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Fundamentals of Operator Overloading

• Use operators with objects (operator overloading)
– Clearer than function calls for certain classes
– Operator sensitive to context

• Types
– Built in (int, char) or user-defined
– Can use existing operators with user-defined types

• Cannot create new operators

• Overloading operators
– Create a function for the class
– Name function operator followed by symbol

• Operator+ for the addition operator +
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Fundamentals of Operator Overloading

• Using operators on a class object
– It must be overloaded for that class
– Exceptions:

• Assignment operator, =
– May be used without explicit overloading
– Memberwise assignment between objects

• Address operator, &
– May be used on any class without overloading 
– Returns address of object

• Both can be overloaded
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Restrictions on Operator Overloading

• Cannot change
– How operators act on built-in data types

• I.e., cannot change integer addition
– Precedence of operator (order of evaluation)

• Use parentheses to force order-of-operations
– Associativity (left-to-right or right-to-left)
– Number of operands

• & is unitary, only acts on one operand

• Cannot create new operators
• Operators must be overloaded explicitly

– Overloading + does not overload +=
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Restrictions on Operator Overloading

Operators that cannot be overloaded 

. .* :: ?: sizeof 
 

Operators that can be overloaded 

+ - * / % ^ & | 
~ ! = <  > += -= *= 

/= %= ^= &= |= << >> >>= 
<<= == != <= >= && || ++ 

-- ->* , -> [] () new delete 

new[] delete[]       
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Operator Functions As Class Members Vs. As 
Friend Functions

• Operator functions
– Member functions

• Use this keyword to implicitly get argument
• Gets left operand for binary operators (like +)
• Leftmost object must be of same class as operator

– Non member functions
• Need parameters for both operands
• Can have object of different class than operator
• Must be a friend to access private or protected data

• Example Overloaded << operator
– Left operand of type ostream &

• Such as cout object in cout << classObject
– Similarly, overloaded >> needs istream &
– Thus, both must be non-member functions
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Operator Functions As Class Members Vs. As 
Friend Functions

• Commutative operators
– May want + to be commutative 

• So both “a + b” and “b + a” work

– Suppose we have two different classes
– Overloaded operator can only be member function when its 

class is on left
• HugeIntClass + Long int
• Can be member function

– When other way, need a non-member overload function
• Long int + HugeIntClass
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Overloading Stream-Insertion and Stream-
Extraction Operators

• << and >>
– Already overloaded to process each built-in type
– Can also process a user-defined class

• Example program
– Class PhoneNumber

• Holds a telephone number

– Print out formatted number automatically
• (123) 456-7890
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fig08_03.cpp
(1 of 3)

1      // Fig. 8.3: fig08_03.cpp
2      // Overloading the stream-insertion and 
3      // stream-extraction operators.
4      #include <iostream>
5      
6      using std::cout;
7      using std::cin;
8      using std::endl;
9      using std::ostream;
10    using std::istream;
11    
12    #include <iomanip>
13    
14    using std::setw;
15    
16    // PhoneNumber class definition
17    class PhoneNumber {
18    friend ostream &operator<<( ostream&, const PhoneNumber & );
19    friend istream &operator>>( istream&, PhoneNumber & );      
20    
21    private:
22    char areaCode[ 4 ];  // 3-digit area code and null
23    char exchange[ 4 ];  // 3-digit exchange and null
24    char line[ 5 ];      // 4-digit line and null
25    
26    }; // end class PhoneNumber

Notice function prototypes for 
overloaded operators >> and  <<

They must be non-member friend
functions, since the object of class 
Phonenumber appears on the right of 
the operator.

cin << object
cout >> object
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fig08_03.cpp
(2 of 3)

27    
28    // overloaded stream-insertion operator; cannot be            
29    // a member function if we would like to invoke it with       
30    // cout << somePhoneNumber;                                   
31    ostream &operator<<( ostream &output, const PhoneNumber &num )
32    {                                                             
33    output << "(" << num.areaCode << ") "                      
34    << num.exchange << "-" << num.line;                 
35    
36    return output;     // enables cout << a << b << c;         
37    
38    } // end function operator<<                                  
39    
40    // overloaded stream-extraction operator; cannot be       
41    // a member function if we would like to invoke it with   
42    // cin >> somePhoneNumber;                                
43    istream &operator>>( istream &input, PhoneNumber &num )   
44    {                                                         
45    input.ignore();                     // skip (          
46    input >> setw( 4 ) >> num.areaCode; // input area code 
47    input.ignore( 2 );                  // skip ) and space
48    input >> setw( 4 ) >> num.exchange; // input exchange  
49    input.ignore();                    // skip dash (-)   
50    input >> setw( 5 ) >> num.line;     // input line      
51    
52    return input;      // enables cin >> a >> b >> c;      

The expression:
cout << phone;
is interpreted as the function call:
operator<<(cout, phone);

output is an alias for cout.

This allows objects to be cascaded.
cout << phone1 << phone2;
first calls 
operator<<(cout, phone1), and 
returns cout. 

Next, cout << phone2 executes.
Stream manipulator setw
restricts number of characters 
read. setw(4) allows 3 
characters to be read, leaving 
room for the null character. 
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fig08_03.cpp
(3 of 3)

fig08_03.cpp
output (1 of 1)

53    
54    } // end function operator>>                              
55    
56    int main()
57    {
58    PhoneNumber phone; // create object phone
59    
60    cout << "Enter phone number in the form (123) 456-7890:\n";
61    
62    // cin >> phone invokes operator>> by implicitly issuing
63    // the non-member function call operator>>( cin, phone )
64    cin >> phone;                                           
65    
66    cout << "The phone number entered was: " ;
67    
68    // cout << phone invokes operator<< by implicitly issuing
69    // the non-member function call operator<<( cout, phone )
70    cout << phone << endl;                                   
71    
72    return 0;
73    
74    } // end main

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212
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Overloading Unary Operators

• Overloading unary operators
– Non-static member function, no arguments
– Non-member function, one argument

• Argument must be class object or reference to class object
– Remember, static functions only access static data 
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Overloading Operators

• Overloading unary operators (! to test for empty string)
– Non-static member function: !s becomes s.operator!()

bool operator!() const;
– Non-member function: s! becomes operator!(s)

friend bool operator!( const String & )

• Overloading binary operators
– Non-member function (arg. must be class object or reference)

friend const String &operator+=(String &, const 
String & );

– Non-static member function: 
const String &operator+=( const String & );

– y += z equivalent to y.operator+=( z )
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Case Study: Array class

• Arrays in C++
– No range checking
– Cannot be compared meaningfully with ==
– No array assignment (array names const pointers)
– Cannot input/output entire arrays at once

• Example:Implement an Array class with 
– Range checking
– Array assignment
– Arrays that know their size
– Outputting/inputting entire arrays with << and >>
– Array comparisons with == and !=
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Case Study: Array class

• Copy constructor
– Used whenever copy of object needed

• Passing by value (return value or parameter)
• Initializing an object with a copy of another

– Array newArray( oldArray );
– newArray copy of oldArray

– Prototype for class Array
• Array( const Array & );
• Must take reference

– Otherwise, pass by value
– Tries to make copy by calling copy constructor…
– Infinite loop
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array1.h (1 of 2)

1      // Fig. 8.4: array1.h
2      // Array class for storing arrays of integers.
3      #ifndef ARRAY1_H
4      #define ARRAY1_H
5      
6      #include <iostream>
7      
8      using std::ostream;
9      using std::istream;
10    
11    class Array {
12    friend ostream &operator<<( ostream &, const Array & );
13    friend istream &operator>>( istream &, Array & );      
14    
15    public:
16    Array( int = 10 );      // default constructor
17    Array( const Array & );  // copy constructor
18    ~Array();               // destructor      
19    int getSize() const;     // return size
20    
21    // assignment operator                   
22    const Array &operator=( const Array & ); 
23    
24    // equality operator                   
25    bool operator==( const Array & ) const;
26    

Most operators overloaded as 
member functions (except <<
and >>, which must be non-
member functions).

Prototype for copy constructor.
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array1.h (2 of 2)

27    // inequality operator; returns opposite of == operator     
28    bool operator!=( const Array &right ) const
29    {                                                           
30    return ! ( *this == right ); // invokes Array::operator==
31    
32    } // end function operator!=                                
33    
34    // subscript operator for non-const objects returns lvalue
35    int &operator[]( int );                                   
36    
37    // subscript operator for const objects returns rvalue
38    const int &operator[]( int ) const;                   
39    
40    private:
41    int size; // array size
42    int *ptr; // pointer to first element of array
43    
44    }; // end class Array
45    
46    #endif

!= operator simply returns 
opposite of == operator. 
Thus, only need to define the 
== operator.
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array1.cpp (1 of 7)

1      // Fig 8.5: array1.cpp
2      // Member function definitions for class Array
3      #include <iostream>
4      
5      using std::cout;
6      using std::cin;
7      using std::endl;
8      
9      #include <iomanip>
10    
11    using std::setw;
12    
13    #include <new>      // C++ standard "new" operator
14    
15    #include <cstdlib>   // exit function prototype
16    
17    #include "array1.h" // Array class definition
18    
19    // default constructor for class Array (default size 10)
20    Array::Array( int arraySize )
21    {
22    // validate arraySize
23    size = ( arraySize > 0 ? arraySize : 10 ); 
24    
25    ptr = new int[ size ]; // create space for array
26    
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array1.cpp (2 of 7)

27    for ( int i = 0; i < size; i++ )
28    ptr[ i ] = 0;          // initialize array
29    
30    } // end Array default constructor
31    
32    // copy constructor for class Array;
33    // must receive a reference to prevent infinite recursion
34    Array::Array( const Array &arrayToCopy ) 
35    : size( arrayToCopy.size )
36    {
37    ptr = new int[ size ]; // create space for array
38    
39    for ( int i = 0; i < size; i++ )
40    ptr[ i ] = arrayToCopy.ptr[ i ];  // copy into object
41    
42    } // end Array copy constructor
43    
44    // destructor for class Array
45    Array::~Array()
46    {
47    delete [] ptr;  // reclaim array space
48    
49    } // end destructor
50    

We must declare a new integer array so 
the objects do not point to the same 
memory.
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array1.cpp (3 of 7)

51    // return size of array
52    int Array::getSize() const
53    {
54    return size;
55    
56    } // end function getSize
57    
58    // overloaded assignment operator;
59    // const return avoids: ( a1 = a2 ) = a3
60    const Array &Array::operator=( const Array &right )
61    {
62    if ( &right != this ) {  // check for self-assignment
63    
64    // for arrays of different sizes, deallocate original
65    // left-side array, then allocate new left-side array
66    if ( size != right.size ) {
67    delete [] ptr;         // reclaim space
68    size = right.size;    // resize this object
69    ptr = new int[ size ]; // create space for array copy
70    
71    } // end inner if
72    
73    for ( int i = 0; i < size; i++ )
74    ptr[ i ] = right.ptr[ i ];  // copy array into object
75    
76    } // end outer if

Want to avoid self-assignment.
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array1.cpp (4 of 7)

77    
78    return *this; // enables x = y = z, for example
79    
80    } // end function operator=
81    
82    // determine if two arrays are equal and
83    // return true, otherwise return false
84    bool Array::operator==( const Array &right ) const
85    {
86    if ( size != right.size )
87    return false;    // arrays of different sizes
88    
89    for ( int i = 0; i < size; i++ )
90    
91    if ( ptr[ i ] != right.ptr[ i ] )
92    return false; // arrays are not equal
93    
94    return true;       // arrays are equal
95    
96    } // end function operator==
97    
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array1.cpp (5 of 7)

98    // overloaded subscript operator for non-const Arrays
99    // reference return creates an lvalue
100  int &Array::operator[]( int subscript )
101  {
102  // check for subscript out of range error
103  if ( subscript < 0 || subscript >= size ) {
104  cout << "\nError: Subscript " << subscript 
105  << " out of range" << endl;
106  
107  exit( 1 );  // terminate program; subscript out of range
108  
109  } // end if
110  
111  return ptr[ subscript ]; // reference return
112  
113  } // end function operator[]
114  

integers1[5] calls
integers1.operator[]( 5 )

exit() (header <cstdlib>) ends 
the program.
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array1.cpp (6 of 7)

115  // overloaded subscript operator for const Arrays
116  // const reference return creates an rvalue
117  const int &Array::operator[]( int subscript ) const
118  {
119  // check for subscript out of range error
120  if ( subscript < 0 || subscript >= size ) {
121  cout << "\nError: Subscript " << subscript 
122  << " out of range" << endl;
123  
124  exit( 1 );  // terminate program; subscript out of range
125  
126  } // end if
127  
128  return ptr[ subscript ]; // const reference return
129  
130  } // end function operator[]
131  
132  // overloaded input operator for class Array;
133  // inputs values for entire array
134  istream &operator>>( istream &input, Array &a )
135  {
136  for ( int i = 0; i < a.size; i++ )
137  input >> a.ptr[ i ];
138  
139  return input;   // enables cin >> x >> y;
140  
141  } // end function 
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array1.cpp (7 of 7)

142  
143  // overloaded output operator for class Array 
144  ostream &operator<<( ostream &output, const Array &a )
145  {
146  int i;
147  
148  // output private ptr-based array
149  for ( i = 0; i < a.size; i++ ) {
150  output << setw( 12 ) << a.ptr[ i ];
151  
152  if ( ( i + 1 ) % 4 == 0 ) // 4 numbers per row of output
153  output << endl;
154  
155  } // end for
156  
157  if ( i % 4 != 0 )  // end last line of output
158  output << endl;
159  
160  return output;   // enables cout << x << y;
161  
162  } // end function operator<<
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Converting between Types

• Cast operator (conversion operator)
– Convert from One class to another built-in type
– Must be non-static member function -

– Cannot be friend
– Do not specify return type

– Implicitly returns type to which you are converting
– Example: A::operator char *() const;

• Casts class A to a temporary char *
• (char *)s calls s.operator char*()
A::operator int() const;
A::operator OtherClass() const;

• Casting can prevent need for overloading
– Suppose class String can be cast to char *
– cout << s; // cout expects char *; s is a String

• Compiler implicitly calls the function to convert s to char *
• Do not have to overload << for String
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Case Study: A String Class

• Build class String
– String creation, manipulation
– Class string in standard library (more Chapter 15)

• Conversion constructor
– Single-argument constructor
– Turns objects of other types into class objects

• String s1(“hi”);
• Creates a String from a char *

– Any single-argument constructor is a conversion constructor
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Overloading ++ and --

• Increment/decrement operators can be overloaded
– Add 1 to a Date object, d1
– Prototype (member function)

• Date &operator++();
• ++d1 same as d1.operator++()

– Prototype (non-member)
• Friend Date &operator++( Date &);
• ++d1 same as operator++( d1 )
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Overloading ++ and --

• To distinguish pre/post increment
– Post increment has a dummy parameter

• int of 0
– Prototype (member function)

• Date operator++( int );
• d1++ same as d1.operator++( 0 )

– Prototype (non-member)
• friend Date operator++( Data &, int );
• d1++ same as operator++( d1, 0 )

– Integer parameter does not have a name
• Not even in function definition
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Overloading ++ and --

• Return values
– Preincrement

• Returns by reference (Date &)
• lvalue (can be assigned)

– Postincrement
• Returns by value
• Returns temporary object with old value
• rvalue (cannot be on left side of assignment)

• Example Date class
– Overloaded increment operator

• Change day, month and year
– Overloaded += operator
– Function to test for leap years
– Function to determine if day is last of month
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date1.h (1 of 2)

1      // Fig. 8.10: date1.h
2      // Date class definition.
3      #ifndef DATE1_H
4      #define DATE1_H
5      #include <iostream>
6      
7      using std::ostream;
8      
9      class Date {
10    friend ostream &operator<<( ostream &, const Date & );
11    
12    public:
13    Date( int m = 1, int d = 1, int y = 1900 ); // constructor
14    void setDate( int, int, int ); // set the date
15    
16    Date &operator++();            // preincrement operator 
17    Date operator++( int );        // postincrement operator
18    
19    const Date &operator+=( int ); // add days, modify object
20    
21    bool leapYear( int ) const;    // is this a leap year?
22    bool endOfMonth( int ) const; // is this end of month?

Note difference between pre 
and post increment.
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date1.h (2 of 2)

23    
24    private:
25    int month;
26    int day;
27    int year;
28    
29    static const int days[];       // array of days per month
30    void helpIncrement();          // utility function
31    
32    }; // end class Date
33    
34 #endif

35 Date &Date::operator++()                                
36 {                                                        
37 helpIncrement();                                                             
37    return *this;  // reference return to create an lvalue
39    } // end function operator++                             
40    
41    // overloaded postincrement operator; note that the dummy
42    // integer parameter does not have a parameter name      
43    Date Date::operator++( int )                             
44    {                                                        
45    Date temp = *this;  // hold current state of object
46    helpIncrement();                                      
48    // return unincremented, saved, temporary object      
49    return temp;   // value return; not a reference return
51    } // end function operator++
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Inheritance

• Inheritance
– Software reusability
– Create new class from existing class

• Absorb existing class’s data and behaviors
• Enhance with new capabilities

– Derived class inherits from base class
• Derived class

– More specialized group of objects
– Behaviors inherited from base class

• Can customize
– Additional behaviors
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Inheritance

• Class hierarchy
– Direct base class

• Inherited explicitly (one level up hierarchy)
– Indirect base class

• Inherited two or more levels up hierarchy
– Single inheritance

• Inherits from one base class
– Multiple inheritance

• Inherits from multiple base classes
– Base classes possibly unrelated

• Chapter 22
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• Three types of inheritance
– public

• Every object of derived class also object of base class
– Base-class objects not objects of derived classes
– Example: All cars vehicles, but not all vehicles cars

• Can access non-private members of base class
– Derived class can effect change to private base-class 

members
• Through inherited non-private member functions

– private
• Alternative to composition
• Chapter 17

– protected 
• Rarely used

Inheritance
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• Abstraction
– Focus on commonalities among objects in system

• “is-a” vs. “has-a”
– “is-a”

• Inheritance
• Derived class object treated as base class object
• Example: Car is a vehicle

– Vehicle properties/behaviors also car properties/behaviors
– “has-a”

• Composition
• Object contains one or more objects of other classes as 

members
• Example: Car has a steering wheel

Inheritance
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Base Classes and Derived Classes

• Base classes and derived classes
– Object of one class “is an” object of another class

• Example: Rectangle is quadrilateral.
– Base class typically represents larger set of objects than 

derived classes
• Example:  

– Base class: Vehicle
• Cars, trucks, boats, bicycles, …

– Derived class: Car
• Smaller, more-specific subset of vehicles
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Base Classes and Derived Classes

• Inheritance examples

Base class Derived classes 

Student GraduateStudent 
UndergraduateStudent 

Shape Circle 
Triangle 
Rectangle 

Loan CarLoan 
HomeImprovementLoan 
MortgageLoan 

Employee FacultyMember 
StaffMember 

Account CheckingAccount 
SavingsAccount 
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Base Classes and Derived Classes

• Inheritance hierarchy
– Inheritance relationships: tree-like hierarchy structure
– Each class becomes

• Base class
– Supply data/behaviors to other classes

OR
• Derived class

– Inherit data/behaviors from other classes
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Single 
inheritance

CommunityMember

Employee Student

Administrator Teacher

AdministratorTeacher

StaffFaculty

Alumnus

Single 
inheritance

Single 
inheritance

Multiple 
inheritance

Fig. 9.2 Inheritance hierarchy for university CommunityMembers.

Inheritance hierarchy
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Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

Fig. 9.3 Inheritance hierarchy for Shapes.

Inheritance hierarchy
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Base Classes and Derived Classes

• public inheritance
– Specify with:
Class TwoDimensionalShape : public Shape

• Class TwoDimensionalShape inherits from class Shape
– Base class private members

• Not accessible directly
• Still inherited - manipulate through inherited member functions

– Base class public and protected members
• Inherited with original member access

– friend functions
• Not inherited
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protected Members

• protected access
– Intermediate level of protection between public and 
private

– protected members accessible to
• Base class members
• Base class friends
• Derived class members
• Derived class friends

– Derived-class members
• Refer to public and protected members of base class

– Simply use member names
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Relationship between Base Classes and 
Derived Classes

• Base class and derived class relationship
– Example: Point/circle inheritance hierarchy

• Point
– x-y coordinate pair

• Circle
– x-y coordinate pair
– Radius
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Relationship between Base Classes and 
Derived Classes

• Using protected data members
– Advantages

• Derived classes can modify values directly
• Slight increase in performance

– Avoid set/get function call overhead
– Disadvantages

• No validity checking
– Derived class can assign illegal value

• Implementation dependent
– Derived class member functions more likely dependent on 

base class implementation
– Base class implementation changes may result in derived 

class modifications
• Fragile (brittle) software
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Case Study: Three-Level Inheritance Hierarchy

• Three level point/circle/cylinder hierarchy
– Point

• x-y coordinate pair
– Circle

• x-y coordinate pair
• Radius

– Cylinder
• x-y coordinate pair
• Radius
• Height
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Constructors and Destructors in Derived 
Classes

• Instantiating derived-class object
– Chain of constructor calls

• Derived-class constructor invokes base class constructor
– Implicitly or explicitly

• Base of inheritance hierarchy
– Last constructor called in chain
– First constructor body to finish executing
– Example: Point3/Circle4/Cylinder hierarchy

• Point3 constructor called last
• Point3 constructor body finishes execution first

• Initializing data members
– Each base-class constructor initializes data members 

inherited by derived class
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Constructors and Destructors in Derived 
Classes

• Destroying derived-class object
– Chain of destructor calls

• Reverse order of constructor chain
• Destructor of derived-class called first
• Destructor of next base class up hierarchy next

– Continue up hierarchy until final base reached
• After final base-class destructor, object removed from 

memory

• Base-class constructors, destructors, assignment 
operators
– Not inherited by derived classes
– Derived class constructors, assignment operators can call

• Constructors
• Assignment operators
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public, protected and private Inheritance

Type of inheritance Base class 
member 
access 
specifier 

public 
inheritance 

protected 
inheritance 

private  

inheritance 
  

 
 
Public 

public in derived class. 
Can be accessed directly by any 
non-static member functions,  
friend functions and non-
member functions. 

protected in derived class. 
Can be accessed directly by all 
non-static member functions 
and friend functions. 

private in derived class. 
Can be accessed directly by all 
non-static member functions 
and friend functions. 

 
 
 
Protected 

protected in derived class. 
Can be accessed directly by all 
non-static member functions 
and friend functions. 

protected in derived class. 
Can be accessed directly by all 
non-static member functions 
and friend  functions. 

private in derived class. 
Can be accessed directly by all 
non-static member functions 
and friend functions. 

 
 
 
Private 

Hidden in derived class. 
Can be accessed by non-static 
member functions and friend 
functions through public or 
protected member functions 
of the base class. 

Hidden in derived class. 
Can be accessed by non-static 
member functions and friend 
functions through public or 
protected member functions 
of the base class. 

Hidden in derived class. 
Can be accessed by non-static 
member functions and friend 
functions through public or 
protected member  functions 
of the base class. 
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Software Engineering with Inheritance

• Customizing existing software
– Inherit from existing classes

• Include additional members
• Redefine base-class members
• No direct access to base class’s source code

– Link to object code
– Independent software vendors (ISVs)

• Develop proprietary code for sale/license
– Available in object-code format

• Users derive new classes 
– Without accessing ISV proprietary source code


