
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 3
September 13, 2007

Mathematical Review
Security Policies

2

Mathematics Review

3

Propositional logic/calculus
Atomic, declarative statements (propositions)

that can be shown to be either TRUE or FALSE but not
both; E.g., “Sky is blue”; “3 is less than 4”

Propositions can be composed into compound
sentences using connectives

Negation ¬ p (NOT) highest precedence
Disjunction p ∨ q (OR) second precedence
Conjunction p ∧ q (AND) second precedence
Implication p → q q logical consequence of p

Exercise: Truth tables?

4

Propositional logic/calculus
Contradiction:

Formula that is always false : p ∧ ¬p
What about: ¬(p ∧ ¬p)?

Tautology:
Formula that is always True : p ∨ ¬p

What about: ¬(p ∨ ¬p)?

Others
Exclusive OR: p ⊕ q; p or q but not both
Bi-condition: p ↔ q [p if and only if q (p iff q)]
Logical equivalence: p ⇔ q [p is logically equivalent to q]

Some exercises…

5

Some Laws of Logic
Double negation
DeMorgan’s law

¬(p ∧ q) ⇔ (¬p ∨ ¬q)
¬(p ∨ q) ⇔ (¬p ∧ ¬q)

Commutative
(p ∨ q) ⇔ (q ∨ p)

Associative law
p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r

Distributive law
p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

6

Predicate/first order logic

Propositional logic
Variable, quantifiers, constants and functions
Consider sentence: Every directory contains
some files
Need to capture “every” “some”

F(x): x is a file
D(y): y is a directory
C(x, y): x is a file in directory y

7

Predicate/first order logic
Existential quantifiers ∃ (There exists)

E.g., ∃ x is read as There exists x

Universal quantifiers ∀ (For all)
∀y D(y) → (∃x (F(x) ∧C(x, y)))
read as

for every y, if y is a directory, then there exists a x
such that x is a file and x is in directory y

What about ∀x F(x) → (∃y (D(y) ∧C(x, y)))?

8

Mathematical Induction

Proof technique - to prove some
mathematical property

E.g. want to prove that M(n) holds for all natural
numbers

Base case OR Basis:
Prove that M(1) holds

Induction Hypothesis:
Assert that M(n) holds for n = 1, …, k

Induction Step:
Prove that if M(k) holds then M(k+1) holds

9

Mathematical Induction

Exercise: prove that sum of first n
natural numbers is

S(n): 1 + … + n = n (n + 1)/2
S(n): 1^2+ .. +n^2 = n (n +1)(2n + 1)/6

10

Lattice
Sets

Collection of unique elements
Let S, T be sets

Cartesian product: S x T = {(a, b) | a ∈ A, b ∈ B}
A set of order pairs

Binary relation R from S to T is a subset of S x T
Binary relation R on S is a subset of S x S
If (a, b) ∈ R we write aRb

Example:
R is “less than equal to” (≤)
For S = {1, 2, 3}

Example of R on S is {(1, 1), (1, 2), (1, 3), ????)

(1, 2) ∈ R is another way of writing 1 ≤ 2

11

Lattice
Properties of relations

Reflexive:
if aRa for all a ∈ S

Anti-symmetric:
if aRb and bRa implies a = b for all a, b ∈ S

Transitive:
if aRb and bRc imply that aRc for all a, b, c ∈ S

Which properties hold for “less than equal to”
(≤)?
Draw the Hasse diagram

Captures all the relations

12

Lattice

Total ordering:
when the relation orders all elements
E.g., “less than equal to” (≤) on natural
numbers

Partial ordering (poset):
the relation orders only some elements not all
E.g. “less than equal to” (≤) on complex
numbers; Consider (2 + 4i) and (3 + 2i)

13

Lattice

Upper bound (u, a, b ∈ S)
u is an upper bound of a and b means
aRu and bRu
Least upper bound : lub(a, b) closest
upper bound

Lower bound (l, a, b ∈ S)
l is a lower bound of a and b means lRa
and lRb
Greatest lower bound : glb(a, b) closest
lower bound

14

Lattice
A lattice is the combination of a set of elements S
and a relation R meeting the following criteria

R is reflexive, antisymmetric, and transitive on the
elements of S
For every s, t ∈ S, there exists a greatest lower bound
For every s, t ∈ S, there exists a lowest upper bound

Some examples
S = {1, 2, 3} and R = ≤?
S = {2+4i; 1+2i; 3+2i, 3+4i} and R = ≤?

15

Overview of Lattice Based
Models

Confidentiality
Bell LaPadula Model

First rigorously developed model for high assurance - for
military
Objects are classified
Objects may belong to Compartments
Subjects are given clearance
Classification/clearance levels form a lattice
Two rules

No read-up
No write-down

16

Security Policies

17

Security Policy

Defines what it means for a system to
be secure
Formally: Partitions a system into

Set of secure (authorized) states
Set of non-secure (unauthorized) states

Secure system is one that
Starts in authorized state
Cannot enter unauthorized state

18

Secure System - Example

Is this Finite State Machine Secure?
A is start state ?
B is start state ?
C is start state ?
How can this be made secure if not?
Suppose A, B, and C are authorized states ?

A B C D

Unauthorized
states

Authorized
states

19

Additional Definitions:
Security breach: system enters an unauthorized state
Let X be a set of entities, I be information.

I has confidentiality with respect to X if no member of
X can obtain information on I
I has integrity with respect to X if all members of X trust
I

Trust I, its conveyance and storage (data integrity)
I maybe origin information or an identity (authentication)
I is a resource – its integrity implies it functions as it should
(assurance)

I has availability with respect to X if all members of X
can access I

Time limits (quality of service)

20

Confidentiality Policy

Also known as information flow
Transfer of rights
Transfer of information without transfer of rights
Temporal context

Model often depends on trust
Parts of system where information could flow
Trusted entity must participate to enable flow

Highly developed in Military/Government

21

Integrity Policy

Defines how information can be altered
Entities allowed to alter data
Conditions under which data can be altered
Limits to change of data

Examples:
Purchase over $1000 requires signature
Check over $10,000 must be approved by one
person and cashed by another

Separation of duties : for preventing fraud
Highly developed in commercial world

22

Trust

Theories and mechanisms rest on some trust
assumptions
Administrator installs patch

1. Trusts patch came from vendor, not tampered
with in transit

2. Trusts vendor tested patch thoroughly
3. Trusts vendor’s test environment corresponds to

local environment
4. Trusts patch is installed correctly

23

Trust in Formal Verification

Formal verification provides a formal
mathematical proof that given input i,
program P produces output o as
specified
Suppose a security-related program S
formally verified to work with operating
system O
What are the assumptions?

24

Trust in Formal Methods

1. Proof has no errors
Bugs in automated theorem provers

2. Preconditions hold in environment in which
S is to be used

3. S transformed into executable S’ whose
actions follow source code

Compiler bugs, linker/loader/library problems
4. Hardware executes S’ as intended

Hardware bugs

25

Security Mechanism

Policy describes what is allowed
Mechanism

Is an entity/procedure that enforces (part
of) policy

Example Policy: Students should not
copy homework

Mechanism: Disallow access to files owned
by other users

26

Security Model

A model that represents a particular
policy or set of policies

Abstracts details relevant to analysis
Focus on specific characteristics of policies

E.g., Multilevel security focuses on information
flow control

27

Security policies
Military security policy

Focuses on confidentiality
Commercial security policy

Primarily Integrity
Transaction-oriented

Begin in consistent state
“Consistent” defined by specification

Perform series of actions (transaction)
Actions cannot be interrupted
If actions complete, system in consistent state
If actions do not complete, system reverts to beginning
(consistent) state

28

Access Control

Discretionary Access Control (DAC)
Owner determines access rights
Typically identity-based access control:
Owner specifies other users who have
access

Mandatory Access Control (MAC)
Rules specify granting of access
Also called rule-based access control

29

Access Control

Originator Controlled Access Control
(ORCON)

Originator controls access
Originator need not be owner!

Role Based Access Control (RBAC)
Identity governed by role user assumes

30

Back to ..
Access Control Matrix

31

Protection System
State of a system

Current values of
memory locations, registers, secondary storage, etc.
other system components

Protection state (P)
A system state that is considered secure

A protection system
Captures the conditions for state transition
Consists of two parts:

A set of generic rights
A set of commands

32

Protection System
Subject (S: set of all subjects)

Active entities that carry out an action/operation on other
entities; Eg.: users, processes, agents, etc.

Object (O: set of all objects)
Eg.:Processes, files, devices

Right (R: set of all rights)
An action/operation that a subject is allowed/disallowed
on objects
Access Matrix A: a[s, o] ⊆R

Set of Protection States: (S, O, A)

33

State Transitions

Let initial state X0 = (S0, O0, A0)
Notation

Xi ├τi+1 Xi+1 : upon transition τi+1, the system
moves from state Xi to Xi+1

X ├* Y : the system moves from state X to Y after
a set of transitions
Xi ├ ci+1 (pi+1,1, pi+1,2, …, pi+1,m) Xi+1 : state transition
upon a command

For every command there is a sequence of
state transition operations

34

Primitive commands
(Graham-Denning)

Copy a[s, o] to xRead access right of s on o

Removes r right from subject s over object oDelete access right r of s on o

Deletes row, column from ACM;Destroy subject s

Deletes column from ACMDestroy object o

Adds r right for subject s over object o
Grant access right r of s on o

Adds r right for subject s over object oTransfer access right r or r* to s on o

Creates new column in ACMCreate object o

Creates new row, column in ACM; Create subject s

35

Primitive commands (HRU)

Deletes column from ACMDestroy object o

Deletes row, column from ACM;Destroy subject s

Removes r right from subject s over object oDelete r from a[s, o]

Adds r right for subject s over object oEnter r into a[s, o]

Creates new column in ACMCreate object o

Creates new row, column in ACM; Create subject s

36

System commands

[Unix] process p creates file f with
owner read and write (r, w) will be
represented by the following:

Command create_file(p, f)
Create object f
Enter own into a[p,f]
Enter r into a[p,f]
Enter w into a[p,f]

End

37

System commands

Process p creates a new process q
Command spawn_process(p, q)

Create object q;
Enter own into a[p,q]
Enter r into a[p,q]
Enter w into a[p,q]
Enter r into a[q,r]
Enter w into a[q,r]

End

38

System commands

Defined commands can be used to update
ACM

Command make_owner(p, f)
Enter own into a[p,f]

End

Mono-operational: the command invokes only
one primitive

39

Conditional Commands

Mono-operational + mono-
conditional

Command grant_read_file(p, f, q)
If own in a[p,f]
Then

Enter r into a[q,f]
End

40

Conditional Commands

Mono-operational + biconditional
Command grant_read_file(p, f, q)

If r in a[p,f] and c in a[p,f]
Then

Enter r into a[q,f]
End

Why not “OR”??

41

Fundamental questions

How can we determine that a system is
secure?

Need to define what we mean by a system being
“secure”

Is there a generic algorithm that allows us to
determine whether a computer system is
secure?

We will wait till next time …..

