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Propositional logic/calculus
Atomic, declarative statements (propositions) 

that can be shown to be either TRUE or FALSE but not 
both; E.g., “Sky is blue”; “3 is less than 4”

Propositions can be composed into compound 
sentences using connectives

Negation ¬ p    (NOT) highest precedence
Disjunction p ∨ q (OR) second precedence
Conjunction p ∧ q (AND) second precedence
Implication p → q q logical consequence of p 

Exercise: Truth tables?
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Propositional logic/calculus
Contradiction: 

Formula that is always false : p ∧ ¬p
What about: ¬(p ∧ ¬p)?

Tautology: 
Formula that is always True : p ∨ ¬p

What about: ¬(p ∨ ¬p)?

Others
Exclusive OR:  p ⊕ q; p or q but not both
Bi-condition: p ↔ q    [p if and only if q (p iff q)]
Logical equivalence: p ⇔ q [p is logically equivalent to q]

Some exercises…
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Some Laws of Logic
Double negation
DeMorgan’s law

¬(p ∧ q) ⇔ (¬p ∨ ¬q)
¬(p ∨ q) ⇔ (¬p ∧ ¬q)

Commutative
(p ∨ q) ⇔ (q ∨ p)

Associative law
p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r

Distributive law
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)
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Predicate/first order logic

Propositional logic 
Variable, quantifiers, constants and functions
Consider sentence: Every directory contains 
some files
Need to capture “every” “some”

F(x): x is a file
D(y): y is a directory
C(x, y): x is a file in directory y
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Predicate/first order logic
Existential quantifiers ∃ (There exists)

E.g., ∃ x is read as There exists x

Universal quantifiers ∀ (For all)
∀y  D(y) → (∃x (F(x) ∧C(x, y))) 
read as

for every y, if y is a directory, then there exists a x
such that x is a file and x is in directory y

What about ∀x  F(x) → (∃y (D(y) ∧C(x, y)))?
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Mathematical Induction

Proof technique - to prove some 
mathematical property

E.g. want to prove that M(n) holds for all natural 
numbers

Base case OR Basis: 
Prove that M(1) holds

Induction Hypothesis: 
Assert that M(n) holds for n = 1, …, k

Induction Step: 
Prove that if M(k) holds then M(k+1) holds
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Mathematical Induction

Exercise: prove that sum of first n 
natural numbers is 

S(n): 1 + … + n = n (n + 1)/2
S(n): 1^2+ .. +n^2 = n (n +1)(2n + 1)/6
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Lattice
Sets

Collection of unique elements
Let S, T be sets

Cartesian product: S x T = {(a, b) | a ∈ A, b ∈ B}
A set of order pairs

Binary relation R from S to T is a subset of S x T
Binary relation R on S is a subset of S x S
If (a, b) ∈ R we write aRb

Example: 
R is “less than equal to” (≤)
For S = {1, 2, 3} 

Example of R on S is {(1, 1), (1, 2), (1, 3), ????)

(1, 2) ∈ R is another way of writing 1 ≤ 2 
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Lattice
Properties of relations

Reflexive: 
if aRa for all a ∈ S

Anti-symmetric: 
if aRb and bRa implies a = b for all a, b ∈ S

Transitive: 
if aRb and bRc imply that aRc for all a, b, c ∈ S

Which properties hold for “less than equal to”
(≤)?
Draw the Hasse diagram 

Captures all the relations
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Lattice

Total ordering: 
when the relation orders all elements
E.g., “less than equal to” (≤) on natural 
numbers

Partial ordering (poset): 
the relation orders only some elements not all
E.g. “less than equal to” (≤) on complex 
numbers; Consider (2 + 4i) and (3 + 2i)
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Lattice

Upper bound (u, a, b ∈ S)
u is an upper bound of a and b means 
aRu and bRu
Least upper bound : lub(a, b) closest 
upper bound

Lower bound (l, a, b ∈ S)
l is a lower bound of a and b means lRa
and lRb
Greatest lower bound : glb(a, b) closest 
lower bound
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Lattice
A lattice is the combination of a set of elements S
and a relation R meeting the following criteria

R is reflexive, antisymmetric, and transitive on the 
elements of S
For every s, t ∈ S, there exists a greatest lower bound
For every s, t ∈ S, there exists a lowest upper bound

Some examples
S = {1, 2, 3} and R = ≤?
S = {2+4i; 1+2i; 3+2i, 3+4i} and R = ≤?
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Overview of Lattice Based 
Models

Confidentiality 
Bell LaPadula Model

First rigorously developed model for high assurance - for 
military 
Objects are classified
Objects may belong to Compartments
Subjects are given clearance
Classification/clearance levels form a lattice
Two rules

No read-up
No write-down
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Security Policies
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Security Policy

Defines what it means for a system to 
be secure
Formally:  Partitions a system into

Set of secure (authorized) states
Set of non-secure (unauthorized) states

Secure system is one that 
Starts in authorized state
Cannot enter unauthorized state
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Secure System - Example

Is this Finite State Machine Secure?
A is start state ?
B is start state ?
C is start state ?
How can this be made secure if not?
Suppose A, B, and C are authorized states ?

A B C D

Unauthorized
states

Authorized
states
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Additional Definitions:
Security breach: system enters an unauthorized state
Let X be a set of entities, I be information.

I has confidentiality with respect to X if no member of 
X can obtain information on I
I has integrity with respect to X if all members of X trust 
I

Trust I, its conveyance and storage (data integrity)
I maybe origin information or an identity (authentication)
I is a resource – its integrity implies it functions as it should 
(assurance)

I has availability with respect to X if all members of X
can access I

Time limits (quality of service)
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Confidentiality Policy

Also known as information flow
Transfer of rights
Transfer of information without transfer of rights
Temporal context

Model often depends on trust
Parts of system where information could flow
Trusted entity must participate to enable flow

Highly developed in Military/Government
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Integrity Policy

Defines how information can be altered
Entities allowed to alter data
Conditions under which data can be altered
Limits to change of data

Examples:
Purchase over $1000 requires signature
Check over $10,000 must be approved by one 
person and cashed by another

Separation of duties : for preventing fraud
Highly developed in commercial world
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Trust

Theories and mechanisms rest on some trust 
assumptions
Administrator installs patch

1. Trusts patch came from vendor, not tampered 
with in transit

2. Trusts vendor tested patch thoroughly
3. Trusts vendor’s test environment corresponds to 

local environment
4. Trusts patch is installed correctly
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Trust in Formal Verification

Formal verification provides a formal 
mathematical proof that given input i, 
program P produces output o as 
specified
Suppose a security-related program S
formally verified to work with operating 
system O
What are the assumptions?
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Trust in Formal Methods

1. Proof has no errors
Bugs in automated theorem provers

2. Preconditions hold in environment in which 
S is to be used

3. S transformed into executable S’ whose 
actions follow source code

Compiler bugs, linker/loader/library problems
4. Hardware executes S’ as intended

Hardware bugs



25

Security Mechanism

Policy describes what is allowed
Mechanism 

Is an entity/procedure that enforces (part 
of) policy

Example Policy:  Students should not 
copy homework

Mechanism:  Disallow access to files owned 
by other users
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Security Model

A model that represents a particular 
policy or set of policies

Abstracts details relevant to analysis
Focus on specific characteristics of policies

E.g., Multilevel security focuses on information 
flow control
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Security policies
Military security policy

Focuses on confidentiality
Commercial security policy

Primarily Integrity
Transaction-oriented

Begin in consistent state
“Consistent” defined by specification

Perform series of actions (transaction)
Actions cannot be interrupted
If actions complete, system in consistent state
If actions do not complete, system reverts to beginning 
(consistent) state
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Access Control

Discretionary Access Control (DAC)
Owner determines access rights
Typically identity-based access control:  
Owner specifies other users who have 
access

Mandatory Access Control (MAC)
Rules specify granting of access
Also called rule-based access control
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Access Control

Originator Controlled Access Control 
(ORCON)

Originator controls access
Originator need not be owner!

Role Based Access Control (RBAC)
Identity governed by role user assumes
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Back to ..
Access Control Matrix
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Protection System
State of a system

Current values of 
memory locations, registers, secondary storage, etc.
other system components

Protection state (P)
A system state that is considered secure

A protection system 
Captures the conditions for state transition
Consists of two parts:

A set of generic rights
A set of commands
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Protection System
Subject (S: set of all subjects)

Active entities that carry out an action/operation on other 
entities; Eg.: users, processes, agents, etc.

Object (O: set of all objects)
Eg.:Processes, files, devices

Right (R: set of all rights)
An action/operation that a subject is allowed/disallowed 
on objects
Access Matrix A: a[s, o] ⊆R

Set of Protection States: (S, O, A)
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State Transitions

Let initial state X0 = (S0, O0, A0)
Notation

Xi ├τi+1 Xi+1 : upon transition τi+1, the system 
moves from state Xi to Xi+1

X ├* Y : the system moves from state X to Y after 
a set of transitions
Xi ├ ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : state transition 
upon a command

For every command there is a sequence of 
state transition operations
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Primitive commands
(Graham-Denning)

Copy a[s, o] to xRead access right of s on o

Removes r right from subject s over object  oDelete access right r of s on o

Deletes row, column from ACM;Destroy subject s

Deletes column from ACMDestroy object o

Adds r right for subject s over object  o
Grant access right r of s on o

Adds r right for subject s over object  oTransfer access right r or r* to s on o

Creates new column in ACMCreate object o

Creates new row, column in ACM; Create subject s
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Primitive commands (HRU)

Deletes column from ACMDestroy object o

Deletes row, column from ACM;Destroy subject s

Removes r right from subject s over object  oDelete r from a[s, o]

Adds r right for subject s over object  oEnter r into a[s, o]

Creates new column in ACMCreate object o

Creates new row, column in ACM; Create subject s
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System commands

[Unix] process p creates file f with 
owner read and write (r, w) will be 
represented by the following:

Command create_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]

End
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System commands

Process p creates a new process q
Command spawn_process(p, q)

Create object q;
Enter own into a[p,q]
Enter r into a[p,q]
Enter w into a[p,q]
Enter r into a[q,r]
Enter w into a[q,r]

End
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System commands

Defined commands can be used to update 
ACM

Command make_owner(p, f)
Enter own into a[p,f]

End

Mono-operational: the command invokes only 
one primitive
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Conditional Commands

Mono-operational + mono-
conditional

Command grant_read_file(p, f, q)
If own in a[p,f]
Then 

Enter r into a[q,f]
End
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Conditional Commands

Mono-operational + biconditional
Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]
Then 

Enter r into a[q,f]
End

Why not “OR”??
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Fundamental questions

How can we determine that a system is 
secure?

Need to define what we mean by a system being 
“secure”

Is there a generic algorithm that allows us to 
determine whether a computer system is 
secure?

We will wait till next time …..


