IS2935 Introduction to Computer Security
Final Examination
Thursday, December 11, 2003

Name:

Email:

Total Time : 2:30 Hours
Total Score : 100

The questions have been grouped into four parts. These parts roughly correspond to the different sets of chapters as I had indicated in the class.
 Part 1: (Total Score 20)
 Part 2: (Total Score 20)
 Part 3: (Total Score 30)
 Part 4: (Total Score 30)

Note that scores for each question may be different – so spend time accordingly on each question. Be precise and clear in your answers.

Score

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total =

Best of Lucks!!
Part I: Certificates, Authentication and Identity (Total Score 20)

1. Refer to the Merkle’s tree shown below. [1, 3]
 a. Indicate the hash values that need to be computed (use circles) and that need to be obtained (use rectangular boxes) to validate C_3

 $h(1,4)$

 $h(1,2)$ $h(3,4)$

 $h(1,1)$ $h(2,2)$ $h(3,3)$ $h(4,4)$

 C_1 C_2 C_3 C_4

 b. At the time C_3 is being evaluated, suppose that C_1 gets corrupted. How does it affect the validation of C_3? Assume that the hash values are all available in the same file, but the certificates are not. Provide enough arguments to substantiate your point.

2. Recall that $X<<Y>>$ represents Y’s certificate signed by X. Consider the following certificates and answer (a) and (b) below. [2, 2]

 - $Dan<<Alice>>$
 - $Cathy<<Bob>>$
 - $Dan<<Cathy>>$
 - $Cathy<<Dan>>$

 (a) Show steps (or just write the signature chain) that Alice takes to validate Bob’s certificate:
(b) Show steps (or just write the signature chain) that Bob takes to validate Alice’s certificate:

3. What is a dictionary attack? Briefly describe the two types of dictionary attacks. [4]

4. Provide argument(s) for or against the following statement: [2]
 “Use of salt increases the effort needed to launch a dictionary attack on passwords.”

5. For the S/Key scheme for password authentication, write the following: [2, 2].
 a. If h is the hash function used,
 (i) the n keys, $k_1, k_2, .., k_n$ are generated as follows:

 (ii) the keys are used in the following sequence:

 b. Assuming that h cannot be inverted, the attacker cannot determine the next password the user will use because of the following reason:

6. Identify two biometric authentication systems and give examples of attacks on them. [2]
 (Provide answer on the back of the adjacent page)
Part II: Design Principles, Assurance (Total Score 20)

1. Write what the following design principles mean. [6]

 \textit{Fail-safe defaults}

 \textit{Economy of mechanisms}

 \textit{Psychological acceptability}

2. What do you mean by operational assurance? State its importance. [2]

3. What are the three required properties of a reference validation mechanism? [2]

4. Five two characteristic of each of the following models of software development: [4]

 \textit{a. Extreme programming}
b. System assembly from reusable components

5. Briefly write about two ways checking that design meets requirements specified for a system. [2]

6. Indicate true or false for the following. [4]
 a. The following are desirable implementation considerations for operational assurance:
 i. Modularity [] True [] False
 ii. Low level language for implementation [] True [] False

 b. One weakness of TCSEC is that it is based heavily on integrity requirements and ignores availability.
 [] True [] False

 c. Common Criteria has a component that addresses country specific security evaluation needs of some nations.
 [] True [] False
Part III: Network Security, Auditing, Risk Management, Legal/Ethical Issues (Total Score 30)

1. What are the functions of the following components of the Secure Socket Layer protocol? [1, 1]

 d. SSL Record Protocol

 e. SSL Handshake protocol

2. Provide argument(s) for or against the following statement: [2]
 “IPSec is strictly independent and strictly an end-to-end protocol between two application level entities”

3. Differentiate between the following [2, 2]

 a. The two IPSec protocols.

 b. The two IPSec modes
4. State what you understand by the following: [2]

 a. *Security Association Bundle*

 b. *Demilitarized zone* (DMZ)

5. Name *four* goals of auditing. [2]

6. Recall that we use constraint \(p; action \Rightarrow condition \). Show these constraints and identify what should be logged for a system employing the following Biba’s integrity model. Do you strictly need to log subject (S) and object (O)? [4]

 Biba’s Model: *Strict Integrity Policy*

 \[
 \begin{align*}
 & s \rightarrow o \iff i(s) \leq i(o) & \text{(no read-down)} \\
 & s \leftarrow o \iff i(o) \leq i(s) & \text{(no write-up)} \\
 & s1 \times s2 \iff i(s2) \leq i(s1)
 \end{align*}
 \]

7. Let \(U \) be a set of user, \(P \) be a policy that defines a set of information \(C(U) \) that \(U \) cannot see. What do you mean by the following? [2]

 \[P \text{ is such that “} C(U) \text{ can’t leave site”} \]
8. One way to sanitize information is to replace each piece of information with random pseudonyms. What would be a problem with that? [2]

9. Enumerate the key Risk Assessment steps [3]

10. For the risks and the security mechanism indicated below, calculate and insert the values as per the given data: [4]

 - Risks:
 - disclosure of company confidential information,
 - computation based on incorrect data
 - Cost to correct data: $3,000,000
 - @20% likelihood per year: ________
 - Effectiveness of access control software: 60%: -$60,000
 - Cost of access control software: +$45,000
 - Expected annual costs due to loss and controls: ________
 - Savings: ________

11. Answer only one of the following: [3]

 a. Differentiate between spatial domain and frequency domain watermarking.
 b. Write differences among copyright, patent and trade secret.
 c. Briefly explain two tools that are useful for forensic analysis of Computer intrusions.
Part IV: Malicious code, Vulnerability, Intrusion Detection, Physical Security & Disaster Recovery (30)

1. Define the following terms [2]

Polymorphic virus:

Worm:

2. Recall the following example of a Trojan horse [3]

- **Perpetrator**
 1. cat >/homes/victim1/ls <<eof
 2. cp /bin/sh /tmp/.xxsh
 3. chmod u+s,o+x /tmp/.xxsh
 4. rm ./ls
 5. ls $*
 6. eof

That is, the perpetrator creates a file called `ls` in *Victim1’s* home directory

- **Victim1**
 - `ls`

That is, when *Victim1* executes the file `ls`, he will be running a Trojan horse created by the *Perpetrator.*

Suppose *Perpetrator* wants to make sure that once *Victim1* executes the Trojan horse `ls`, it propagates to *Victim2*. How may he change the above script to achieve it? You can write *pseudo code* and indicate where the additional code needs to be inserted in the script above.
3. Recall the simple virus code: [3]
 1. BeginVirus
 2. If spread condition then
 3. For target files
 4. if not infected then
 alter to include virus (lines 1-6)
 5. Perform malicious action
 6. Goto to beginning of the infected program
 7. EndVirus

Modify the pseudo-code to make it a stealth virus.
(Provide your answer on the back of the adjacent page)

4. What are the steps involved in the Flaw Hypothesis methodology. [3]

5. Recall the problem that we discussed in the class regarding the problem with xterm program. As a solution to the problem, the following check is done when xterm writes to the log_file – i.e., the process checks if the user running the xterm program can access the log_file; if yes, then the log_file is opened for writing. [1, 2]

 if (access("log_file", W_OK) == 0)
 fd = open("log_file", O_WRONLY|O_APPEND)

 a. State what is the cause of the problem with xterm that we are referring to.

 b. Briefly describe why the above check still makes xterm vulnerable to “race condition”.

6. NRL taxonomy of software vulnerability includes three schemes. These are: [2]

 a. ____________________________
7. Differentiate between Aslam’s *Coding faults* and *Emergent faults*. [2]

Coding faults

Emergent faults

8. Write three practical goals of an Intrusion Detection System. [2]

9. What are the two types of *intrusion detection systems*? Differentiate between them by writing their characteristics. [4]

10. What is the TEMPEST program? Name two ways of protecting against emanations. [2]

11. Identify two natural disasters and state how one may protect information system resources against them. [2]

12. Enumerate two key elements that a security plan should address and state what they mean. [2]