
Fall, INFSCI 0020 Homework 3 
Due Midnight, Thursday, Feb 10, 2005 

 
Complex Class 

 
In this exercise you will implement a class for complex numbers as described in Exercise 6.6 (Read the 
introduction of complex number given in exercise 6.6). Note that 
 
 A complex number is written as (a + bi). For example, (3+4i) and (2.3 + 4.5 i) are complex 

numbers.  
 
 Addition of two complex numbers is a complex number: 
  
  (a + bi) + (c + di) = (a + c) + (b + d)i 
 
 Example: (3 + 4i) + (5 + 4i) = (3 + 5) + (4 + 4)i = (8 + 8i) 
 
 Subtraction of two complex numbers is a complex number: 
  
  (a + bi) - (c + di) = (a - c) + (b - d)i 
 
 Multiplication of two complex numbers is a complex number: 
 
  (a + bi) * (c + di) = a*c + a*di + b*ci + bi*di =  (ac - bd) + (ad + bc)i 
 
 Example: (3 + 4i)*(5 + 4i) = (3*5 – 4*4) + (3*4 + 4*5)i = -1+ 32i 
 
Define the class Complex. The following should be included in your class definition. 

1. Define the following private data members for the class: 
a. a double variable realPart, 
b. a double variable imaginaryPart 
Note that we do not need to use i; the imaginaryPart is one that is assumed to be 
multiplied by it. 

 
2. Define the following member functions (define public or private) 

a. Constructor function: It should allow objects to be initialized with values provided by the 
client program for the realPart and the imaginaryPart. By default, the 
constructor assigns 0.0 and 0.0. For example, in you main program if you write: 
 
Complex x(3, 4); 
 
then x is a complex number (3 + 4i). That is, realPart and imaginaryPart parts 
of x are initialized to 3 and 4) 

 
a. The following complex arithmetic functions: 

 
add substract multiply 
 

The prototype for add function will be as follows (prototypes for others are similar) : 



 
Complex Complex::add (Complex &); 

 
i. It takes an argument of type Complex & as input parameter and returns an 

object of type Complex. 
ii.  It computes the addition of the corresponding real and imaginary parts of the 

current object and that of the object passed to it. 
 
For example, suppose you have the following complex numbers in the client 
program defined: 
 
Complex x(2, 3), y(4, 5), z; 
 
Then you can use the following statement to compute the sum of complex numbers 
x and y and store in z. 
  
z = x.add(y)   (That is, z =  (2 + 3i) + (4 + 5i) = (6 + 8 i)). 
 
Note that x.add(y) and y.add(x) will give the same result. 
 

b. Define a member function equal that compares two complex numbers to check if they 
are equal. Unlike others this will be returning a bool value. As a hint to implementing 
other member functions the implementation for equal is given as follows 

 
bool Complex::equal (Complex &x) { 

return ((realPart == x.realPart) &&  
imaginaryPart == x.imaginaryPart)); 

} 
c. Define member functions setReal and setImaginary that allow you to set the real 

part and the imaginary part separately; 
d. Define member functions getReal and getImaginary that allow you to get the real 

and imaginary parts at any time. 
 
You should first create the files Complex.h and Complex.cpp for the class definition and the 
implementation of its member function. 
 
Next, create a client file called ComplexClient.cpp to illustrate all the operations. Try to make it as 
user friendly as you can. 


