IS2150/TEL2810 Introduction to Security

Homework 4 Total Points: 50 Due Date: September Oct 5, 2007

1)	From Section 4.8	Do exercise 1, 5	[15 Points]
2)	From Section 5.5	Do exercise 1, 2	[15 Points]
3)	Exercise on Lattice		[20 Points]

Consider set of digits $D = \{1, 2, 3\}$. Let *S* be set of all numbers containing two digits from *D*; i.e., each element $a \in S$ can be written as $a = a_1a_2$ where $a_1, a_2 \in D$ (i.e., they are elements of *D*). For instance $a = a_1a_2 = 12$ is an element of *S*, as $a_1 = 1$ and $a_2 = 2$. Let relation \leq be the "dominance" relation on *S*. For every $a, b \in S$ we say a is dominated by b (written as $a \leq b$) if and only if $a_1 \leq b_1$ and $a_2 \leq b_2$. (here \leq is the "less than or equal to" relation on natural numbers 1, 2, and 3, i.e., $1 \leq 2$, $2 \leq 3$, $1 \leq 1$, etc.)

- 1. Does relation \leq generate a *partial order* or a *total order* on the elements of *D*? Draw the *Hasse* diagram for the order it generates.
- 2. Answer the following and justify it.
 - a. Does *S* and \leq form a lattice?
 - b. Now remove elements 21 and 22 from set *S*, i.e. Does the resulting set and \leq form a lattice?