|S 0020
Program Design and Software Tools

Unified Modeling Language
Lecture 13

April 13, 2005

What is UML?

 The Unified M odelling L anguage is a standard notation to
model [object oriented] systems.
— Syntax and semantics
— Modd systems
— Visual documentations
— Caollections of best practices
— Used to produce a set of artifactsthat can be delivered
— Wide support

— Independent of programming languages
— Support high level concepts

UML Diagram Types

o Use Casediagrams

o Static structure diagrams
— Classdiagrams
— Object diagrams

* Interaction diagrams

— Sequence diagrams
— Collaboration diagrams

o Statechart diagrams
e Activity diagrams

e Component diagrams
e Deployment diagram

Actors

e An actor is someone or some thing that must
Interact with the system under devel opment

Registrar i
Professor %

Student
/\

Billing System

Copyright © 1997 by Rational Software Corporation

Use Cases

e A usecaseisapattern of behavior the system
exhibits

— Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

e Actors are examined to determine thalir needs

— Registrar -- maintain the curriculum
— Professor -- request roster
— Student -- maintain schedule

- O O

Maintain Curriculum Request Course Roster Maintain Schedule

Use Case Diagram

o Use case diagrams are created to visualize the
relationships between actors and use cases

i \ Request Course Roster 5%

Student Q Professor
A/Maintain Schedule

A o>

Billing System A Maintain Curriculum

Registrar

Copyright © 1997 by Rational Software Corporation

Use Case Realizations

* The use case diagram presents an outside view of
the system

 |nteraction diagrams describe how use cases are
realized as interactions among societies of objects

e Two types of interaction diagrams
— Seguence diagrams
— Collaboration diagrams

Copyright © 1997 by Rational Software Corporation

Class Diagram

o Classdiagrams are the most commonly used diagramsin
UML.

e Classdiagrams are for visualizing, specifying and
documenting the system from a static perspective.

» (Classdiagrams indicate which classes know about other
classes and, if they do, what type of relationship exists.

e Classdiagramswill have different levels of detail
(abstraction) depending on where we are in the software
development process.

Class Diagrams

o Classdiagrams describe types of objectsin a system
and their relationships.

* Therearethreetypes of relationships between classes:
* Dependency (“uses’)
« Aggregation (“has’)
* Inheritance (“I1S")

e Class diagrams also show the attributes and operations
of aclass.

Class Diagrams

o Classdiagrams consist of several classes connected with
relationships

* Representation of aclass:

Class Mame

attribure? : typel
attribute © typeld = "Default value"

aperationd ()
operationZ(list of parameters)
aperation3)) ;. returned value type

Class Diagram

name

author: Person(0 ")

publisher
RRP: Money (0,1}

1 This is atype,

Attributes &

number-in-stock

associations

s operations

Convention

 Name of classisaword with initial upper case letter
o Capitalizefirst letter of every word in name
 Name of attributesis|lower case letter

o Capitalizefirst letter of every word other than first

e Operations have same naming schemes as attributes
« Bracketsinclude parameter operation works on

Associations

» “relationship between different objects of one
or more classes’

employs —,

Company | 0.1 Person

Employer Employe

Connectors

Dependency @ @ ————

Aggregation S

Inheritance

Compaosition &

Association

Directed

Association

Interface Type
Implementation

W

Multiplicities

Class Name

Class Name

Class Name

0.1

Class Name

im._.n

Exactly one
Many (zero or more)
Optional (Zero or

one)

Numerically

specified

UML Class Diagram

Surface

Triangle

Particle

>

\ 4
Approximates

1."

D”-
Réndars

|Ittl'trtnu_lnuu¢|

Anachas

Colour_References

Direction_Reference

Size_Reference

ulln'

\4

Class

Condruct |Description Syntax
class adescription of aset of objects that
share the same attributes, operations,
methods, relationships and semantics.
Derived from the CRC Cards
Sections. name, attributes, operations
Name
Attributes

M ethods

Association

Congruct

Description

Syntax

association

arelationship between two or more
classfiersthat involves connections
among thelr instances.

It is more important to identify classes than to identify associations
Too many associations can be confusing
Classes may have association with themselves

person

* 1
manages

Generalization

Construct Description Syntax
generalization |ataxonomic relationship between a
more genera and a more specific —D
element.

e Generalization: identifying
commonality among classes

ka!itlitr:u image

iCalaour_Relerencai

Direction_Kelerénde

SiFe_Relerende

Aggregation

Congruct Description Syntax
aggregation | A specid form of association that
goecifies awhole-part relationship ¢
between the aggregate (whole) and O
the component part.

* A composite aggregation (filled diamond) means that the
multiplicity at the composite end may be at most one.

« Shared aggregation (hollow diamond) means that the
multiplicity at the composite end may be more than one.

Aggregation Guidelines

 Thereisan obvious physical
or logical assembly

e The part and composite have
the same lifetime

« Operations applied to the composite propagate to the parts

e.g. destruction, movement, etc.

Surface

Irianale

AfRproximataes

Objects and Inheritance

<<instance :::fr:ﬁ

Parties
supertype 7AN
subtype User

z<instance of==

-

L.

Ui=User
first=rafael

dependency last=calvo

email=rafa@yahoo.com

)

L

Ui=User
first=John
last=Pelters
email=john@yahoo.com

-

L.

Uil=User
first=Patrick
last=Lee
email=biglee@aol.com

Classifier

* A classifier iIsamechanism that describes structural and
behavioral features.
* Typesof classfiersare....

— classes, interfaces, datatypes, signals, components, nodes, use
cases and subsystems.

o (lasses are the most important kind of classifier.

— Classes have a number of features beyond attributes and behaviors

that allow you to model some of the more subtle/advanced features
of asystem.

Advanced Class Features

abstract

class scope

\

_“-'—-—o Frame

—y

g

— type

header : FrameHeader
euniquelD : Long

public —_

protected —

o+ addMessage(m : Message) : Status
e setCheckSum()

private — |

— Signature

le- encrypi()

Figure 9-1: Advanced Classes

Abstract and Concrete Classes and Operations

[

| ——= [cOon]
— {root} e T base class
abstract class origin : Point

- -f’d—'—.—._‘__'_"‘-— -
display() | abstract operation
getlD() : Integer {PEEK

concrete operation

/] E\ / abstract class

\‘"Hecrangua’ar."con Arbitrarylcon é
height : Ihteger edge : LineCollection
width : Integer

isinside(p : Point) : Boolean
S~ 9\

polymorphic operation

Button e—1 = concrete class

display()

T/

OKButton*®|
{leaf} & T leaf class

display()

Figure 9-5: Abstract and Concrete Classes and Operations

©

Template Icon

— A parameterized
element.

— Represented in UM

template parameters

L K‘-,
templateclass @ T—rg "= -----

as a dashed box in the & ' ltem
upper right-hand ~————— Buckets:int
corner of the class 4 Sttt -
icon, which lists the + bind(in i : Item; in v : Value) : Boolean
template parameters. + isBound(in i : Item) : Boolean {isQuery)
N
implicit binding ‘x‘ «bind» (Customer, Order, 3)
Map<Customer, Order, 3> k“k explicit binding
Or:iarMap

Figure 9-7: Template Classes

State Transition Diagram

O

Add student[count < 10]

Add Student/
() Set count =0

Initializati
Nnitlalization (Open W

do: Initialize course
) entry: Register student
exit: Increment count

Cancel
Cancel [count =10]

(Canceled)

do: Notify registered students
Closed
Cancel —
do: Finalize course

—

Sequence Diagram

* A sequence diagram displays object interactions
arranged in atime sequence

O

Z\

: Student

registration

form

reqgistration
manager

1: fill in info

2: submit

Copyright © 1997 by Rational Software Corporation

3 add course(joe, math 01)

math 101

4: are you openf?

6: add (joe).

math 101

section 1

5: are you open?

7: add (joe)

Collaboration Diagram

* A collaboration diagram displays object
Interactions organized around objects and their
links to one another

) : course form
1 Szt?tpcrglégsses info CourseForm
/
_ Regqistrar \L 3: add course
aCourse theManaqger :
Course I CurriculumManaqger
- < —

4: new course

Copyright © 1997 by Rational Software Corporation

The Physical World

o Component diagrams illustrate the organizations
and dependencies among software components

e A component may be
— A source code component
— A run time components or
— An executable component

Component Diagram

Billing.exe

Billing

System

Course

Register.exe

J
Course.dll /O

Course

User

Course
Offering

Student

Professor

Deploying the System] ©

* The deployment diagram shows the configuration
of run-time processing elements and the software
processes living on them

* The deployment diagram visualizes the
distribution of components across the enterprise.

Deployment Diagram

Library

Registration

Dorm

Copyright © 1997 by Rational Software Corporation

Database

Main
Building

