
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Stack/Queue - File Processing

Lecture 10

March 29, 2005

 2003 Prentice Hall, Inc. All rights reserved.

2

Introduction

• Storage of data
– Arrays, variables are temporary
– Files are permanent

• Magnetic disk, optical disk, tapes

• In this chapter
– Create, update, process files
– Sequential and random access
– Formatted and raw processing

2

 2003 Prentice Hall, Inc. All rights reserved.

3

The Data Hierarchy

• From smallest to largest
– Bit (binary digit)

• 1 or 0
• Character set

– Digits, letters, symbols used to represent data
– Every character represented by 1's and 0's

– Byte: 8 bits: Can store a character (char)
• From smallest to largest (continued)

– Field: group of characters with some meaning
• Your name

– Record: group of related fields
• struct or class in C++
• In payroll system, could be name, SS#, address, wage
• Each field associated with same employee
• Record key: field used to uniquely identify record

– File: group of related records
• Payroll for entire company
• Sequential file: records stored by key

– Database: group of related files
• Payroll, accounts-receivable, inventory…

 2003 Prentice Hall, Inc. All rights reserved.

4

Files and Streams

• C++ views file as sequence of bytes
– Ends with end-of-file marker

• When file opened
– Object created, stream associated with it
– cin, cout, etc. created when <iostream> included

• Communication between program and file/device

0 31 2 4 5 8 9

...

... n-1

end-of-file marker

6 7

3

 2003 Prentice Hall, Inc. All rights reserved.

5

Files and Streams

• To perform file processing
– Include <iostream> and <fstream>
– Class templates

• basic_ifstream (input)
• basic_ofstream (output)

• basic_fstream (I/O)

– typedefs for specializations that allow char I/O
• ifstream (char input)
• ofstream (char output)
• fstream (char I/O)

 2003 Prentice Hall, Inc. All rights reserved.

6

Files and Streams

• Opening files
– Create objects from template
– Derive from stream classes

• Can use stream methods : put, get, peek , etc.

basic_fstream

basic_ios

basic_ifstream basic_ofstreambasic_iostream

basic_istream basic_ostream

4

 2003 Prentice Hall, Inc. All rights reserved.

7

Creating a Sequential-Access File

• C++ imposes no structure on file
– Concept of "record" must be implemented by programmer

• To open file, create objects
– Creates "line of communication" from object to file
– Classes

• ifstream (input only)
• ofstream (output only)

• fstream (I/O)

– Constructors take file name and file-open mode
ofstream outClientFile("filename", fileOpenMode);

– To attach a file later
Ofstream outClientFile;
outClientFile.open("filename", fileOpenMode);

 2003 Prentice Hall, Inc. All rights reserved.

8

Creating a Sequential-Access File

• File-open modes

– ofstream opened for output by default
• ofstream outClientFile("clients.dat", ios::out);
• ofstream outClientFile("clients.dat");

Mode Description

ios::app Write all output to the end of the file.

ios::ate Open a file for output and move to the end of the
file (normally used to append data to a file).
Data can be written anywhere in the file.

ios::in Open a file for input.

ios::out Open a file for output.

ios::trunc Discard the file’s contents if it exists (this is
also the default action for ios::out)

ios::binary Open a file for binary (i.e., non-text) input or
output.

5

 2003 Prentice Hall, Inc. All rights reserved.

9

Creating a Sequential-Access File

• Operations
– Overloaded operator!

• !outClientFile
• Returns nonzero (true) if badbit or failbit set

– Opened non-existent file for reading, wrong permissions
– Overloaded operator void*

• Converts stream object to pointer
• 0 when failbit or badbit set, otherwise nonzero

– failbit set when EOF found
• while (cin >> myVariable)

– Implicitly converts cin to pointer
– Loops until EOF

– Writing to file (just like cout)
• outClientFile << myVariable

– Closing file
• outClientFile.close()
• Automatically closed when destructor called

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
10

fig14_04.cpp
(1 of 2)

1 // Fig. 14.4: fig14_04.cpp
2 // Create a sequential file.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin;
7 using std::ios;
8 using std::cerr;
9 using std::endl;
10
11 #include <fstream>
12
13 using std::ofstream;
14
15 #include <cstdlib> // exit prototype
16
17 int main()
18 {
19 // ofstream constructor opens file
20 ofstream outClientFile("clients.dat", ios::out);
21
22 // exit program if unable to create file
23 if (!outClientFile) { // overloaded ! operator
24 cerr << "File could not be opened" << endl;
25 exit(1);
26
27 } // end if

Notice the the header files
required for file I/O.

ofstream object created
and used to open file
"clients.dat". If the file
does not exist, it is created.

! operator used to test if the
file opened properly.

6

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
11

fig14_04.cpp
(2 of 2)

28
29 cout << "Enter the account, name, and balance." << endl
30 << "Enter end-of-file to end input.\n? ";
31
32 int account;
33 char name[30];
34 double balance;
35
36 // read account, name and balance from cin, then place in file
37 while (cin >> account >> name >> balance) {
38 outClientFile << account << ' ' << name << ' ' << balance
39 << endl;
40 cout << "? ";
41
42 } // end while
43
44 return 0; // ofstream destructor closes file
45
46 } // end main

cin is implicitly converted to
a pointer. When EOF is
encountered, it returns 0 and
the loop stops.

Write data to file like a
regular stream.

File closed when destructor
called for object. Can be
explicitly closed with
close() .

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
12

fig14_04.cpp
output (1 of 1)

Enter the account, name, and balance.
Enter end-of-file to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

7

 2003 Prentice Hall, Inc. All rights reserved.

13

Reading Data from a Sequential-Access File

• Reading files
– ifstream inClientFile("filename", ios::in);

– Overloaded !
• !inClientFile tests if file was opened properly

– operator void* converts to pointer
• while (inClientFile >> myVariable)
• Stops when EOF found (gets value 0)

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
14

fig14_07.cpp
(2 of 3)

28 int main()
29 {
30 // ifstream constructor opens the file
31 ifstream inClientFile("clients.dat", ios::in);
32
33 // exit program if ifstream could not open file
34 if (!inClientFile) {
35 cerr << "File could not be opened" << endl;
36 exit(1);
37
38 } // end if
39
40 int account;
41 char name[30];
42 double balance;
43
44 cout << left << setw(10) << "Account" << setw(13)
45 << "Name" << "Balance" << endl << fixed << showpoint;
46
47 // display each record in file
48 while (inClientFile >> account >> name >> balance)
49 outputLine(account, name, balance);
50
51 return 0; // ifstream destructor closes the file
52
53 } // end main

Open and test file for input.

Read from file until EOF
found.

8

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
15

fig14_07.cpp
(3 of 3)

fig14_07.cpp
output (1 of 1)

54
55 // display single record from file
56 void outputLine(int account, const char * const name,
57 double balance)
58 {
59 cout << left << setw(10) << account << setw(13) << name
60 << setw(7) << setprecision(2) << right << balance
61 << endl;
62
63 } // end function outputLine

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

 2003 Prentice Hall, Inc. All rights reserved.

16

Reading Data from a Sequential-Access File

• File position pointers
– Number of next byte to read/write
– Functions to reposition pointer

• seekg (seek get for istream class)
• seekp (seek put for ostream class)

• Classes have "get" and "put" pointers

– seekg and seekp take offset and direction
• Offset: number of bytes relative to direction
• Direction (ios::beg default)

– ios::beg - relative to beginning of stream
– ios::cur - relative to current position
– ios::end - relative to end

9

 2003 Prentice Hall, Inc. All rights reserved.

17

Reading Data from a Sequential-Access File

• Examples
– fileObject.seekg(0)

• Goes to front of file (location 0) because ios::beg is default
– fileObject.seekg(n)

• Goes to nth byte from beginning
– fileObject.seekg(n, ios::cur)

• Goes n bytes forward
– fileObject.seekg(y, ios::end)

• Goes y bytes back from end
– fileObject.seekg(0, ios::cur)

• Goes to last byte
– seekp similar

• To find pointer location
– tellg and tellp
– location = fileObject.tellg()

 2003 Prentice Hall, Inc. All rights reserved.

18

Updating Sequential-Access Files

• Updating sequential files
– Risk overwriting other data
– Example: change name "White" to "Worthington"

• Old data
300 White 0.00 400 Jones 32.87

• Insert new data

– Formatted text different from internal representation
– Problem can be avoided, but awkward

300 White 0.00 400 Jones 32.87

300 Worthington 0.00ones 32.87

300 Worthington 0.00

Data gets overwritten

10

 2003 Prentice Hall, Inc. All rights reserved.

19

Random-Access Files

• Instant access
– Want to locate record quickly

• Airline reservations, ATMs

– Sequential files must search through each one

• Random-access files are solution
– Instant access
– Insert record without destroying other data
– Update/delete items without changing other data

 2003 Prentice Hall, Inc. All rights reserved.

20

Random-Access Files

• C++ imposes no structure on files
– Programmer must create random-access files
– Simplest way: fixed-length records

• Calculate position in file from record size and key

0 200 300 400 500

byte offsets}

} } } } } }

100

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

11

 2003 Prentice Hall, Inc. All rights reserved.

21

Creating a Random-Access File

• "1234567" (char *) vs 1234567 (int)
– char * takes 8 bytes (1 for each character + null)
– int takes fixed number of bytes (perhaps 4)

• 123 same size in bytes as 1234567

• << operator and write()
– outFile << number

• Outputs number (int) as a char *
• Variable number of bytes

– outFile.write(const char *, size);
• Outputs raw bytes
• Takes pointer to memory location, number of bytes to write

– Copies data directly from memory into file
– Does not convert to char *

 2003 Prentice Hall, Inc. All rights reserved.

22

Creating a Random-Access File

• Example
outFile.write(reinterpret_cast<const char *>(&number),

sizeof(number));

– &number is an int *
• Convert to const char * with reinterpret_cast

– sizeof(number)
• Size of number (an int) in bytes

– read function similar (more later)
– Must use write/read between compatible machines

• Only when using raw, unformatted data

– Use ios::binary for raw writes/reads

• Usually write entire struct or object to file

12

 2003 Prentice Hall, Inc. All rights reserved.

23

Writing Data Randomly to a Random-Access
File

• Use seekp to write to exact location in file
– Where does the first record begin?

• Byte 0

– The second record?
• Byte 0 + sizeof(object)

– Any record?
• (Recordnum - 1) * sizeof(object)

• read - similar to write
– Reads raw bytes from file into memory
– inFile.read(reinterpret_cast<char *>(&number),

sizeof(int));
• &number: location to store data
• sizeof(int): how many bytes to read

– Do not use inFile >> number with raw bytes
• >> expects char *

 2003 Prentice Hall, Inc. All rights reserved.

24

Input/Output of Objects

• I/O of objects
– Chapter 8 (overloaded >>)
– Only object's data transmitted

• Member functions available internally

– When objects stored in file, lose type info (class, etc.)
• Program must know type of object when reading

– One solution
• When writing, output object type code before real object
• When reading, read type code

– Call proper overloaded function (switch)

