
 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Introduction to C++ Programming

Operator Overloading, Inheritance
Lecture 5

June 21, 2004

 2003 Prentice Hall, Inc. All rights reserved.

2

Fundamentals of Operator Overloading

• Use operators with objects (operator overloading)
– Clearer than function calls for certain classes
– Operator sensitive to context

• Types
– Built in (int, char) or user-defined
– Can use existing operators with user-defined types

• Cannot create new operators

• Overloading operators
– Create a function for the class
– Name function operator followed by symbol

• Operator+ for the addition operator +

 2003 Prentice Hall, Inc. All rights reserved.

3

Fundamentals of Operator Overloading

• Using operators on a class object
– It must be overloaded for that class
– Exceptions:

• Assignment operator, =
– May be used without explicit overloading
– Memberwise assignment between objects

• Address operator, &
– May be used on any class without overloading
– Returns address of object

• Both can be overloaded

 2003 Prentice Hall, Inc. All rights reserved.

4

Restrictions on Operator Overloading

• Cannot change
– How operators act on built-in data types

• I.e., cannot change integer addition
– Precedence of operator (order of evaluation)

• Use parentheses to force order-of-operations
– Associativity (left-to-right or right-to-left)
– Number of operands

• & is unitary, only acts on one operand

• Cannot create new operators
• Operators must be overloaded explicitly

– Overloading + does not overload +=

 2003 Prentice Hall, Inc. All rights reserved.

5

Restrictions on Operator Overloading

Operators that cannot be overloaded

. .* :: ?: sizeof

Operators that can be overloaded

+ - * / % ^ & |
~ ! = < > += -= *=

/= %= ^= &= |= << >> >>=
<<= == != <= >= && || ++

-- ->* , -> [] () new delete

new[] delete[]

 2003 Prentice Hall, Inc. All rights reserved.

6

Operator Functions As Class Members Vs. As
Friend Functions

• Operator functions
– Member functions

• Use this keyword to implicitly get argument
• Gets left operand for binary operators (like +)
• Leftmost object must be of same class as operator

– Non member functions
• Need parameters for both operands
• Can have object of different class than operator
• Must be a friend to access private or protected data

• Example Overloaded << operator
– Left operand of type ostream &

• Such as cout object in cout << classObject
– Similarly, overloaded >> needs istream &
– Thus, both must be non-member functions

 2003 Prentice Hall, Inc. All rights reserved.

7

Operator Functions As Class Members Vs. As
Friend Functions

• Commutative operators
– May want + to be commutative

• So both “a + b” and “b + a” work

– Suppose we have two different classes
– Overloaded operator can only be member function when its

class is on left
• HugeIntClass + Long int
• Can be member function

– When other way, need a non-member overload function
• Long int + HugeIntClass

 2003 Prentice Hall, Inc. All rights reserved.

8

Overloading Stream-Insertion and Stream-
Extraction Operators

• << and >>
– Already overloaded to process each built-in type
– Can also process a user-defined class

• Example program
– Class PhoneNumber

• Holds a telephone number

– Print out formatted number automatically
• (123) 456-7890

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
9

fig08_03.cpp
(1 of 3)

1 // Fig. 8.3: fig08_03.cpp
2 // Overloading the stream-insertion and
3 // stream-extraction operators.
4 #include <iostream>
5
6 using std::cout;
7 using std::cin;
8 using std::endl;
9 using std::ostream;
10 using std::istream;
11
12 #include <iomanip>
13
14 using std::setw;
15
16 // PhoneNumber class definition
17 class PhoneNumber {
18 friend ostream &operator<<(ostream&, const PhoneNumber &);
19 friend istream &operator>>(istream&, PhoneNumber &);
20
21 private:
22 char areaCode[4]; // 3-digit area code and null
23 char exchange[4]; // 3-digit exchange and null
24 char line[5]; // 4-digit line and null
25
26 }; // end class PhoneNumber

Notice function prototypes for
overloaded operators >> and <<

They must be non-member friend
functions, since the object of class
Phonenumber appears on the right of
the operator.

cin << object
cout >> object

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
10

fig08_03.cpp
(2 of 3)

27
28 // overloaded stream-insertion operator; cannot be
29 // a member function if we would like to invoke it with
30 // cout << somePhoneNumber;
31 ostream &operator<<(ostream &output, const PhoneNumber &num)
32 {
33 output << "(" << num.areaCode << ") "
34 << num.exchange << "-" << num.line;
35
36 return output; // enables cout << a << b << c;
37
38 } // end function operator<<
39
40 // overloaded stream-extraction operator; cannot be
41 // a member function if we would like to invoke it with
42 // cin >> somePhoneNumber;
43 istream &operator>>(istream &input, PhoneNumber &num)
44 {
45 input.ignore(); // skip (
46 input >> setw(4) >> num.areaCode; // input area code
47 input.ignore(2); // skip) and space
48 input >> setw(4) >> num.exchange; // input exchange
49 input.ignore(); // skip dash (-)
50 input >> setw(5) >> num.line; // input line
51
52 return input; // enables cin >> a >> b >> c;

The expression:
cout << phone;
is interpreted as the function call:
operator<<(cout, phone);

output is an alias for cout.

This allows objects to be cascaded.
cout << phone1 << phone2;
first calls
operator<<(cout, phone1), and
returns cout.

Next, cout << phone2 executes.
Stream manipulator setw
restricts number of characters
read. setw(4) allows 3
characters to be read, leaving
room for the null character.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
11

fig08_03.cpp
(3 of 3)

fig08_03.cpp
output (1 of 1)

53
54 } // end function operator>>
55
56 int main()
57 {
58 PhoneNumber phone; // create object phone
59
60 cout << "Enter phone number in the form (123) 456-7890:\n";
61
62 // cin >> phone invokes operator>> by implicitly issuing
63 // the non-member function call operator>>(cin, phone)
64 cin >> phone;
65
66 cout << "The phone number entered was: " ;
67
68 // cout << phone invokes operator<< by implicitly issuing
69 // the non-member function call operator<<(cout, phone)
70 cout << phone << endl;
71
72 return 0;
73
74 } // end main

Enter phone number in the form (123) 456-7890:
(800) 555-1212
The phone number entered was: (800) 555-1212

 2003 Prentice Hall, Inc. All rights reserved.

12

Overloading Unary Operators

• Overloading unary operators
– Non-static member function, no arguments
– Non-member function, one argument

• Argument must be class object or reference to class object
– Remember, static functions only access static data

 2003 Prentice Hall, Inc. All rights reserved.

13

Overloading Operators

• Overloading unary operators (! to test for empty string)
– Non-static member function: !s becomes s.operator!()

bool operator!() const;
– Non-member function: s! becomes operator!(s)

friend bool operator!(const String &)

• Overloading binary operators
– Non-member function (arg. must be class object or reference)

friend const String &operator+=(String &, const
String &);

– Non-static member function:
const String &operator+=(const String &);

– y += z equivalent to y.operator+=(z)

 2003 Prentice Hall, Inc. All rights reserved.

14

Case Study: Array class

• Arrays in C++
– No range checking
– Cannot be compared meaningfully with ==
– No array assignment (array names const pointers)
– Cannot input/output entire arrays at once

• Example:Implement an Array class with
– Range checking
– Array assignment
– Arrays that know their size
– Outputting/inputting entire arrays with << and >>
– Array comparisons with == and !=

 2003 Prentice Hall, Inc. All rights reserved.

15

Case Study: Array class

• Copy constructor
– Used whenever copy of object needed

• Passing by value (return value or parameter)
• Initializing an object with a copy of another

– Array newArray(oldArray);
– newArray copy of oldArray

– Prototype for class Array
• Array(const Array &);
• Must take reference

– Otherwise, pass by value
– Tries to make copy by calling copy constructor…
– Infinite loop

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
16

array1.h (1 of 2)

1 // Fig. 8.4: array1.h
2 // Array class for storing arrays of integers.
3 #ifndef ARRAY1_H
4 #define ARRAY1_H
5
6 #include <iostream>
7
8 using std::ostream;
9 using std::istream;
10
11 class Array {
12 friend ostream &operator<<(ostream &, const Array &);
13 friend istream &operator>>(istream &, Array &);
14
15 public:
16 Array(int = 10); // default constructor
17 Array(const Array &); // copy constructor
18 ~Array(); // destructor
19 int getSize() const; // return size
20
21 // assignment operator
22 const Array &operator=(const Array &);
23
24 // equality operator
25 bool operator==(const Array &) const;
26

Most operators overloaded as
member functions (except <<
and >>, which must be non-
member functions).

Prototype for copy constructor.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
17

array1.h (2 of 2)

27 // inequality operator; returns opposite of == operator
28 bool operator!=(const Array &right) const
29 {
30 return ! (*this == right); // invokes Array::operator==
31
32 } // end function operator!=
33
34 // subscript operator for non-const objects returns lvalue
35 int &operator[](int);
36
37 // subscript operator for const objects returns rvalue
38 const int &operator[](int) const;
39
40 private:
41 int size; // array size
42 int *ptr; // pointer to first element of array
43
44 }; // end class Array
45
46 #endif

!= operator simply returns
opposite of == operator.
Thus, only need to define the
== operator.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
18

array1.cpp (1 of 7)

1 // Fig 8.5: array1.cpp
2 // Member function definitions for class Array
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::endl;
8
9 #include <iomanip>
10
11 using std::setw;
12
13 #include <new> // C++ standard "new" operator
14
15 #include <cstdlib> // exit function prototype
16
17 #include "array1.h" // Array class definition
18
19 // default constructor for class Array (default size 10)
20 Array::Array(int arraySize)
21 {
22 // validate arraySize
23 size = (arraySize > 0 ? arraySize : 10);
24
25 ptr = new int[size]; // create space for array
26

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
19

array1.cpp (2 of 7)

27 for (int i = 0; i < size; i++)
28 ptr[i] = 0; // initialize array
29
30 } // end Array default constructor
31
32 // copy constructor for class Array;
33 // must receive a reference to prevent infinite recursion
34 Array::Array(const Array &arrayToCopy)
35 : size(arrayToCopy.size)
36 {
37 ptr = new int[size]; // create space for array
38
39 for (int i = 0; i < size; i++)
40 ptr[i] = arrayToCopy.ptr[i]; // copy into object
41
42 } // end Array copy constructor
43
44 // destructor for class Array
45 Array::~Array()
46 {
47 delete [] ptr; // reclaim array space
48
49 } // end destructor
50

We must declare a new integer array so
the objects do not point to the same
memory.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
20

array1.cpp (3 of 7)

51 // return size of array
52 int Array::getSize() const
53 {
54 return size;
55
56 } // end function getSize
57
58 // overloaded assignment operator;
59 // const return avoids: (a1 = a2) = a3
60 const Array &Array::operator=(const Array &right)
61 {
62 if (&right != this) { // check for self-assignment
63
64 // for arrays of different sizes, deallocate original
65 // left-side array, then allocate new left-side array
66 if (size != right.size) {
67 delete [] ptr; // reclaim space
68 size = right.size; // resize this object
69 ptr = new int[size]; // create space for array copy
70
71 } // end inner if
72
73 for (int i = 0; i < size; i++)
74 ptr[i] = right.ptr[i]; // copy array into object
75
76 } // end outer if

Want to avoid self-assignment.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
21

array1.cpp (4 of 7)

77
78 return *this; // enables x = y = z, for example
79
80 } // end function operator=
81
82 // determine if two arrays are equal and
83 // return true, otherwise return false
84 bool Array::operator==(const Array &right) const
85 {
86 if (size != right.size)
87 return false; // arrays of different sizes
88
89 for (int i = 0; i < size; i++)
90
91 if (ptr[i] != right.ptr[i])
92 return false; // arrays are not equal
93
94 return true; // arrays are equal
95
96 } // end function operator==
97

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
22

array1.cpp (5 of 7)

98 // overloaded subscript operator for non-const Arrays
99 // reference return creates an lvalue
100 int &Array::operator[](int subscript)
101 {
102 // check for subscript out of range error
103 if (subscript < 0 || subscript >= size) {
104 cout << "\nError: Subscript " << subscript
105 << " out of range" << endl;
106
107 exit(1); // terminate program; subscript out of range
108
109 } // end if
110
111 return ptr[subscript]; // reference return
112
113 } // end function operator[]
114

integers1[5] calls
integers1.operator[](5)

exit() (header <cstdlib>) ends
the program.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
23

array1.cpp (6 of 7)

115 // overloaded subscript operator for const Arrays
116 // const reference return creates an rvalue
117 const int &Array::operator[](int subscript) const
118 {
119 // check for subscript out of range error
120 if (subscript < 0 || subscript >= size) {
121 cout << "\nError: Subscript " << subscript
122 << " out of range" << endl;
123
124 exit(1); // terminate program; subscript out of range
125
126 } // end if
127
128 return ptr[subscript]; // const reference return
129
130 } // end function operator[]
131
132 // overloaded input operator for class Array;
133 // inputs values for entire array
134 istream &operator>>(istream &input, Array &a)
135 {
136 for (int i = 0; i < a.size; i++)
137 input >> a.ptr[i];
138
139 return input; // enables cin >> x >> y;
140
141 } // end function

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
24

array1.cpp (7 of 7)

142
143 // overloaded output operator for class Array
144 ostream &operator<<(ostream &output, const Array &a)
145 {
146 int i;
147
148 // output private ptr-based array
149 for (i = 0; i < a.size; i++) {
150 output << setw(12) << a.ptr[i];
151
152 if ((i + 1) % 4 == 0) // 4 numbers per row of output
153 output << endl;
154
155 } // end for
156
157 if (i % 4 != 0) // end last line of output
158 output << endl;
159
160 return output; // enables cout << x << y;
161
162 } // end function operator<<

 2003 Prentice Hall, Inc. All rights reserved.

25

Converting between Types

• Cast operator (conversion operator)
– Convert from One class to another built-in type
– Must be non-static member function -

– Cannot be friend
– Do not specify return type

– Implicitly returns type to which you are converting
– Example: A::operator char *() const;

• Casts class A to a temporary char *
• (char *)s calls s.operator char*()
A::operator int() const;
A::operator OtherClass() const;

• Casting can prevent need for overloading
– Suppose class String can be cast to char *
– cout << s; // cout expects char *; s is a String

• Compiler implicitly calls the function to convert s to char *
• Do not have to overload << for String

 2003 Prentice Hall, Inc. All rights reserved.

26

Case Study: A String Class

• Build class String
– String creation, manipulation
– Class string in standard library (more Chapter 15)

• Conversion constructor
– Single-argument constructor
– Turns objects of other types into class objects

• String s1(“hi”);
• Creates a String from a char *

– Any single-argument constructor is a conversion constructor

 2003 Prentice Hall, Inc. All rights reserved.

27

Overloading ++ and --

• Increment/decrement operators can be overloaded
– Add 1 to a Date object, d1
– Prototype (member function)

• Date &operator++();
• ++d1 same as d1.operator++()

– Prototype (non-member)
• Friend Date &operator++(Date &);
• ++d1 same as operator++(d1)

 2003 Prentice Hall, Inc. All rights reserved.

28

Overloading ++ and --

• To distinguish pre/post increment
– Post increment has a dummy parameter

• int of 0
– Prototype (member function)

• Date operator++(int);
• d1++ same as d1.operator++(0)

– Prototype (non-member)
• friend Date operator++(Data &, int);
• d1++ same as operator++(d1, 0)

– Integer parameter does not have a name
• Not even in function definition

 2003 Prentice Hall, Inc. All rights reserved.

29

Overloading ++ and --

• Return values
– Preincrement

• Returns by reference (Date &)
• lvalue (can be assigned)

– Postincrement
• Returns by value
• Returns temporary object with old value
• rvalue (cannot be on left side of assignment)

• Example Date class
– Overloaded increment operator

• Change day, month and year
– Overloaded += operator
– Function to test for leap years
– Function to determine if day is last of month

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
30

date1.h (1 of 2)

1 // Fig. 8.10: date1.h
2 // Date class definition.
3 #ifndef DATE1_H
4 #define DATE1_H
5 #include <iostream>
6
7 using std::ostream;
8
9 class Date {
10 friend ostream &operator<<(ostream &, const Date &);
11
12 public:
13 Date(int m = 1, int d = 1, int y = 1900); // constructor
14 void setDate(int, int, int); // set the date
15
16 Date &operator++(); // preincrement operator
17 Date operator++(int); // postincrement operator
18
19 const Date &operator+=(int); // add days, modify object
20
21 bool leapYear(int) const; // is this a leap year?
22 bool endOfMonth(int) const; // is this end of month?

Note difference between pre
and post increment.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
31

date1.h (2 of 2)

23
24 private:
25 int month;
26 int day;
27 int year;
28
29 static const int days[]; // array of days per month
30 void helpIncrement(); // utility function
31
32 }; // end class Date
33
34 #endif

35 Date &Date::operator++()
36 {
37 helpIncrement();
37 return *this; // reference return to create an lvalue
39 } // end function operator++
40
41 // overloaded postincrement operator; note that the dummy
42 // integer parameter does not have a parameter name
43 Date Date::operator++(int)
44 {
45 Date temp = *this; // hold current state of object
46 helpIncrement();
48 // return unincremented, saved, temporary object
49 return temp; // value return; not a reference return
51 } // end function operator++

 2003 Prentice Hall, Inc. All rights reserved.

32

Inheritance

• Inheritance
– Software reusability
– Create new class from existing class

• Absorb existing class’s data and behaviors
• Enhance with new capabilities

– Derived class inherits from base class
• Derived class

– More specialized group of objects
– Behaviors inherited from base class

• Can customize
– Additional behaviors

 2003 Prentice Hall, Inc. All rights reserved.

33

Inheritance

• Class hierarchy
– Direct base class

• Inherited explicitly (one level up hierarchy)
– Indirect base class

• Inherited two or more levels up hierarchy
– Single inheritance

• Inherits from one base class
– Multiple inheritance

• Inherits from multiple base classes
– Base classes possibly unrelated

• Chapter 22

 2003 Prentice Hall, Inc. All rights reserved.

34

• Three types of inheritance
– public

• Every object of derived class also object of base class
– Base-class objects not objects of derived classes
– Example: All cars vehicles, but not all vehicles cars

• Can access non-private members of base class
– Derived class can effect change to private base-class

members
• Through inherited non-private member functions

– private
• Alternative to composition
• Chapter 17

– protected
• Rarely used

Inheritance

 2003 Prentice Hall, Inc. All rights reserved.

35

• Abstraction
– Focus on commonalities among objects in system

• “is-a” vs. “has-a”
– “is-a”

• Inheritance
• Derived class object treated as base class object
• Example: Car is a vehicle

– Vehicle properties/behaviors also car properties/behaviors
– “has-a”

• Composition
• Object contains one or more objects of other classes as

members
• Example: Car has a steering wheel

Inheritance

 2003 Prentice Hall, Inc. All rights reserved.

36

Base Classes and Derived Classes

• Base classes and derived classes
– Object of one class “is an” object of another class

• Example: Rectangle is quadrilateral.
– Base class typically represents larger set of objects than

derived classes
• Example:

– Base class: Vehicle
• Cars, trucks, boats, bicycles, …

– Derived class: Car
• Smaller, more-specific subset of vehicles

 2003 Prentice Hall, Inc. All rights reserved.

37

Base Classes and Derived Classes

• Inheritance examples

Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

 2003 Prentice Hall, Inc. All rights reserved.

38

Base Classes and Derived Classes

• Inheritance hierarchy
– Inheritance relationships: tree-like hierarchy structure
– Each class becomes

• Base class
– Supply data/behaviors to other classes

OR
• Derived class

– Inherit data/behaviors from other classes

 2003 Prentice Hall, Inc. All rights reserved.

39

Single
inheritance

CommunityMember

Employee Student

Administrator Teacher

AdministratorTeacher

StaffFaculty

Alumnus

Single
inheritance

Single
inheritance

Multiple
inheritance

Fig. 9.2 Inheritance hierarchy for university CommunityMembers.

Inheritance hierarchy

 2003 Prentice Hall, Inc. All rights reserved.

40

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

Fig. 9.3 Inheritance hierarchy for Shapes.

Inheritance hierarchy

 2003 Prentice Hall, Inc. All rights reserved.

41

Base Classes and Derived Classes

• public inheritance
– Specify with:
Class TwoDimensionalShape : public Shape

• Class TwoDimensionalShape inherits from class Shape
– Base class private members

• Not accessible directly
• Still inherited - manipulate through inherited member functions

– Base class public and protected members
• Inherited with original member access

– friend functions
• Not inherited

 2003 Prentice Hall, Inc. All rights reserved.

42

protected Members

• protected access
– Intermediate level of protection between public and
private

– protected members accessible to
• Base class members
• Base class friends
• Derived class members
• Derived class friends

– Derived-class members
• Refer to public and protected members of base class

– Simply use member names

 2003 Prentice Hall, Inc. All rights reserved.

43

Relationship between Base Classes and
Derived Classes

• Base class and derived class relationship
– Example: Point/circle inheritance hierarchy

• Point
– x-y coordinate pair

• Circle
– x-y coordinate pair
– Radius

 2003 Prentice Hall, Inc. All rights reserved.

44

Relationship between Base Classes and
Derived Classes

• Using protected data members
– Advantages

• Derived classes can modify values directly
• Slight increase in performance

– Avoid set/get function call overhead
– Disadvantages

• No validity checking
– Derived class can assign illegal value

• Implementation dependent
– Derived class member functions more likely dependent on

base class implementation
– Base class implementation changes may result in derived

class modifications
• Fragile (brittle) software

 2003 Prentice Hall, Inc. All rights reserved.

45

Case Study: Three-Level Inheritance Hierarchy

• Three level point/circle/cylinder hierarchy
– Point

• x-y coordinate pair
– Circle

• x-y coordinate pair
• Radius

– Cylinder
• x-y coordinate pair
• Radius
• Height

 2003 Prentice Hall, Inc. All rights reserved.

46

Constructors and Destructors in Derived
Classes

• Instantiating derived-class object
– Chain of constructor calls

• Derived-class constructor invokes base class constructor
– Implicitly or explicitly

• Base of inheritance hierarchy
– Last constructor called in chain
– First constructor body to finish executing
– Example: Point3/Circle4/Cylinder hierarchy

• Point3 constructor called last
• Point3 constructor body finishes execution first

• Initializing data members
– Each base-class constructor initializes data members

inherited by derived class

 2003 Prentice Hall, Inc. All rights reserved.

47

Constructors and Destructors in Derived
Classes

• Destroying derived-class object
– Chain of destructor calls

• Reverse order of constructor chain
• Destructor of derived-class called first
• Destructor of next base class up hierarchy next

– Continue up hierarchy until final base reached
• After final base-class destructor, object removed from

memory

• Base-class constructors, destructors, assignment
operators
– Not inherited by derived classes
– Derived class constructors, assignment operators can call

• Constructors
• Assignment operators

 2003 Prentice Hall, Inc. All rights reserved.

48

public, protected and private Inheritance

Type of inheritance Base class
member
access
specifier

public
inheritance

protected
inheritance

private

inheritance

Public

public in derived class.
Can be accessed directly by any
non-static member functions,
friend functions and non-
member functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Protected

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Private

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

 2003 Prentice Hall, Inc. All rights reserved.

49

Software Engineering with Inheritance

• Customizing existing software
– Inherit from existing classes

• Include additional members
• Redefine base-class members
• No direct access to base class’s source code

– Link to object code
– Independent software vendors (ISVs)

• Develop proprietary code for sale/license
– Available in object-code format

• Users derive new classes
– Without accessing ISV proprietary source code

