
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Introduction to C++ Programming
Spring 2005

Lecture 1
Jan 6, 2005

 2003 Prentice Hall, Inc. All rights reserved.

2

Course Information

• Lecture:
– James B D Joshi
– Tuesdays/Thursdays: 1:00-2:15 PM

• Office Hours: Wed 3:00-5:00PM/Appointment

– GSA: TBA

• Pre-requisite
– IS 0015 Data Structures and Programming Techniques

• Textbook
– C++ How to Program- Fourth Edition, by H. M. Deitel, P.

J. Deitel, Prentice Hall, New Jersey, 2003, ISBN: 0-13-
038474.

2

 2003 Prentice Hall, Inc. All rights reserved.

3

Course Information

• Course Description
– An introduction to the development of programs using

C++.
– Emphasis is given to the development of program

modules that can function independently.
• Object-oriented design

– The theory of data structures and programming
language design is continued.

• Grading
– 2 Exams 30%
– Assignments/quizzes 70%

 2003 Prentice Hall, Inc. All rights reserved.

4

Course Policy

• Your work MUST be your own
– Zero tolerance for cheating
– Discussing problems is encouraged, but each must present his own

answers
– You get an F for the course if you cheat in anything however small

– NO DISCUSSION

• Homework
– There will be penalty for late assignments (15% each day)
– Ensure clarity in your answers – no credit will be given for vague

answers

– Homework is primarily the GSA’s responsibility

• Check webpage for everything!
– You are responsible for checking the webpage for updates

3

 2003 Prentice Hall, Inc. All rights reserved.

5

Computer Languages

• Machine language
• Generally consist of strings of numbers - Ultimately 0s and 1s -

Machine-dependent
• Example: +1300042774

+1400593419

• Assembly language
• English-like abbreviations for elementary operations
• Incomprehensible to computers - Convert to machine language
• Example: LOAD BASEPAY

ADD OVERPAY
STORE GROSSPAY

• High- level languages
• Similar to everyday English, use common mathematical notations
• Compiler/Interpreter
• Example:

grossPay = basePay + overTimePay

 2003 Prentice Hall, Inc. All rights reserved.

6

History of C and C++

• History of C
– Evolved from two other programming languages

• BCPL and B: “Typeless” languages

– Dennis Ritchie (Bell Lab): Added typing, other features
– 1989: ANSI standard/ ANSI/ISO 9899: 1990

• History of C++
– Early 1980s: Bjarne Stroustrup (Bell Lab)
– Provides capabilities for object-oriented programming

• Objects: reusable software components
• Object-oriented programs

• Building block approach” to creating programs
– C++ programs are built from pieces called classes and functions
– C++ standard library: Rich collections of existing classes and

functions

4

 2003 Prentice Hall, Inc. All rights reserved.

7

Structured/OO Programming

• Structured programming (1960s)
– Disciplined approach to writing programs
– Clear, easy to test and debug, and easy to modify
– E.g.Pascal:1971: Niklaus Wirth

• OOP
– “Software reuse”
– “Modularity”
– “Extensible”
– More understandable, better organized and easier to maintain

than procedural programming

 2003 Prentice Hall, Inc. All rights reserved.

8

Basics of a Typical C++ Environment

• C++ systems
– Program-development environment
– Language
– C++ Standard Library

• C++ program names extensions
– .cpp
– .cxx
– .cc
– .C

5

 2003 Prentice Hall, Inc. All rights reserved.

9

Basics of a Typical C++ Environment

Phases of C++ Programs:
1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute
Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates an executable
file and stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

 2003 Prentice Hall, Inc. All rights reserved.

10

Basics of a Typical C++ Environment

• Common Input/output functions
– cin

• Standard input stream
• Normally keyboard

– cout
• Standard output stream
• Normally computer screen

– cerr
• Standard error stream
• Display error messages

• Comments: C’s comment /* .. */ OR Begin with // or
• Preprocessor directives: Begin with #

– Processed before compiling

6

 2003 Prentice Hall, Inc. All rights reserved.

11

A Simple Program: Printing a Line of Text

• Standard output stream object
– std::cout
– “Connected” to screen
– <<

• Stream insertion operator
• Value to right (right operand) inserted into output stream

• Namespace
– std:: specifies that entity belongs to “namespace” std
– std:: removed through use of using statements

• Escape characters: \
– Indicates “special” character output

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
12

fig01_02.cpp
(1 of 1)

fig01_02.cpp
output (1 of 1)

1 // Fig. 1.2: fig01_02.cpp
2 // A first program in C++.
3 #include <iostream>
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9
10 return 0; // indicate that program ended successfully
11
12 } // end function main

Welcome to C++!

7

 2003 Prentice Hall, Inc. All rights reserved.

13

A Simple Program: Printing a Line of Text

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.
\" Double quote. Used to print a double quote

character.

 2003 Prentice Hall, Inc. All rights reserved.

14

Memory Concepts

• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites previous

value

– std::cin >> integer1;
– Assume user entered 45

– std::cin >> integer2;
– Assume user entered 72

– sum = integer1 + integer2;

integer1 45

integer1 45

integer2 72

integer1 45

integer2 72

sum 117

8

 2003 Prentice Hall, Inc. All rights reserved.

15

Arithmetic

• Arithmetic calculations
– * : Multiplication
– / : Division

• Integer division truncates remainder
– 7 / 5 evaluates to 1

– % : Modulus operator returns remainder
– 7 % 5 evaluates to 2

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nes ted), they are evaluated left to right.

*, /, or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

 2003 Prentice Hall, Inc. All rights reserved.

16

Decision Making: Equality and Relational
Operators

• if structure
– Make decision based on truth or falsity of condition

• If condition met, body executed
• Else, body not executed

• Equality and relational operators
– Equality operators

• Same level of precedence

– Relational operators
• Same level of precedence

– Associate left to right

9

 2003 Prentice Hall, Inc. All rights reserved.

17

Decision Making: Equality and Relational
Operators

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

 2003 Prentice Hall, Inc. All rights reserved.

18

Algorithms /pseudocode

• Computing problems
– Solved by executing a series of actions in a specific order

• Algorithm: a procedure determining
– Actions to be executed
– Order to be executed
– Example: recipe

• Program control
– Specifies the order in which statements are executed

• Pseudocode
– Artificial, informal language used to develop algorithms
– Similar to everyday English

10

 2003 Prentice Hall, Inc. All rights reserved.

19

Control Structures

• Sequential execution
– Statements executed in order

• Transfer of control
– Next statement executed not next one in sequence
– Structured programming – “goto”-less programming

• 3 control structures to build any program
– Sequence structure

• Programs executed sequentially by default

– Selection structures
• if, if/else, switch

– Repetition structures
• while, do/while, for

 2003 Prentice Hall, Inc. All rights reserved.

20

Keywords

• C++ keywords
– Cannot be used as identifiers or variable names
C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

11

 2003 Prentice Hall, Inc. All rights reserved.

21

Control Structures

• Flowchart
– Graphical representation of an algorithm
– Special-purpose symbols connected by arrows (flowlines)
– Rectangle symbol (action symbol)

• Any type of action

– Oval symbol
• Beginning or end of a program, or a section of code (circles)

Exercise: Find greater of three numbers

 2003 Prentice Hall, Inc. All rights reserved.

22

if/else Selection Structure

• Ternary conditional operator (?:)
– Three arguments (condition, value if true, value if false)

• Code could be written:
cout << (grade >= 60 ? “Passed” : “Failed”);

truefalse

print “Failed” print “Passed”

grade >= 60

Condition Value if true Value if false

12

 2003 Prentice Hall, Inc. All rights reserved.

23

while Repetition Structure

• Repetition structure
– Counter-controlled

• While/do while loop: repeated until condition becomes false
• For: loop repeated until counter reaches certain value Flowchart

representation?
– Sentinel value

• Indicates “end of data entry”
• Sentinel chosen so it cannot be confused with regular input

• Example
int product = 2;
while (product <= 1000) {

product = 2 * product;
cout << product;

}

Flowchart representation?
What is the output?

 2003 Prentice Hall, Inc. All rights reserved.

24

switch Multiple-Selection Structure

• switch
– Test variable for multiple values
– Series of case labels and optional default case

switch (variable) {
case value1: // taken if variable == value1

statements
break; // necessary to exit switch

case value2:
case value3: // taken if variable == value2 or == value3

statements
break;

default: // taken if none matches
statements
break;

}

13

 2003 Prentice Hall, Inc. All rights reserved.

25

break and continue Statements

• break statement
– Immediate exit from while, for, do/while, switch
– Program continues with first statement after structure

• Common uses
– Escape early from a loop
– Skip the remainder of switch

 2003 Prentice Hall, Inc. All rights reserved.

26

Logical Operators

• Used as conditions in loops, if statements
• && (logical AND)

– true if both conditions are true
if (gender == 1 && age >= 65)

++seniorFemales;

• || (logical OR)
– true if either of condition is true

if (semesterAverage >= 90 || finalExam >= 90)
cout << "Student grade is A" << endl;

14

 2003 Prentice Hall, Inc. All rights reserved.

27

Logical Operators

• ! (logical NOT, logical negation)
– Returns truewhen its condition is false, & vice versa

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

Alternative:
if (grade != sentinelValue)

cout << "The next grade is " << grade << endl;

 2003 Prentice Hall, Inc. All rights reserved.

28

Confusing Equality (==) and Assignment (=)
Operators

• Common error
– Does not typically cause syntax errors

• Aspects of problem
– Expressions that have a value can be used for decision

• Zero = false, nonzero = true

– Assignment statements produce a value (the value to be
assigned)

if == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;

What happens?

15

 2003 Prentice Hall, Inc. All rights reserved.

29

Confusing Equality (==) and Assignment (=)
Operators

• Lvalues
– Expressions that can appear on left side of equation
– Can be changed

x = 4;

• Rvalues
– Only appear on right side of equation
– Constants, such as numbers (i.e. cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

 2003 Prentice Hall, Inc. All rights reserved.

30

Structured-Programming Summary

• Structured programming
– Programs easier to understand, test, debug and modify

• Rules for structured programming
– Only use single-entry/single -exit control structures
– Rules

1) Begin with the “simplest flowchart”
2) Any rectangle (action) can be replaced by two rectangles

(actions) in sequence

3) Any rectangle (action) can be replaced by any control
structure (sequence, if, if/else, switch, while, do/while or for)

4) Rules 2 and 3 can be applied in any order and multiple times

16

 2003 Prentice Hall, Inc. All rights reserved.

31

Structured-Programming Summary

Rule 3

Rule 3Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

 2003 Prentice Hall, Inc. All rights reserved.

32

Program Components in C++

• Modules: functions and classes
• Programs use new and “prepackaged” modules

– New: programmer-defined functions, classes
– Prepackaged: from the standard library

• Functions invoked by function call
– Function name and information (arguments) it needs

• Function definitions
– Only written once
– Hidden from other functions

