
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Introduction to C++ Programming

Lecture 1
May 10, 2004

 2003 Prentice Hall, Inc. All rights reserved.

2

Course Information

• Lecture:
– James B D Joshi
– Mondays: 6:00 -8.50 PM

• One (two) 15 (10) minutes break(s)

– Office Hours: Wed 3:00-5:00PM/Appointment
– TA: Ming Mao

• Pre-requisite
– IS 0015 Data Structures and Programming Techniques

• Textbook
– C++ How to Program- Fourth Edition, by H. M. Deitel, P.

J. Deitel, Prentice Hall, New Jersey, 2003, ISBN: 0 -13-
038474.

 2003 Prentice Hall, Inc. All rights reserved.

3

Course Information

• Course Description
– An introduction to the development of programs using

C++.
– Emphasis is given to the development of program

modules that can function independently.
• Object-oriented design

– The theory of data structures and programming
language design is continued.

 2003 Prentice Hall, Inc. All rights reserved.

4

Grading

• Quiz 10% (in the beginning of the class; on
previous lecture)

• Homework/Programming Assignments 50%
(typically every week)

• Midterm 20%

• Comprehensive Final 20%

2

 2003 Prentice Hall, Inc. All rights reserved.

5

Course Policy

• Your work MUST be your own
– Zero tolerance for cheating
– Discussing problems is encouraged, but each must present his own

answers
– You get an F for the course if you cheat in anything however small

– NO DISCUSSION

• Homework
– There will be penalty for late assignments (15% each day)
– Ensure clarity in your answers – no credit will be given for vague

answers
– Homework is primarily the GSA’s responsibility

• Check webpage for everything!
– You are responsible for checking the webpage for updates

 2003 Prentice Hall, Inc. All rights reserved.

6

Computer Languages

• Machine language
• Generally consist of strings of numbers - Ultimately 0s and 1s -

Machine-dependent
• Example: +1300042774

+1400593419

• Assembly language
• English-like abbreviations for elementary operations
• Incomprehensible to computers - Convert to machine language
• Example: LOAD BASEPAY

ADD OVERPAY
STORE GROSSPAY

• High-level languages
• Similar to everyday English, use common mathematical notations
• Compiler/Interpreter
• Example:

grossPay = basePay + overTimePay

 2003 Prentice Hall, Inc. All rights reserved.

7

History of C and C++

• History of C
– Evolved from two other programming languages

• BCPL and B: “Typeless ” languages

– Dennis Ritchie (Bell Lab): Added typing, other features
– 1989: ANSI standard/ ANSI/ISO 9899: 1990

• History of C++
– Early 1980s: Bjarne Stroustrup (Bell Lab)
– Provides capabilities for object-oriented programming

• Objects: reusable software components

• Object -oriented programs

• Building block approach” to creating programs
– C++ programs are built from pieces called classes and functions
– C++ standard library: Rich collections of existing classes and

functions

 2003 Prentice Hall, Inc. All rights reserved.

8

Structured/OO Programming

• Structured programming (1960s)
– Disciplined approach to writing programs
– Clear, easy to test and debug, and easy to modify
– E.g.Pascal:1971: Niklaus Wirth

• OOP
– “Software reuse”
– “Modularity”
– “Extensible”
– More understandable, better organized and easier to maintain

than procedural programming

3

 2003 Prentice Hall, Inc. All rights reserved.

9

Basics of a Typical C++ Environment

• C++ systems
– Program-development environment
– Language
– C++ Standard Library

• C++ program names extensions
– .cpp
– .cxx
– .cc
– .C

 2003 Prentice Hall, Inc. All rights reserved.

10

Basics of a Typical C++ Environment

Phases of C++ Programs:
1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute
Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates an executable
file and stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

 2003 Prentice Hall, Inc. All rights reserved.

11

Basics of a Typical C++ Environment

• Common Input/output functions
– cin

• Standard input stream

• Normally keyboard

– cout
• Standard output stream

• Normally computer screen

– cerr
• Standard error stream

• Display error messages

• Comments: C’s comment /* .. */ OR Begin with // or
• Preprocessor directives: Begin with #

– Processed before compiling

 2003 Prentice Hall, Inc. All rights reserved.

12

A Simple Program: Printing a Line of Text

• Standard output stream object
– std::cout
– “Connected” to screen
– <<

• Stream insertion operator
• Value to right (right operand) inserted into output stream

• Namespace
– std:: specifies that entity belongs to “namespace” std
– std:: removed through use of using statements

• Escape characters: \
– Indicates “special” character output

4

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
13

fig01_02.cpp
(1 of 1)

fig01_02.cpp
output (1 of 1)

1 // Fig. 1.2: fig01_02.cpp
2 // A first program in C++.
3 #include <iostream>
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9
10 return 0; // indicate that program ended successfully
11
12 } // end function main

Welcome to C++!

 2003 Prentice Hall, Inc. All rights reserved.

14

A Simple Program: Printing a Line of Text

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\" Double quote. Used to print a double quote

character.

 2003 Prentice Hall, Inc. All rights reserved.

15

Memory Concepts

• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites previous

value

– std::cin >> integer1;
– Assume user entered 45

– std::cin >> integer2;
– Assume user entered 72

– sum = integer1 + integer2;

integer1 45

integer1 45

integer2 72

integer1 45

integer2 72

sum 117

 2003 Prentice Hall, Inc. All rights reserved.

16

Arithmetic

• Arithmetic calculations
– * : Multiplication
– / : Division

• Integer division truncates remainder
– 7 / 5 evaluates to 1

– % : Modulus operator returns remainder
– 7 % 5 evaluates to 2

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nes ted), they are evaluated left to right.

* , / , or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

5

 2003 Prentice Hall, Inc. All rights reserved.

17
Decision Making: Equality and Relational
Operators

• if structure
– Make decision based on truth or falsity of condition

• If condition met, body executed
• Else, body not executed

• Equality and relational operators
– Equality operators

• Same level of precedence

– Relational operators
• Same level of precedence

– Associate left to right

 2003 Prentice Hall, Inc. All rights reserved.

18
Decision Making: Equality and Relational
Operators

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

 2003 Prentice Hall, Inc. All rights reserved.

19

Algorithms /pseudocode

• Computing problems
– Solved by executing a series of actions in a specific order

• Algorithm: a procedure determining
– Actions to be executed
– Order to be executed
– Example: recipe

• Program control
– Specifies the order in which statements are executed

• Pseudocode
– Artificial, informal language used to develop algorithms
– Similar to everyday English

 2003 Prentice Hall, Inc. All rights reserved.

20

Control Structures

• Sequential execution
– Statements executed in order

• Transfer of control
– Next statement executed not next one in sequence
– Structured programming – “goto”-less programming

• 3 control structures to build any program
– Sequence structure

• Programs executed sequentially by default

– Selection structures
• if, if/else, switch

– Repetition structures
• while, do/while, for

6

 2003 Prentice Hall, Inc. All rights reserved.

21

Keywords

• C++ keywords
– Cannot be used as identifiers or variable names

C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

 2003 Prentice Hall, Inc. All rights reserved.

22

Control Structures

• Flowchart
– Graphical representation of an algorithm
– Special-purpose symbols connected by arrows (flowlines)
– Rectangle symbol (action symbol)

• Any type of action

– Oval symbol
• Beginning or end of a program, or a section of code (circles)

Exercise: Find greater of three numbers

 2003 Prentice Hall, Inc. All rights reserved.

23

if/else Selection Structure

• Ternary conditional operator (?:)
– Three arguments (condition, value if true, value if false)

• Code could be written:
cout << (grade >= 60 ? “Passed” : “Failed”);

truefalse

print “Failed” print “Passed”

grade >= 60

Condition Value if true Value if false

 2003 Prentice Hall, Inc. All rights reserved.

24

while Repetition Structure

• Repetition structure
– Counter-controlled

• While/do while loop: repeated until condition becomes false
• For : loop repeated until counter reaches certain value Flowchart

representation?
– Sentinel value

• Indicates “end of data entry”
• Sentinel chosen so it cannot be confused with regular input

• Example
int product = 2;
while (product <= 1000) {

product = 2 * product;
cout << product;

}

Flowchart representation?
What is the output?

7

 2003 Prentice Hall, Inc. All rights reserved.

25

switch Multiple-Selection Structure

• switch
– Test variable for multiple values
– Series of case labels and optional default case

switch (variable) {
case value1: // taken if variable == value1

statements
break; // necessary to exit switch

case value2:
case value3: // taken if variable == value2 or == value3

statements
break;

default: // taken if none matches
statements
break;

}

 2003 Prentice Hall, Inc. All rights reserved.

26

break and continue Statements

• break statement
– Immediate exit from while , for , do/while , switch
– Program continues with first statement after structure

• Common uses
– Escape early from a loop
– Skip the remainder of switch

 2003 Prentice Hall, Inc. All rights reserved.

27

Logical Operators

• Used as conditions in loops, i f statements
• && (logical AND)

– true if both conditions are true
if (gender == 1 && age >= 65)

++seniorFemales;

• || (logical OR)
– true if either of condition is true

if (semesterAverage >= 90 || finalExam >= 90)
cout << "Student grade is A" << endl;

 2003 Prentice Hall, Inc. All rights reserved.

28

Logical Operators

• ! (logical NOT, logical negation)
– Returns truewhen its condition is false, & vice versa

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

Alternative:
if (grade != sentinelValue)

cout << "The next grade is " << grade << endl;

8

 2003 Prentice Hall, Inc. All rights reserved.

29
Confusing Equality (==) and Assignment (=)
Operators

• Common error
– Does not typically cause syntax errors

• Aspects of problem
– Expressions that have a value can be used for decision

• Zero = false, nonzero = true

– Assignment statements produce a value (the value to be
assigned)

if == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;

What happens?

 2003 Prentice Hall, Inc. All rights reserved.

30
Confusing Equality (==) and Assignment (=)
Operators

• Lvalues
– Expressions that can appear on left side of equation
– Can be changed

x = 4;

• Rvalues
– Only appear on right side of equation
– Constants, such as numbers (i.e. cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

 2003 Prentice Hall, Inc. All rights reserved.

31

Structured-Programming Summary

• Structured programming
– Programs easier to understand, test, debug and modify

• Rules for structured programming
– Only use single-entry/single-exit control structures
– Rules

1) Begin with the “simplest flowchart”
2) Any rectangle (action) can be replaced by two rectangles

(actions) in sequence
3) Any rectangle (action) can be replaced by any control

structure (sequence, if, if/else, switch, while, do/while or for)
4) Rules 2 and 3 can be applied in any order and multiple times

 2003 Prentice Hall, Inc. All rights reserved.

32

Structured-Programming Summary

Rule 3

Rule 3Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

9

 2003 Prentice Hall, Inc. All rights reserved.

33

Program Components in C++

• Modules: functions and classes
• Programs use new and “prepackaged” modules

– New: programmer-defined functions, classes
– Prepackaged: from the standard library

• Functions invoked by function call
– Function name and information (arguments) it needs

• Function definitions
– Only written once
– Hidden from other functions

 2003 Prentice Hall, Inc. All rights reserved.

34

Functions

• Functions
– Modularize a program
– Software reusability

• Call function multiple times

• Local variables
– Known only in the function in which they are defined
– All variables declared in function definitions are local

variables

• Parameters
– Local variables passed to function when called
– Provide outside information

 2003 Prentice Hall, Inc. All rights reserved.

35

Math Library Functions

• Perform common mathematical calculations
– Include the header file <cmath>

• Functions called by writing
– functionName (argument); or
– functionName (argument1, argument2, …);

• Example
cout << sqrt(900.0);

– All functions in math library return a double
• Function arguments can be

– Constants: sqrt(4);
– Variables: sqrt(x);
– Expressions:

• sqrt(sqrt(x)) ;
• sqrt(3 - 6x);

• Other functions
– ceil(x), floor(x), log10(x), etc.

 2003 Prentice Hall, Inc. All rights reserved.

36

Function Definitions

• Function prototype
– int square(int);

• Calling/invoking a function
– square(x);

• Format for function definition
return-value-type function-name(parameter-list)
{

declarations and statements
}

• Prototype must match function definition
– Function prototype

double maximum(double, double, double);
– Definition

double maximum(double x, double y, double z)
{
…

}

10

 2003 Prentice Hall, Inc. All rights reserved.

37

Function Definitions

• Example function
int square(int y)
{
return y * y;

}

• return keyword
– Returns data, and control goes to function’s caller

• If no data to return, use return;
– Function ends when reaches right brace

• Control goes to caller

• Functions cannot be defined inside other functions

 2003 Prentice Hall, Inc. All rights reserved.

38

Function Prototypes

• Function signature
– Part of prototype with name and parameters

• double maximum(double, double, double);

• Argument Coercion
– Force arguments to be of proper type

• Converting int (4) to double (4.0)
cout << sqrt(4)

– Conversion rules
• Arguments usually converted automatically
• Changing from double to int can truncate data

– 3.4 to 3

– Mixed type goes to highest type (promotion)

Function signature

 2003 Prentice Hall, Inc. All rights reserved.

39

Function Prototypes

Data types
long double

double
float
unsigned long int (synonymous with unsigned long)
long int (synonymous with long)
unsigned int (synonymous with unsigned)
int
unsigned short int (synonymous with unsigned short)
short int (synonymous with short)
unsigned char
char
bool (false becomes 0, true becomes 1)
Fig. 3.5 Promotion hierarchy for built-in data types.

 2003 Prentice Hall, Inc. All rights reserved.

40

Header Files

• Header files contain
– Function prototypes
– Definitions of data types and constants

• Header files ending with .h
– Programmer-defined header files

#include “myheader.h”

• Library header files
#include <cmath>

11

 2003 Prentice Hall, Inc. All rights reserved.

41

Enumeration: enum

• Enumeration
– Set of integers with identifiers
enum typeName {constant1, constant2 …};
– Constants start at 0 (default), incremented by 1
– Constants need unique names
– Cannot assign integer to enumeration variable

• Must use a previously defined enumeration type

• Example
enum Status {CONTINUE, WON, LOST};
Status enumVar;
enumVar = WON; // cannot do enumVar = 1

 2003 Prentice Hall, Inc. All rights reserved.

42

Storage Classes

• Variables have attributes
– Have seen name, type, size, value
– Storage class

• How long variable exists in memory

– Scope
• Where variable can be referenced in program

– Linkage
• For multiple -file program which files can use it

 2003 Prentice Hall, Inc. All rights reserved.

43

Storage Classes

• Automatic storage class
– Variable created when program enters its block
– Variable destroyed when program leaves block
– Only local variables of functions can be automatic

• Automatic by default
• keyword auto explicitly declares automatic

– register keyword
• Hint to place variable in high-speed register
• Good for often-used items (loop counters)
• Often unnecessary, compiler optimizes

– Specify either registeror auto, not both
• register int counter = 1;

 2003 Prentice Hall, Inc. All rights reserved.

44

Storage Classes

• Static storage class
– Variables exist for entire program

• For functions, name exists for entire program

– May not be accessible, scope rules still apply
• auto and register keyword

– local variables in function
– register variables are kept in CPU registers

• static keyword
– Local variables in function
– Keeps value between function calls
– Only known in own function

• extern keyword
– Default for global variables/functions

• Globals: defined outside of a function block
– Known in any function that comes after it

12

 2003 Prentice Hall, Inc. All rights reserved.

45

Scope Rules

• Scope
– Portion of program where identifier can be used

• File scope
– Defined outside a function, known in all functions
– Global variables, function definitions and prototypes

• Function scope
– Can only be referenced inside defining function
– Only labels, e.g., identifiers with a colon (case:)

 2003 Prentice Hall, Inc. All rights reserved.

46

Scope Rules

• Block scope
– Begins at declaration, ends at right brace }

• Can only be referenced in this range

– Local variables, function parameters
– Local static variables still have block scope

• Storage class separate from scope

• Function-prototype scope
– Parameter list of prototype
– Names in prototype optional

• Compiler ignores

– In a single prototype, name can be used once

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
47

fig03_12.cpp
(1 of 5)

1 // Fig. 3.12: fig03_12.cpp
2 // A scoping example.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 void useLocal(void); // function prototype
9 void useStaticLocal(void); // function prototype
10 void useGlobal(void); // function prototype
11
12 int x = 1; // global variable
13
14 int main()
15 {
16 int x = 5; // local variable to main
17
18 cout << "local x in main's outer scope is " << x << endl;
19
20 { // start new scope
21
22 int x = 7;
23

24 cout << "local x in main's inner scope is " << x << endl;
25
26 } // end new scope

Local/global? Scope?

Local/global? Scope?

Local/global? Scope?

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
48

fig03_12.cpp
(2 of 5)

27
28 cout << "local x in main's outer scope is " << x << endl;
29
30 useLocal(); // useLocal has local x
31 useStaticLocal(); // useStaticLocal has static local x
32 useGlobal(); // useGlobal uses global x
33 useLocal(); // useLocal reinitializes its local x
34 useStaticLocal(); // static local x retains its prior value
35 useGlobal(); // global x also retains its value
36

37 cout << "\nlocal x in main is " << x << endl;
38
39 return 0; // indicates successful termination
40
41 } // end main
42

13

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
49

fig03_12.cpp
(3 of 5)

43 // useLocal reinitializes local variable x during each call
44 void useLocal(void)
45 {
46 int x = 25; // initialized each time useLocal is called
47
48 cout << endl << "local x is " << x
49 << " on entering useLocal" << endl;
50 ++x;
51 cout << "local x is " << x
52 << " on exiting useLocal" << endl;
53
54 } // end function useLocal
55

Local/global? Scope?

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
50

fig03_12.cpp
(4 of 5)

56 // useStaticLocal initializes static local variable x only the
57 // first time the function is called; value of x is saved
58 // between calls to this function
59 void useStaticLocal(void)
60 {
61 // initialized only first time useStaticLocal is called
62 static int x = 50;
63
64 cout << endl << "local static x is " << x
65 << " on entering useStaticLocal" << endl;
66 ++x;
67 cout << "local static x is " << x
68 << " on exiting useStaticLocal" << endl;
69
70 } // end function useStaticLocal
71

Local/global? Scope?

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
51

fig03_12.cpp
(5 of 5)

fig03_12.cpp
output (1 of 2)

72 // useGlobal modifies global variable x during each call
73 void useGlobal(void)
74 {
75 cout << endl << "global x is " << x
76 << " on entering useGlobal" << endl;
77 x *= 10;
78 cout << "global x is " << x
79 << " on exiting useGlobal" << endl;
80
81 } // end function useGlobal

local x in main's outer scope is 5
local x in main's inner scope is 7
local x in main's outer scope is 5

local x is 25 on entering useLocal
local x is 26 on exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

Local variable?
Global variable?

 2003 Prentice Hall, Inc. All rights reserved.

52

Recursion

• Recursive functions
– Functions that call themselves
– Can only solve a base case

• If not base case
– Break problem into smaller problem(s)
– Launch new copy of function to work on the smaller

problem (recursive call/recursive step)
• Slowly converges towards base case
• Function makes call to itself inside the return statement

– Eventually base case gets solved
• Answer works way back up, solves entire problem

14

 2003 Prentice Hall, Inc. All rights reserved.

53

Recursion

• Example: factorial
n! = n * (n – 1) * (n – 2) * … * 1

– Recursive relationship (n! = n * (n – 1)!)

5! = 5 * 4!
4! = 4 * 3!…

– Base case (1! = 0! = 1)

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
54

fig03_14.cpp
(1 of 2)

1 // Fig. 3.14: fig03_14.cpp
2 // Recursive factorial function.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 #include <iomanip>
9
10 using std::setw;
11
12 unsigned long factorial(unsigned long); // function prototype
13
14 int main()
15 {
16 // Loop 10 times. During each iteration, calculate
17 // factorial(i) and display result.
18 for (int i = 0; i <= 10; i++)
19 cout << setw(2) << i << "! = "
20 << factorial(i) << endl;
21
22 return 0; // indicates successful termination
23

24 } // end main

Data type unsigned long
can hold an integer from 0 to
4 billion.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
55

fig03_14.cpp
(2 of 2)

fig03_14.cpp
output (1 of 1)

25
26 // recursive definition of function factorial
27 unsigned long factorial(unsigned long number)
28 {
29 // base case
30 if (number <= 1)
31 return 1;
32
33 // recursive step
34 else
35 return number * factorial(number - 1);
36
37 } // end function factorial

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

The base case occurs when
we have 0!or 1!. All other
cases must be split up
(recursive step).

 2003 Prentice Hall, Inc. All rights reserved.

56

Example Using Recursion: Fibonacci Series

• Fibonacci series: 0, 1, 1, 2, 3, 5, 8...
– Each number sum of two previous ones
– Example of a recursive formula:

• fib(n) = fib(n-1) + fib(n-2)

• C++ code for Fibonacci function
long fibonacci(long n)
{

if (n == 0 || n == 1) // base case
return n;

else
return fibonacci(n - 1) +

fibonacci(n – 2);
}

15

 2003 Prentice Hall, Inc. All rights reserved.

57

Example Using Recursion: Fibonacci Series

• Order of operations
– return fibonacci(n - 1) + fibonacci(n - 2);

• Recursive function calls
– Each level of recursion doubles the number of function calls

• 30th number = 2^30 ~ 4 billion function calls

– Exponential complexity

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

 2003 Prentice Hall, Inc. All rights reserved.

58

Recursion vs. Iteration

• Repetition
– Iteration: explicit loop
– Recursion: repeated function calls

• Termination
– Iteration: loop condition fails
– Recursion: base case recognized

• Both can have infinite loops
• Balance between performance (iteration) and good

software engineering (recursion)

 2003 Prentice Hall, Inc. All rights reserved.

59

Inline Functions

• Inline functions
– Keyword inlinebefore function

– Asks the compiler to copy code into program instead of
making function call

• Reduce function-call overhead
• Compiler can ignore inline

– Good for small, often-used functions

• Example
inline double cube(const double s)

{ return s * s * s; }
– const tells compiler that function does not modify s

 2003 Prentice Hall, Inc. All rights reserved.

60

References and Reference Parameters

• Call by value
– Copy of data passed to function
– Changes to copy do not change original
– Prevent unwanted side effects

• Call by reference
– Function can directly access data
– Changes affect original

• Reference parameter
– Alias for argument in function call

• Passes parameter by reference

– Use & after data type in prototype
• void myFunction(int &data)
• Read “data is a reference to an int ”

– Function call format the same
• However, original can now be changed

16

 2003 Prentice Hall, Inc. All rights reserved.

61

References and Reference Parameters

• Pointers
– Another way to pass -by-refernce

• References as aliases to other variables
– Refer to same variable
– Can be used within a function

int count = 1; // declare integer variable count
int &cRef = count; // create cRef as an alias for count
++cRef; // increment count (using its alias)

• References must be initialized when declared
– Otherwise, compiler error
– Dangling reference

• Reference to undefined variable

 2003 Prentice Hall, Inc. All rights reserved.

62

Default Arguments

• Function call with omitted parameters
– If not enough parameters, rightmost go to their defaults
– Default values

• Can be constants, global variables, or function calls

• Set defaults in function prototype
int myFunction(int x = 1, int y = 2, int z = 3);

– myFunction(3)
• x = 3, y and z get defaults (rightmost)

– myFunction(3, 5)
• x = 3, y = 5 and z gets default

 2003 Prentice Hall, Inc. All rights reserved.

63

Unitary Scope Resolution Operator

• Unary scope resolution operator (::)
– Access global variable if local variable has same name
– Not needed if names are different
– Use ::variable

• y = ::x + 3;

– Good to avoid using same names for locals and globals

 2003 Prentice Hall, Inc. All rights reserved.

64

Function Overloading

• Function overloading
– Functions with same name and different parameters
– Should perform similar tasks

• i.e., function to square ints and function to square floats
int square(int x) {return x * x;}
float square(float x) { return x * x; }

• Overloaded functions distinguished by signature
– Based on name and parameter types (order matters)
– Name mangling

• Encode function identifier with no. and types of parameters

– Type-safe linkage
• Ensures proper overloaded function called

17

 2003 Prentice Hall, Inc. All rights reserved.

65

Function Templates

• Compact way to make overloaded functions
– Generate separate function for different data types

• Format
– Begin with keyword template
– Formal type parameters in brackets <>

• Every type parameter preceded by typename or class
(synonyms)

• Placeholders for built-in types (i.e., int) or user-defined types
• Specify arguments types, return types, declare variables

– Function definition like normal, except formal types used

 2003 Prentice Hall, Inc. All rights reserved.

66

Function Templates

• Example
template < class T > // or template< typename T >
T square(T value1)
{

return value1 * value1;
}

– T is a formal type, used as parameter type
• Above function returns variable of same type as parameter

– In function call, T replaced by real type
• If int, all T's become ints

int x;
int y = square(x);

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
67

fig03_27.cpp
(1 of 3)

1 // Fig. 3.27: fig03_27.cpp
2 // Using a function template.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin ;
7 using std::endl;
8
9 // definition of function template maximum
10 template < class T > // or template < typename T >
11 T maximum(T value1, T value2, T value3)
12 {
13 T max = value1;
14
15 if (value2 > max)
16 max = value2;
17
18 if (value3 > max)
19 max = value3;
20
21 return max;
22
23 } // end function template maximum
24

Formal type parameter T
placeholder for type of data to
be tested by maximum.

maximum expects all
parameters to be of the same
type.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
68

fig03_27.cpp
(2 of 3)

25 int main()
26 {
27 // demonstrate maximum with int values
28 int int1, int2, int3;
29
30 cout << "Input three integer values: ";
31 cin >> int1 >> int2 >> int3;
32
33 // invoke int version of maximum
34 cout << "The maximum integer value is: "
35 << maximum(int1, int2, int3);
36
37 // demonstrate maximum with double values
38 double double1, double2, double3;
39
40 cout << "\n\nInput three double values: ";
41 cin >> double1 >> double2 >> double3;
42
43 // invoke double version of maximum
44 cout << "The maximum double value is: "
45 << maximum(double1, double2, double3);
46

maximum called with various
data types.

18

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
69

fig03_27.cpp
(3 of 3)

fig03_27.cpp
output (1 of 1)

47 // demonstrate maximum with char values
48 char char1, char2, char3;
49
50 cout << "\n\nInput three characters: ";
51 cin >> char1 >> char2 >> char3;
52
53 // invoke char version of maximum
54 cout << "The maximum character value is: "
55 << maximum(char1, char2, char3)
56 << endl;
57
58 return 0; // indicates successful termination
59
60 } // end main

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3

Input three characters: A C B
The maximum character value is: C

