
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Stack/Queue - File Processing

Lecture 10

March 29, 2005

 2003 Prentice Hall, Inc. All rights reserved.

2

Introduction

• Storage of data
– Arrays, variables are temporary
– Files are permanent

• Magnetic disk, optical disk, tapes

• In this chapter
– Create, update, process files
– Sequential and random access
– Formatted and raw processing

2

 2003 Prentice Hall, Inc. All rights reserved.

3

The Data Hierarchy

• From smallest to largest
– Bit (binary digit)

• 1 or 0
• Character set

– Digits, letters, symbols used to represent data
– Every character represented by 1's and 0's

– Byte: 8 bits: Can store a character (char)
• From smallest to largest (continued)

– Field: group of characters with some meaning
• Your name

– Record: group of related fields
• struct or class in C++
• In payroll system, could be name, SS#, address, wage
• Each field associated with same employee
• Record key: field used to uniquely identify record

– File: group of related records
• Payroll for entire company
• Sequential file: records stored by key

– Database: group of related files
• Payroll, accounts-receivable, inventory…

 2003 Prentice Hall, Inc. All rights reserved.

4

Files and Streams

• C++ views file as sequence of bytes
– Ends with end-of-file marker

• When file opened
– Object created, stream associated with it
– cin, cout, etc. created when <iostream> included

• Communication between program and file/device

0 31 2 4 5 8 9

...

... n-1

end-of-file marker

6 7

3

 2003 Prentice Hall, Inc. All rights reserved.

5

Files and Streams

• To perform file processing
– Include <iostream> and <fstream>
– Class templates

• basic_ifstream (input)
• basic_ofstream (output)

• basic_fstream (I/O)

– typedefs for specializations that allow char I/O
• ifstream (char input)
• ofstream (char output)
• fstream (char I/O)

 2003 Prentice Hall, Inc. All rights reserved.

6

Files and Streams

• Opening files
– Create objects from template
– Derive from stream classes

• Can use stream methods : put, get, peek , etc.

basic_fstream

basic_ios

basic_ifstream basic_ofstreambasic_iostream

basic_istream basic_ostream

4

 2003 Prentice Hall, Inc. All rights reserved.

7

Creating a Sequential-Access File

• C++ imposes no structure on file
– Concept of "record" must be implemented by programmer

• To open file, create objects
– Creates "line of communication" from object to file
– Classes

• ifstream (input only)
• ofstream (output only)

• fstream (I/O)

– Constructors take file name and file-open mode
ofstream outClientFile("filename", fileOpenMode);

– To attach a file later
Ofstream outClientFile;
outClientFile.open("filename", fileOpenMode);

 2003 Prentice Hall, Inc. All rights reserved.

8

Creating a Sequential-Access File

• File-open modes

– ofstream opened for output by default
• ofstream outClientFile("clients.dat", ios::out);
• ofstream outClientFile("clients.dat");

Mode Description

ios::app Write all output to the end of the file.

ios::ate Open a file for output and move to the end of the
file (normally used to append data to a file).
Data can be written anywhere in the file.

ios::in Open a file for input.

ios::out Open a file for output.

ios::trunc Discard the file’s contents if it exists (this is
also the default action for ios::out)

ios::binary Open a file for binary (i.e., non-text) input or
output.

5

 2003 Prentice Hall, Inc. All rights reserved.

9

Creating a Sequential-Access File

• Operations
– Overloaded operator!

• !outClientFile
• Returns nonzero (true) if badbit or failbit set

– Opened non-existent file for reading, wrong permissions
– Overloaded operator void*

• Converts stream object to pointer
• 0 when failbit or badbit set, otherwise nonzero

– failbit set when EOF found
• while (cin >> myVariable)

– Implicitly converts cin to pointer
– Loops until EOF

– Writing to file (just like cout)
• outClientFile << myVariable

– Closing file
• outClientFile.close()
• Automatically closed when destructor called

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
10

fig14_04.cpp
(1 of 2)

1 // Fig. 14.4: fig14_04.cpp
2 // Create a sequential file.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::ios;
8 using std::cerr;
9 using std::endl;
10
11 #include <fstream>
12
13 using std::ofstream;
14
15 #include <cstdlib> // exit prototype
16
17 int main()
18 {
19 // ofstream constructor opens file
20 ofstream outClientFile("clients.dat", ios::out);
21
22 // exit program if unable to create file
23 if (!outClientFile) { // overloaded ! operator
24 cerr << "File could not be opened" << endl;
25 exit(1);
26
27 } // end if

Notice the the header files
required for file I/O.

ofstream object created
and used to open file
"clients.dat". If the file
does not exist, it is created.

! operator used to test if the
file opened properly.

6

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
11

fig14_04.cpp
(2 of 2)

28
29 cout << "Enter the account, name, and balance." << endl
30 << "Enter end-of-file to end input.\n? ";
31
32 int account;
33 char name[30];
34 double balance;
35
36 // read account, name and balance from cin, then place in file
37 while (cin >> account >> name >> balance) {
38 outClientFile << account << ' ' << name << ' ' << balance
39 << endl;
40 cout << "? ";
41
42 } // end while
43
44 return 0; // ofstream destructor closes file
45
46 } // end main

cin is implicitly converted to
a pointer. When EOF is
encountered, it returns 0 and
the loop stops.

Write data to file like a
regular stream.

File closed when destructor
called for object. Can be
explicitly closed with
close() .

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
12

fig14_04.cpp
output (1 of 1)

Enter the account, name, and balance.
Enter end-of-file to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

7

 2003 Prentice Hall, Inc. All rights reserved.

13

Reading Data from a Sequential-Access File

• Reading files
– ifstream inClientFile("filename", ios::in);

– Overloaded !
• !inClientFile tests if file was opened properly

– operator void* converts to pointer
• while (inClientFile >> myVariable)
• Stops when EOF found (gets value 0)

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
14

fig14_07.cpp
(2 of 3)

28 int main()
29 {
30 // ifstream constructor opens the file
31 ifstream inClientFile("clients.dat", ios::in);
32
33 // exit program if ifstream could not open file
34 if (!inClientFile) {
35 cerr << "File could not be opened" << endl;
36 exit(1);
37
38 } // end if
39
40 int account;
41 char name[30];
42 double balance;
43
44 cout << left << setw(10) << "Account" << setw(13)
45 << "Name" << "Balance" << endl << fixed << showpoint;
46
47 // display each record in file
48 while (inClientFile >> account >> name >> balance)
49 outputLine(account, name, balance);
50
51 return 0; // ifstream destructor closes the file
52
53 } // end main

Open and test file for input.

Read from file until EOF
found.

8

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
15

fig14_07.cpp
(3 of 3)

fig14_07.cpp
output (1 of 1)

54
55 // display single record from file
56 void outputLine(int account, const char * const name,
57 double balance)
58 {
59 cout << left << setw(10) << account << setw(13) << name
60 << setw(7) << setprecision(2) << right << balance
61 << endl;
62
63 } // end function outputLine

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

 2003 Prentice Hall, Inc. All rights reserved.

16

Reading Data from a Sequential-Access File

• File position pointers
– Number of next byte to read/write
– Functions to reposition pointer

• seekg (seek get for istream class)
• seekp (seek put for ostream class)

• Classes have "get" and "put" pointers

– seekg and seekp take offset and direction
• Offset: number of bytes relative to direction
• Direction (ios::beg default)

– ios::beg - relative to beginning of stream
– ios::cur - relative to current position
– ios::end - relative to end

9

 2003 Prentice Hall, Inc. All rights reserved.

17

Reading Data from a Sequential-Access File

• Examples
– fileObject.seekg(0)

• Goes to front of file (location 0) because ios::beg is default
– fileObject.seekg(n)

• Goes to nth byte from beginning
– fileObject.seekg(n, ios::cur)

• Goes n bytes forward
– fileObject.seekg(y, ios::end)

• Goes y bytes back from end
– fileObject.seekg(0, ios::cur)

• Goes to last byte
– seekp similar

• To find pointer location
– tellg and tellp
– location = fileObject.tellg()

 2003 Prentice Hall, Inc. All rights reserved.

18

Updating Sequential-Access Files

• Updating sequential files
– Risk overwriting other data
– Example: change name "White" to "Worthington"

• Old data
300 White 0.00 400 Jones 32.87

• Insert new data

– Formatted text different from internal representation
– Problem can be avoided, but awkward

300 White 0.00 400 Jones 32.87

300 Worthington 0.00ones 32.87

300 Worthington 0.00

Data gets overwritten

10

 2003 Prentice Hall, Inc. All rights reserved.

19

Random-Access Files

• Instant access
– Want to locate record quickly

• Airline reservations, ATMs

– Sequential files must search through each one

• Random-access files are solution
– Instant access
– Insert record without destroying other data
– Update/delete items without changing other data

 2003 Prentice Hall, Inc. All rights reserved.

20

Random-Access Files

• C++ imposes no structure on files
– Programmer must create random-access files
– Simplest way: fixed-length records

• Calculate position in file from record size and key

0 200 300 400 500

byte offsets}

} } } } } }

100

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

11

 2003 Prentice Hall, Inc. All rights reserved.

21

Creating a Random-Access File

• "1234567" (char *) vs 1234567 (int)
– char * takes 8 bytes (1 for each character + null)
– int takes fixed number of bytes (perhaps 4)

• 123 same size in bytes as 1234567

• << operator and write()
– outFile << number

• Outputs number (int) as a char *
• Variable number of bytes

– outFile.write(const char *, size);
• Outputs raw bytes
• Takes pointer to memory location, number of bytes to write

– Copies data directly from memory into file
– Does not convert to char *

 2003 Prentice Hall, Inc. All rights reserved.

22

Creating a Random-Access File

• Example
outFile.write(reinterpret_cast<const char *>(&number),

sizeof(number));

– &number is an int *
• Convert to const char * with reinterpret_cast

– sizeof(number)
• Size of number (an int) in bytes

– read function similar (more later)
– Must use write/read between compatible machines

• Only when using raw, unformatted data

– Use ios::binary for raw writes/reads

• Usually write entire struct or object to file

12

 2003 Prentice Hall, Inc. All rights reserved.

23

Writing Data Randomly to a Random-Access
File

• Use seekp to write to exact location in file
– Where does the first record begin?

• Byte 0

– The second record?
• Byte 0 + sizeof(object)

– Any record?
• (Recordnum - 1) * sizeof(object)

• read - similar to write
– Reads raw bytes from file into memory
– inFile.read(reinterpret_cast<char *>(&number),

sizeof(int));
• &number: location to store data
• sizeof(int): how many bytes to read

– Do not use inFile >> number with raw bytes
• >> expects char *

 2003 Prentice Hall, Inc. All rights reserved.

24

Input/Output of Objects

• I/O of objects
– Chapter 8 (overloaded >>)
– Only object's data transmitted

• Member functions available internally

– When objects stored in file, lose type info (class, etc.)
• Program must know type of object when reading

– One solution
• When writing, output object type code before real object
• When reading, read type code

– Call proper overloaded function (switch)

