The questions have been grouped into four parts. These parts roughly correspond to the different sets of chapters as I had indicated in the class.

Part 1: (Total Score 20)
Part 2: (Total Score 25)
Part 3: (Total Score 30)
Part 4: (Total Score 25)

Note that scores for each question may be different – so spend time accordingly on each question. Be precise and clear in your answers.

Score

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Part 2</th>
<th>Part 3</th>
<th>Part 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total:

Best of Lucks!!
Part I: Certificates, Authentication and Identity (Total Score 20)

1. Refer to the Merkle’s tree shown below. [1, 3]
 a. Indicate the hash values that need to be computed (use circles) and that need to be obtained (use rectangular boxes) to validate C_3

 ![Merkle Tree Diagram]

 b. At the time C_3 is being evaluated, suppose that C_1 gets corrupted. How does it affect the validation of C_3? Assume that the hash values are all available in the same file, but the certificates are not. Provide enough arguments to substantiate your point.

2. Recall that $X<<Y>>$ represents Y’s certificate signed by X. Consider the following certificates and answer the following [2, 2]
 - Dan<<Alice>>
 - Cathy<<Bob>>
 - Dan<<Cathy>>
 - Cathy<<Dan>>

 (a) Show steps (or just write the signature chain) that Alice takes to validate Bob’s certificate:
(b) Show steps (or just write the signature chain) that Alice takes to validate Bob’s certificate:

3. What is a dictionary attack? Briefly describe the two types of dictionary attack. [4]

4. Provide argument(s) for or against the following statement: [2]
 “Use of salt increases the effort needed to launch dictionary attack.”

5. For the S/Key scheme for password authentication, write the following: [2, 2].
a. If h is the hash function used,

(i) n keys $k_1, k_2, .., k_n$ are generated as follows:

(ii) & the keys are used in the following sequence:

b. Assuming that h cannot be inverted, the attacker cannot determine the next password because of the following reason:

6. Identify two biometric authentication systems and give examples of attacks on them. [2]
Part II: Design Principles, Assurance (Total Score 25)

1. Write what the following design principles mean. [10]

 Fail-safe defaults

 Open design

 Economy of mechanism

 Psychological acceptability

 Complete mediation

2. What do you mean by *operational assurance*? State its importance. [2]

3. What are the three required properties of a *reference validation mechanism*? [3]
4. Five two characteristic of each of the following models of software development: [4]

a. *Extreme programming*

 b. *System assembly from reusable components*

5. Briefly write about two ways checking that *design meets requirements* specified for a system. [2]

6. Indicate true or false for the following. [4]

a. The following are desirable implementation considerations for *operational assurance*:

i. Modularity [] True [] False

ii. Low level language for implementation [] True [] False

 b. One weakness of TCSEC is that it is based heavily on *integrity* requirements and ignores availability. [] True [] False

 c. Common Criteria has a component that addresses country specific needs of some nations. [] True [] False
Part III: Network Security, Auditing, Risk Management, Legal/Ethical Issues (Total Score 30)

1. What are the functions of the following components of the Secure Socket Layer protocol? [1, 1]

 d. SSL Record Protocol

 e. SSL Handshake protocol

2. Provide argument(s) for or against the following statement: [2]
 “IPSec is strictly independent and strictly an end-to-end protocol between two application level entities”

3. Differentiate between the following [2, 2]

 a. The two IPSec protocols.

 b. The two IPSec modes
4. State what you understand by the following: [2]

 a. Security Association Bundle

 b. Demilitarized zone (DMZ)

5. Name four goals of auditing. [2]

6. Recall that we use constraint \(p: \text{action} \rightarrow \text{condition} \). Use this to identify what should be logged for Biba’s integrity model (provide formula). Do you strictly need to log subject (S) and object (O)? [4]

7. Let \(U \) be a set of user, \(P \) be a policy that defines a set of information \(C(U) \) that \(U \) cannot see. What do you mean by the following? [2]

 \(P \) is such that “\(C(U) \) can’t leave site”
8. One way to sanitize information is to replace each piece of information with random pseudonyms. What would be a problem with that? [2]

9. Enumerate the key Risk Assessment steps [3]

10. For the risks and the security mechanism indicated below, calculate and insert the values as per the given data: [4]

 - Risks:
 - disclosure of company confidential information,
 - computation based on incorrect data
 - Cost to correct data: $3,000,000
 - @20% likelihood per year:
 - Effectiveness of access control software: 60%: -$60,000
 - Cost of access control software: +$45,000
 - Expected annual costs due to loss and controls:
 - Savings:

11. Answer only one of the following: [3]

 a. Differentiate between spatial domain and frequency domain watermarking.
 b. Write differences among copyright, patent and trade secret.
 c. Briefly explain two tools that are useful for forensic analysis of Computer intrusions.

 (Provide answer on the back of a sheet)
Part IV: Malicious code, Vulnerability, Intrusion Detection, Physical Security & Disaster Recovery (25)

1. Define the following terms [2]

Polymorphic virus:

2. Write in the blank spaces [2]
 i. Two ways of *detecting* viruses are:

 [a] _____________________________
 [b] _____________________________

 ii. Two general ways to *defend* against a virus

 [a] _____________________________
 [b] _____________________________

3. Recall the following example of a Trojan horse [3]

 - **Perpetrator**
 1. cat >/homes/victim1/ls <<eof
 2. cp /bin/sh /tmp/.xxsh
 3. chmod u+s,o+x /tmp/.xxsh
 4. rm ./ls
 5. ls $*
 6. eof

 That is, the perpetrator creates a file called *ls* in *Victim1*’s home directory

 - **Victim1**
 ls

 That is, when *Victim1* executes the file *ls*, he will be running a Trojan horse created by the *Perpetrator.*
If *Perpetrator* wants to make sure that once *Victim1* executes the Trojan horse `ls`, it propagates to *Victim2*. How may he change the above script to achieve it? You can write *pseudo code* and indicate where the additional code needed to be inserted in the script above.

4. Recall the simple virus code: [3]

 1. BeginVirus
 2. If *spread condition* then
 3. For *target files*
 4. if *not infected* then
 5. alter to include virus (*lines 1-6*)
 6. Perform malicious action
 7. Goto to beginning of the infected program
 8. EndVirus

 Modify the *pseudo-code* to make it a *stealth* virus

5. What are the steps involved in the Flaw Hypothesis methodology. [2]
6. Recall the problem that we discussed in the class regarding the problem with *xterm* program. As a solution to the problem, the following check is done when *xterm* writes to the *log_file* – i.e., the process checks if the user running the *xterm* program can access the *log_file*; if yes, then the *log_file* is opened for writing. [1, 2]

   ```
   if (access("log_file", W_OK) == 0)
       fd = open("log_file", O_WRONLY|O_APPEND)
   ```

 a. State what is the cause of the problem with *xterm*.

 b. Briefly describe why the above check still makes *xterm* vulnerable to “race condition”.

7. NRL taxonomy of software vulnerability includes three schemes. These are: [2]

 1. _________________________
 2. _________________________
 3. _________________________

8. Differentiate between Aslam’s *Coding faults* and *Emergent faults*. [2]

 Coding faults

 Emergent faults

10. What are the two type of Intrusion detection system? Differentiate between them by writing their characteristics. [2]

11. What are Honeypots? (2)

12. What is TEMPEST program? Name two ways of protecting against emanations [2]

13. Indicate factors that need to be considered before disposing sensitive media. [2]

14. Identify two natural disasters and factors related to them in terms of protecting information system resources. [2]

15. Indicate two elements that a security plan should address and state what they mean. [2]