
1

IS 2150 / TEL 2810
Introduction to Security

James Joshi
Assistant Professor, SIS

Lecture 10
Nov 8, 2007

Hash Functions
Key Management

2

Objectives

Understand/explain the issues related to, and
utilize the techniques

Hash functions
Key management

Authentication and distribution of keys
Session key
Key exchange protocols
Kerberos

Mechanisms to bind an identity to a key
Generation, maintenance and revoking of keys

3

Quick ReCap

4

Confidentiality using RSA

Message
Source

Encryption Message
SourceDecryption

X Y X

Alice

Key Source

??

??

Bob

5

Authentication using RSA

Message
Source

Encryption Message
SourceDecryption

X Y X

Key Source

Alice

??
??

Bob

6

Confidentiality +
Authentication

Message
Source

Encryption Message
SourceDecryption

X

Key Source

Alice

?? ??

Bob

Decryption
YX

Encryption
Y

??
??

Key Source

Z

7

Hash Functions

8

Cryptographic Checksums
Mathematical function to generate a set of k bits
from a set of n bits (where k ≤ n).

k is smaller then n except in unusual circumstances
Keyed CC: requires a cryptographic key

h = CKey(M)
Keyless CC: requires no cryptographic key

Message Digest or One-way Hash Functions
h = H(M)

Can be used for message authentication
Hence, also called Message Authentication Code (MAC)

9

Mathematical characteristics
Every bit of the message digest function
potentially influenced by every bit of the
function’s input

If any given bit of the function’s input is
changed, every output bit has a 50 percent
chance of changing

Given an input file and its corresponding
message digest, it should be computationally
infeasible to find another file with the same
message digest value

10

Definition
Cryptographic checksum function h: A→B:

1. For any x ∈ A, h(x) is easy to compute
– Makes hardware/software implementation easy

2. For any y ∈ B, it is computationally infeasible to find x ∈
A such that h(x) = y

– One-way property

3. It is computationally infeasible to find x, x´∈ A such
that x ≠ x´ and h(x) = h(x´)

4. Alternate form: Given any x ∈ A, it is computationally
infeasible to find a different x´ ∈ A such that h(x) =
h(x´).

Collisions possible?Collisions possible?

11

Keys

Keyed cryptographic checksum:
requires cryptographic key

DES in chaining mode: encipher message,
use last n bits.

keyed cryptographic checksum.

Keyless cryptographic checksum:
requires no cryptographic key

MD5 and SHA-1 are best known; others
include MD4, HAVAL, and Snefru

12

Hash Message Authentication
Code (HMAC)

Make keyed cryptographic checksums from keyless
cryptographic checksums

h be keyless cryptographic checksum function
takes data in blocks of b bytes and outputs blocks of l bytes.
k´ is cryptographic key of length b bytes (from k)

If short, pad with 0s’ to make b bytes; if long, hash to length b

ipad is 00110110 repeated b times
opad is 01011100 repeated b times

HMAC-h(k, m) = h(k´ ⊕ opad || h(k´ ⊕ ipad || m))
⊕ exclusive or, || concatenation

13

Protection Strength

Unconditionally Secure
Unlimited resources + unlimited time
Still the plaintext CANNOT be recovered from the
ciphertext

Computationally Secure
Cost of breaking a ciphertext exceeds the value of
the hidden information
The time taken to break the ciphertext exceeds
the useful lifetime of the information

14

Average time required for
exhaustive key search

2.15 milliseconds232 = 4.3 x 10932

5.9 x 1030 years2168 = 3.7 x 1050168

5.4 x 1018 years2128 = 3.4 x 1038128

10 hours256 = 7.2 x 101656

Time required at
106 Decryption/µs

Number of
Alternative Keys

Key Size
(bits)

15

Key Management

16

Notation
X → Y : { Z || W } kX,Y

X sends Y the message produced by
concatenating Z and W enciphered by key kX,Y,
which is shared by users X and Y

A → T : { Z } kA || { W } kA,T
A sends T a message consisting of the
concatenation of Z enciphered using kA, A’s key,
and W enciphered using kA,T, the key shared by
A and T

r1, r2 nonces (nonrepeating random numbers)

17

Interchange vs Session Keys
Interchange Key

Tied to the principal of communication
Session key

Tied to communication itself
Example

Alice generates a random cryptographic key ks
and uses it to encipher m
She enciphers ks with Bob’s public key kB
Alice sends { m } ks { ks } kB

Which one is session/interchange key?

18

Benefits using session key

In terms of Traffic-analysis by an attacker?
Replay attack possible?
Prevents some forward search attack

Example: Alice will send Bob message that is
either “BUY” or “SELL”.
Eve computes possible ciphertexts {“BUY”} kB
and {“SELL”} kB.
Eve intercepts enciphered message, compares,
and gets plaintext at once

19

Key Exchange Algorithms
Goal: Alice, Bob to establish a shared key

Criteria
Key cannot be sent in clear

Attacker can listen in
Key can be sent enciphered, or derived from exchanged
data plus data not known to an eavesdropper

Alice, Bob may trust a third party
All cryptosystems, protocols assumed to be
publicly known

Only secret data is the keys, OR ancillary information
known only to Alice and Bob needed to derive keys

20

Classical Key Exchange

How do Alice, Bob begin?
Alice can’t send it to Bob in the clear!

Assume trusted third party, Cathy
Alice and Cathy share secret key kA

Bob and Cathy share secret key kB

Use this to exchange shared key ks

21

Simple Key Exchange Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks }kA , { ks }kB

Alice Bob
{ ks } kB

Alice Bob
{m}ks

What can an attacker, Eve, do to subvert it?What can an attacker, Eve, do to subvert it?

22

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks ||{ Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

23

Questions

How can Alice and Bob be sure they are
talking to each other?

Is the previous attack possible?

Key assumption of Needham-Schroeder
All keys are secret;
What if we remove that assumption?

24

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

One solution to Needham-Schroeder problem: Use time stamp T to detect replay!One solution to Needham-Schroeder problem: Use time stamp T to detect replay!

25

Denning-Sacco Modification

Needs synchronized clocks

Weaknesses:
if clocks not synchronized, may either reject valid
messages or accept replays
Parties with either slow or fast clocks vulnerable
to replay
Resetting clock does not eliminate vulnerability

So use of time stamp adds other problems !!So use of time stamp adds other problems !!

26

Otway-Rees Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA ||

{ r2 || n || Alice || Bob } kB

Cathy Bob
n || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA

Uses integer n to associate all messages with a particular exchangeUses integer n to associate all messages with a particular exchange

27

Argument: Alice talking to Bob

How does Bob know it is actually Alice
he is talking to?
How does Alice know it is actually Bob
she is talking to?

28

Replay Attack
Eve acquires old ks, message in third step

n || { r1 || ks } kA || { r2 || ks } kB
Eve forwards appropriate part to Alice

If Alice has no ongoing key exchange with Bob
Accept/reject the message ?

Alice has ongoing key exchange with Bob
Accept/reject the message ?

If replay is for the current key exchange, and
Eve sent the relevant part before Bob did,

Does replay attack occur?

29

Kerberos
Authentication system

Based on Needham-Schroeder with Denning-Sacco
modification
Central server plays role of trusted third party
(“Cathy”)

Ticket (credential)
Issuer vouches for identity of requester of service

Authenticator
Identifies sender

Alice must
1. Authenticate herself to the system
2. Obtain ticket to use server S

30

31

Overview

User u authenticates to Kerberos server
Obtains ticket Tu,TGS for ticket granting service
(TGS)

User u wants to use service s:
User sends authenticator Au, ticket Tu,TGS to TGS
asking for ticket for service
TGS sends ticket Tu,s to user
User sends Au, Tu,s to server as request to use s

Details follow

32

Ticket
Credential saying issuer has identified ticket
requester
Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s }
ks

where:
ku,s is session key for user and service
Valid time is interval for which the ticket is valid
u’s address may be IP address or something
else

Note: more fields, but not relevant here

33

Authenticator
Credential containing identity of sender of ticket

Used to confirm sender is entity to which ticket was
issued

Example: authenticator user u generates for service s
Au,s = { u || generation time || kt } ku,s

where:
kt is alternate session key
Generation time is when authenticator generated

Note: more fields, not relevant here

34

Protocol

user ASuser || TGS

{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s

Authentication server

user AS

35

Problems

Relies on synchronized clocks
If not synchronized and old tickets, authenticators
not cached, replay is possible

Tickets have some fixed fields
Dictionary attacks possible
Kerberos 4 session keys weak (had much less
than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

36

Public Key Key Exchange

Here interchange keys known
eA, eB Alice and Bob’s public keys known to all
dA, dB Alice and Bob’s private keys known only to
owner

Simple protocol
ks is desired session key

37

Problem and Solution?

Alice Bob
{ { ks } dA } eB

Alice Bob
{ ks } eB

Any problem ?Any problem ?

What about this?What about this?

38

Public Key Key Exchange

Assumes Bob has Alice’s public key, and
vice versa

If not, each must get it from public
server
If keys not bound to identity of owner,
attacker Eve can launch a man-in-the-
middle attack

39

Man-in-the-Middle Attack

Alice Petersend me Bob’s public key

Eve Petersend me Bob’s public key

Eve Peter
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

Peter is public server providing public keysPeter is public server providing public keys

40

Cryptographic Key
Infrastructure

Goal:
bind identity to key

Classical Crypto:
Not possible as all keys are shared

Public key Crypto:
Bind identity to public key
Erroneous binding means no secrecy between
principals
Assume principal identified by an acceptable
name

41

Certificates

Create token (message) containing
Identity of principal (here, Alice)
Corresponding public key
Timestamp (when issued)
Other information (identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC

CA is A’s certificate

42

Use
Bob gets Alice’s certificate

If he knows Cathy’s public key, he can decipher
the certificate

When was certificate issued?
Is the principal Alice?

Now Bob has Alice’s public key
Problem: Bob needs Cathy’s public key to
validate certificate

Problem pushed “up” a level
Two approaches:

Merkle’s tree, Signature chains

43

Certificate Signature Chains
Create certificate

Generate hash of certificate
Encipher hash with issuer’s private key

Validate
Obtain issuer’s public key
Decipher enciphered hash
Re-compute hash from certificate and compare

Problem:
Validating the certificate of the issuer and
getting issuer’s public key

44

X.509 Chains
Key certificate fields in X.509v3:

Version
Serial number (unique)
Signature algorithm identifier
Issuer’s name; uniquely identifies issuer
Interval of validity
Subject’s name; uniquely identifies subject
Subject’s public key
…
Signature:

Identifies algorithm used to sign the certificate
Signature (enciphered hash)

45

X.509 Certificate Validation

Obtain issuer’s public key
The one for the particular signature algorithm

Decipher signature
Gives hash of certificate

Re-compute hash from certificate and
compare

If they differ, there’s a problem

Check interval of validity
This confirms that certificate is current

46

Issuers

Certification Authority (CA): entity that
issues certificates

Multiple issuers pose validation problem
Alice’s CA is Cathy; Bob’s CA is Dan; how
can Alice validate Bob’s certificate?
Have Cathy and Don cross-certify

Each issues certificate for the other

47

Validation and Cross-Certifying

Certificates:
Cathy<<Alice>>

represents the certificate that C has generated for A

Dan<<Bob> ; Cathy<<Dan>>;
Dan<<Cathy>>

Alice validates Bob’s certificate
Alice obtains Cathy<<Dan>>
Can Alice validate Cathy<<Dan>> ?
(h ?)

48

PGP Chains
Pretty Good Privacy:

Widely used to provide privacy for electronic mail and signing
files digitally

OpenPGP certificates structured into packets
One public key packet
Zero or more signature packets

Public key packet:
Version (3 or 4; 3 compatible with all versions of PGP, 4 not
compatible with older versions of PGP)
Creation time
Validity period (not present in version 3)
Public key algorithm, associated parameters
Public key

49

OpenPGP Signature Packet
Version 3 signature packet

Version (3)
Signature type (level of trust)
Creation time (when next fields hashed)
Signer’s key identifier (identifies key to encipher
hash)
Public key algorithm (used to encipher hash)
Hash algorithm
Part of signed hash (used for quick check)
Signature (enciphered hash using signer’s
private key)

50

Signing

Single certificate may have multiple
signatures
Notion of “trust” embedded in each signature

Range from “untrusted” to “ultimate trust”
Signer defines meaning of trust level (no
standards!)

All version 4 keys signed by subject
Called “self-signing”

51

Validating Certificates
Alice needs to validate
Bob’s OpenPGP cert

Does not know Fred,
Giselle, or Ellen

Alice gets Giselle’s cert
Knows Henry slightly,
but his signature is at
“casual” level of trust

Alice gets Ellen’s cert
Knows Jack, so uses
his cert to validate
Ellen’s, then hers to
validate Bob’s

Bob

Fred

Giselle

Ellen
Irene

Henry

Jack

Arrows show signatures
Self signatures not shown

52

Digital Signature

Construct that authenticates origin, contents
of message in a manner provable to a
disinterested third party (“judge”)
Sender cannot deny having sent message
(which service is this??)

Limited to technical proofs
Inability to deny one’s cryptographic key was used
to sign

One could claim the cryptographic key was
stolen or compromised

Legal proofs, etc., probably required;

53

Signature

Classical: Alice, Bob share key k
Alice sends m || { m }k to Bob

Does this satisfy the requirement for
message authentication? How?

Does this satisfy the requirement for a
digital signature?

54

Classical Digital Signatures
Require trusted third party

Alice, Bob share keys with trusted party Cathy
The judge must trust Cathy

Alice Bob

Bob Cathy

Cathy Bob

{ m }kAlice

{ m }kAlice

{ m }kBob

How can the judge resolve any dispute where one claims that the
contract was not signed?

How can the judge resolve any dispute where one claims that the
contract was not signed?

55

Public Key Digital Signatures
(RSA)

Alice’s keys are dAlice, eAlice

Alice sends Bob
m || { m }dAlice

In case of dispute, judge computes
{ { m }dAlice }eAlice

and if it is m, Alice signed message
She’s the only one who knows dAlice!

56

RSA Digital Signatures

Use private key to encipher message
Protocol for use is critical

Key points:
Never sign random documents, and when signing,
always sign hash and never document

Mathematical properties can be turned against signer

Sign message first, then encipher
Changing public keys causes forgery

57

Attack #1
Example: Alice, Bob communicating

nA = 95, eA = 59, dA = 11
nB = 77, eB = 53, dB = 17

26 contracts, numbered 00 to 25
Alice has Bob sign 05 and 17:

c = mdB mod nB = 0517 mod 77 = 3
c = mdB mod nB = 1717 mod 77 = 19

Alice computes 05×17 mod 77 = 08; corresponding
signature is 03×19 mod 77 = 57; claims Bob signed 08
Note: [(a mod n) × (b mod n)] mod n = (a × b) mod n
Judge computes ceB mod nB = 5753 mod 77 = 08

Signature validated; Bob is toast!

58

Attack #2: Bob’s Revenge
Bob, Alice agree to sign contract 06
Alice enciphers, then signs:

Enciper: c = meB mod nB = (0653 mod 77)11

Sign: cdA mod nA = (0653 mod 77)11 mod 95 = 63
Bob now changes his public key

Bob wants to claim that Alice singed N (13)
Computes r such that 13r mod 77 = 6; say, r = 59
Computes r.eB mod ϕ(nB) = 59×53 mod 60 = 7
Replace public key eB with 7, private key dB = 43

Bob claims contract was 13. Judge computes:
(6359 mod 95)43 mod 77 = 13
Verified; now Alice is toast

Solution: sign first and then enciher!!

59

El Gamal Digital Signature
Relies on discrete log problem
Choose p prime, g, d < p;
Compute y = gd mod p
Public key: (y, g, p); private key: d
To sign contract m:

Choose k relatively prime to p–1, and not yet used
Compute a = gk mod p
Find b such that m = (da + kb) mod p–1
Signature is (a, b)

To validate, check that
yaab mod p = gm mod p

60

Example
Alice chooses p = 29, g = 3, d = 6

y = 36 mod 29 = 4
Alice wants to send Bob signed contract 23

Chooses k = 5 (relatively prime to 28)
This gives a = gk mod p = 35 mod 29 = 11
Then solving 23 = (6×11 + 5b) mod 28 gives b = 25
Alice sends message 23 and signature (11, 25)

Bob verifies signature: gm mod p = 323 mod 29 = 8
and yaab mod p = 4111125 mod 29 = 8

They match, so Alice signed

61

Attack

Eve learns k, corresponding message m, and
signature (a, b)

Extended Euclidean Algorithm gives d, the private
key

Example from above: Eve learned Alice
signed last message with k = 5

m = (da + kb) mod p–1 = 23
=(11d + 5×25) mod 28

So Alice’s private key is d = 6

62

Summary

Hash functions are key to authenticating
data/message
Session key is better for secret message
exchange
Public key good for interchange key, digital
signatures – needs certification system
Various replay/MITM attacks are possible in
key exchange protocols and care is needed.

