletek, from a]s;,s;];
delete D from a[s;,s;];
enter Y into a[s;,s;];
enter k, into A[s;,si];
end S4 D k, end

S3 X own

Command Mapping

(Rightmost move) ., .. seteisk,

1

A

D

Current symbol isD

d(ky, D) = (K, Y, R) at end becomes

command crightmost, ~(S;,S;1)
If end in a[s;,s;] and k; In a[s;,s;] and D

£

head
3(ky, D) = (ky, Y, R) |

then alsisi S1 | S2| S3 | Sa| Ss
deleteend from a[s;,s}];
create subject s;,.; S| A [own
enter own into aJ[s;,s;,l;
enter end into a[s,, 4, Si,41; S, B |own
gglete Ky]from a{si,si]];
ete D from a|s;,si];
enter Y into a[si,s'i] ; 53 X Ll
enter k, into A[s;,si];
end Sy Y own
S5 b k,end

i Rest of Proof

Protection system exactly simulates a TM
« Exactly 1 endright in ACM
= Only 1 right corresponds to a state

= Thus, at most 1 applicable command In
each configuration of the TM

If TM enters state g, then right has leaked

If safety question decidable, then represent
TM as above and determine if g,leaks

« Leaks halting state = halting state in the
matrix = Halting state reached

Conclusion: safety guestion undecidable

34

Other results

= For protection system without the create primitives, (i.e., delete
create primitive); the safety question is complete in P-SPACE

= It is undecidable whether a given configuration of a given
monotonic protection system is safe for a given generic right
= Delete destroy, delete primitives;

= The system becomes monotonic as they only increase in size
and complexity

= The safety question for biconditional monotonic protection
systems is undecidable

= The safety question for monoconditional, monotonic protection
systems is decidable

= The safety question for monoconditional protection systems
with create, enter, delete (and no destroy) is decidable.

= Observations

= Safety is undecidable for the generic case

= Safety becomes decidable when restrictions are applied
35

