
1

 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Introduction to C++ Programming

Lecture 1
Jan 6, 2004

 2003 Prentice Hall, Inc. All rights reserved.

2

Course Information

• Lecture:
– James B D Joshi
– Tuesdays: 6:00-8.50 PM

• One (two) 15 (10) minutes break(s)

– Office Hours: Wed 3:00-5:00PM/Appointment

• Pre-requisite
– IS 0015 Data Structures and Programming Techniques

• Textbook
– C++ How to Program- Fourth Edition, by H. M. Deitel, P.

J. Deitel, Prentice Hall, New Jersey, 2003, ISBN: 0 -13-
038474.

 2003 Prentice Hall, Inc. All rights reserved.

3

Course Information

• Course Description
– An introduction to the development of programs using

C++.
– Emphasis is given to the development of program

modules that can function independently.
• Object-oriented design

– The theory of data structures and programming
language design is continued.

 2003 Prentice Hall, Inc. All rights reserved.

4

Grading

• Quiz 10% (in the beginning of the class; on
previous lecture)

• Homework/Programming Assignments 40%
(typically every week)

• Midterm 25%

• Comprehensive Final 25%

2

 2003 Prentice Hall, Inc. All rights reserved.

5

Course Policy

• Your work MUST be your own
– Zero tolerance for cheating
– You get an F for the course if you cheat in anything however small

– NO DISCUSSION

• Homework
– There will be penalty for late assignments (15% each day)
– Ensure clarity in your answers – no credit will be given for vague

answers
– Homework is primarily the GSA’s responsibility

• Check webpage for everything!
– You are responsible for checking the webpage for updates

 2003 Prentice Hall, Inc. All rights reserved.

6

Course Policy

• Your work MUST be your own
– Zero tolerance for cheating
– You get an F for the course if you cheat in anything however small –

NO DISCUSSION
• Homework

– There will be penalty for late assignments (15% each day)
– Ensure clarity in your answers – no credit will be given for vague

answers
– Homework is primarily the GSA’s responsibility
– Solutions/theory will be posted on the web

• Check webpage for everything!
– You are responsible for checking the webpage for updates

 2003 Prentice Hall, Inc. All rights reserved.

7

Computer Languages

• Machine language
• Only language computer directly understands
• Defined by hardware design

– Machine-dependent
• Generally consist of strings of numbers

– Ultimately 0s and 1s
• Instruct computers to perform elementary operations

– One at a time
• Cumbersome for humans
• Example:

+1300042774
+1400593419
+1200274027

 2003 Prentice Hall, Inc. All rights reserved.

8

Computer Languages

• Assembly language
• English-like abbreviations representing elementary computer

operations
• Clearer to humans
• Incomprehensible to computers

– Translator programs (assemblers)
• Convert to machine language

• Example:
LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

3

 2003 Prentice Hall, Inc. All rights reserved.

9

Computer Languages

• High-level languages
• Similar to everyday English, use common mathematical

notations
• Single statements accomplish substantial tasks

– Assembly language requires many instructions to
accomplish simple tasks

• Translator programs (compilers)
– Convert to machine language

• Interpreter programs
– Directly execute high-level language programs

• Example:
grossPay = basePay + overTimePay

 2003 Prentice Hall, Inc. All rights reserved.

10

History of C and C++

• History of C
– Evolved from two other programming languages

• BCPL and B
– “Typeless” languages

– Dennis Ritchie (Bell Laboratories)
• Added data typing, other features

– Development language of UNIX
– Hardware independent

• Portable programs

– 1989: ANSI standard
– 1990: ANSI and ISO standard published

• ANSI/ISO 9899: 1990

 2003 Prentice Hall, Inc. All rights reserved.

11

History of C and C++

• History of C++
– Extension of C
– Early 1980s: Bjarne Stroustrup (Bell Laboratories)
– Provides capabilities for object-oriented programming

• Objects: reusable software components
– Model items in real world

• Object-oriented programs
– Easy to understand, correct and modify

– Hybrid language
• C-like style
• Object-oriented style
• Both

 2003 Prentice Hall, Inc. All rights reserved.

12

C++ Standard Library

• C++ programs
– Built from pieces called classes and functions

• C++ standard library
– Rich collections of existing classes and functions

• “Building block approach” to creating programs
– “Software reuse”

4

 2003 Prentice Hall, Inc. All rights reserved.

13

Java

• Java
– 1991: Sun Microsystems

• Green project

– 1995: Sun Microsystems
• Formally announced Java at trade show

– Web pages with dynamic and interactive content
– Develop large-scale enterprise applications
– Enhance functionality of web servers
– Provide applications for consumer devices

• Cell phones, pagers, personal digital assistants, …

 2003 Prentice Hall, Inc. All rights reserved.

14

Structured Programming

• Structured programming (1960s)
– Disciplined approach to writing programs
– Clear, easy to test and debug, and easy to modify

• Pascal
– 1971: Niklaus Wirth

• Ada
– 1970s - early 1980s: US Department of Defense (DoD)
– Multitasking

• Programmer can specify many activities to run in parallel

 2003 Prentice Hall, Inc. All rights reserved.

15

The Key Software Trend: Object Technology

• Objects
– Reusable software components that model real world items
– Meaningful software units

• Date objects, time objects, paycheck objects, invoice objects, audio
objects, video objects, file objects, record objects, etc.

• Any noun can be represented as an object

– More understandable, better organized and easier to maintain than
procedural programming

– Favor modularity
• Software reuse

– Libraries
• MFC (Microsoft Foundation Classes)
• Rogue Wave

 2003 Prentice Hall, Inc. All rights reserved.

16

Basics of a Typical C++ Environment

• C++ systems
– Program-development environment
– Language
– C++ Standard Library

• C++ program names extensions
– .cpp
– .cxx
– .cc
– .C

5

 2003 Prentice Hall, Inc. All rights reserved.

17

Basics of a Typical C++ Environment

Phases of C++ Programs:
1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute
Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates an executable
file and stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

 2003 Prentice Hall, Inc. All rights reserved.

18

Basics of a Typical C++ Environment

• Common Input/output functions
– cin

• Standard input stream
• Normally keyboard

– cout
• Standard output stream
• Normally computer screen

– cerr
• Standard error stream
• Display error messages

 2003 Prentice Hall, Inc. All rights reserved.

19

A Simple Program: Printing a Line of Text

• Before writing the programs
– Comments

• Document programs
• Improve program readability
• Ignored by compiler
• Single -line comment

– Use C’s comment /* .. */ OR Begin with // or
– Preprocessor directives

• Processed by preprocessor before compiling
• Begin with #

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
20

fig01_02.cpp
(1 of 1)

fig01_02.cpp
output (1 of 1)

1 // Fig. 1.2: fig01_02.cpp
2 // A first program in C++.
3 #include <iostream>
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9
10 return 0; // indicate that program ended successfully
11
12 } // end function main

Welcome to C++!

Single-line comments.

Preprocessor directive to
include input/output stream
header file <iostream>.

Function main appears
exactly once in every C++
program..

Function main returns an
integer value.Left brace {begins function
body.

Corresponding right brace }
ends function body.

Statements end with a
semicolon ;.

Name cout belongs to
namespace std.

Stream insertion operator.

Keyword return is one of
several means to exit
function; value 0 indicates
program terminated
successfully.

6

 2003 Prentice Hall, Inc. All rights reserved.

21

A Simple Program: Printing a Line of Text

• Standard output stream object
– std::cout
– “Connected” to screen
– <<

• Stream insertion operator
• Value to right (right operand) inserted into output stream

• Namespace
– std:: specifies using name that belongs to “namespace”
std

– std:: removed through use of using statements

• Escape characters
– \
– Indicates “special” character output

 2003 Prentice Hall, Inc. All rights reserved.

22

A Simple Program: Printing a Line of Text

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\" Double quote. Used to print a double quote

character.

 2003 Prentice Hall, Inc. All rights reserved.

23

Another Simple Program: Adding Two Integers

• Variables
– Location in memory where value can be stored
– Common data types

• int - integer numbers
• char - characters
• double - floating point numbers

– Declare variables with name and data type before use
int integer1;
int integer2;
int sum;

– Can declare several variables of same type in one declaration
• Comma-separated list
int integer1, integer2, sum;

 2003 Prentice Hall, Inc. All rights reserved.

24

Another Simple Program: Adding Two Integers

• Input stream object
– >> (stream extraction operator)

• Used with std::cin
• Waits for user to input value, then press Enter (Return) key
• Stores value in variable to right of operator

– Converts value to variable data type

• = (assignment operator)
– Assigns value to variable
– Binary operator (two operands)
– Example:

sum = variable1 + variable2;

7

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
25

fig01_06.cpp
(1 of 1)

1 // Fig. 1.6: fig01_06.cpp
2 // Addition program.
3 #include <iostream>
4
5 // function main begins program execution
6 int main()
7 {
8 int integer1; // first number to be input by user
9 int integer2; // second number to be input by user
10 int sum; // variable in which sum will be stored
11
12 std::cout << "Enter first integer\n"; // prompt
13 std::cin >> integer1; // read an integer
14
15 std::cout << "Enter second integer\n"; // prompt
16 std::cin >> integer2; // read an integer
17
18 sum = integer1 + integer2; // assign result to sum
19
20 std::cout << "Sum is " << sum << std::endl; // print sum
21
22 return 0; // indicate that program ended successfully
23

24 } // end function main

Declare integer variables.

Use stream extraction
operator with standard input
stream to obtain user input.

Stream manipulator
std::endl outputs a
newline, then “flushes output
buffer. ”

Concatenating, chaining or
cascading stream insertion
operations.

Calculations can be performed in output statements: alternative
for lines 18 and 20:

std::cout << "Sum is " << integer1 + integer2 << std::endl;

 2003 Prentice Hall, Inc. All rights reserved.

26

Memory Concepts

• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites previous

value

– std::cin >> integer1;
– Assume user entered 45

– std::cin >> integer2;
– Assume user entered 72

– sum = integer1 + integer2;

integer1 45

integer1 45

integer2 72

integer1 45

integer2 72

sum 117

 2003 Prentice Hall, Inc. All rights reserved.

27

Arithmetic

• Arithmetic calculations
– * : Multiplication
– / : Division

• Integer division truncates remainder
– 7 / 5 evaluates to 1

– % : Modulus operator returns remainder
– 7 % 5 evaluates to 2

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nes ted), they are evaluated left to right.

* , / , or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

 2003 Prentice Hall, Inc. All rights reserved.

28
Decision Making: Equality and Relational
Operators

• if structure
– Make decision based on truth or falsity of condition

• If condition met, body executed
• Else, body not executed

• Equality and relational operators
– Equality operators

• Same level of precedence
– Relational operators

• Same level of precedence
– Associate left to right

• using statements
– Eliminate use of std::prefix
– Write cout instead of std::cout

8

 2003 Prentice Hall, Inc. All rights reserved.

29
Decision Making: Equality and Relational
Operators

Standard algebraic
equality operator or
relational operator

C++ equality
or relational
operator

Example
of C++
condition

Meaning of
C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
30

fig01_14.cpp
(1 of 2)

1 // Fig. 1.14: fig01_14.cpp
2 // Using if statements, relational
3 // operators, and equality operators.
4 #include <iostream>
5
6 using std::cout; // program uses cout
7 using std::cin ; // program uses cin
8 using std::endl; // program uses endl
9
10 // function main begins program execution
11 int main()
12 {
13 int num1; // first number to be read from user
14 int num2; // second number to be read from user
15
16 cout << "Enter two integers, and I will tell you\n"
17 << "the relationships they satisfy: ";
18 cin >> num1 >> num2; // read two integers
19
20 if (num1 == num2)
21 cout << num1 << " is equal to " << num2 << endl;
22
23 if (num1 != num2)
24 cout << num1 << " is not equal to " << num2 << endl;
25

using statements eliminate
need for std::prefix.

Can write coutand cin
without std::prefix.

Declare variables.

if structure compares values
of num1 and num2 to test for
equality.

If condition is true (i.e.,
values are equal), execute this
statement.if structure compares values

of num1 and num2 to test for
inequality.

If condition is true (i.e.,
values are not equal), execute
this statement.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
31

fig01_14.cpp
(2 of 2)

fig01_14.cpp
output (1 of 2)

26 if (num1 < num2)
27 cout << num1 << " is less than " << num2 << endl;
28
29 if (num1 > num2)
30 cout << num1 << " is greater than " << num2 << endl;
31
32 if (num1 <= num2)
33 cout << num1 << " is less than or equal to "
34 << num2 << endl;
35

36 if (num1 >= num2)
37 cout << num1 << " is greater than or equal to "
38 << num2 << endl;
39
40 return 0; // indicate that program ended successfully
41
42 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Statements may be split over
several lines.

 2003 Prentice Hall, Inc. All rights reserved.

32

Algorithms

• Computing problems
– Solved by executing a series of actions in a specific order

• Algorithm a procedure determining
– Actions to be executed
– Order to be executed
– Example: recipe

• Program control
– Specifies the order in which statements are executed

9

 2003 Prentice Hall, Inc. All rights reserved.

33

Pseudocode

• Pseudocode
– Artificial, informal language used to develop algorithms
– Similar to everyday English

• Not executed on computers
– Used to think out program before coding

• Easy to convert into C++ program

– Only executable statements
• No need to declare variables

 2003 Prentice Hall, Inc. All rights reserved.

34

Control Structures

• Sequential execution
– Statements executed in order

• Transfer of control
– Next statement executed not next one in sequence
– Structured programming – “goto”-less programming

• 3 control structures to build any program
– Sequence structure

• Programs executed sequentially by default

– Selection structures
• if, if/else, switch

– Repetition structures
• while, do/while, for

 2003 Prentice Hall, Inc. All rights reserved.

35

Keywords

• C++ keywords
– Cannot be used as identifiers or variable names

C++ Keywords

Keywords common to the
C and C++ programming
languages

auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

 2003 Prentice Hall, Inc. All rights reserved.

36

Control Structures

• Flowchart
– Graphical representation of an algorithm
– Special-purpose symbols connected by arrows (flowlines)
– Rectangle symbol (action symbol)

• Any type of action

– Oval symbol
• Beginning or end of a program, or a section of code (circles)

• Single-entry/single-exit control structures
– Connect exit point of one to entry point of the next
– Control structure stacking

10

 2003 Prentice Hall, Inc. All rights reserved.

37

if Selection Structure

• Selection structure
– Choose among alternative courses of action
– Pseudocode example:

If student’s grade is greater than or equal to 60
Print “Passed”

– If the condition is true
• Print statement executed, program continues to next statement

– If the condition is false
• Print statement ignored, program continues

– Indenting makes programs easier to read
• C++ ignores whitespace characters (tabs, spaces, etc.)

 2003 Prentice Hall, Inc. All rights reserved.

38

if Selection Structure

• Translation into C++
If student’s grade is greater than or equal to 60

Print “Passed”

if (grade >= 60)
cout << "Passed";

• Diamond symbol (decision symbol)
– Indicates decision is to be made
– Contains an expression that can be true or false

• Test condition, follow path

• if structure
– Single-entry/single-exit

 2003 Prentice Hall, Inc. All rights reserved.

39

if Selection Structure

• Flowchart of pseudocode statement

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

 2003 Prentice Hall, Inc. All rights reserved.

40

if/else Selection Structure

• if
– Performs action if condition true

• if/else
– Different actions if conditions true or false

• Pseudocode
if student’s grade is greater than or equal to 60

print “Passed”
else

print “Failed”

• C++ code
if (grade >= 60)

cout << "Passed";
else

cout << "Failed";

11

 2003 Prentice Hall, Inc. All rights reserved.

41

if/else Selection Structure

• Ternary conditional operator (?:)
– Three arguments (condition, value if true, value if false)

• Code could be written:
cout << (grade >= 60 ? “Passed” : “Failed”);

truefalse

print “Failed” print “Passed”

grade >= 60

Condition Value if true Value if false

 2003 Prentice Hall, Inc. All rights reserved.

42

if/else Selection Structure

• Nested if/else structures
– One inside another, test for multiple cases
– Once condition met, other statements skipped
if student’s grade is greater than or equal to 90

Print “A”

else
if student’s grade is greater than or equal to 80

Print “B”
else

if student’s grade is greater than or equal to 70
Print “C”

else
if student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

 2003 Prentice Hall, Inc. All rights reserved.

43

if/else Selection Structure

• Example
if (grade >= 90) // 90 and above

cout << "A";
else if (grade >= 80) // 80-89

cout << "B";
else if (grade >= 70) // 70-79

cout << "C";
else if (grade >= 60) // 60-69

cout << "D";
else // less than 60

cout << "F";

 2003 Prentice Hall, Inc. All rights reserved.

44

if/else Selection Structure

• Compound statement
– Set of statements within a pair of braces
if (grade >= 60)

cout << "Passed.\n";
else {

cout << "Failed.\n";
cout << "You must take this course again.\n";

}

– Without braces,
cout << "You must take this course again.\n";

always executed

• Block
– Set of statements within braces

12

 2003 Prentice Hall, Inc. All rights reserved.

45

while Repetition Structure

• Repetition structure
– Action repeated while some condition remains true
– Psuedocode

while there are more items on my shopping list
Purchase next item and cross it off my list

– while loop repeated until condition becomes false

• Example
int product = 2;
while (product <= 1000)

product = 2 * product;

 2003 Prentice Hall, Inc. All rights reserved.

46

while Repetition Structure

• Flowchart of while loop

product <= 1000 product = 2 * product
true

false

 2003 Prentice Hall, Inc. All rights reserved.

47

Counter-Controlled Repetition

• Counter-controlled repetition
– Loop repeated until counter reaches certain value

• Definite repetition
– Number of repetitions known

• Example
A class of ten students took a quiz. The grades (integers in
the range 0 to 100) for this quiz are available to you.
Determine the class average on the quiz.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
48

fig02_07.cpp
(1 of 2)

1 // Fig. 2.7: fig02_07.cpp
2 // Class average program with counter-controlled repetition.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin ;
7 using std::endl;
8
9 // function main begins program execution
10 int main()
11 {
12 int total; // sum of grades input by user
13 int gradeCounter; // number of grade to be entered next
14 int grade; // grade value
15 int average; // average of grades
16
17 // initialization phase
18 total = 0; // initialize total
19 gradeCounter = 1; // initialize loop counter
20

13

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
49

fig02_07.cpp
(2 of 2)

fig02_07.cpp
output (1 of 1)

21 // processing phase
22 while (gradeCounter <= 10) { // loop 10 times
23 cout << "Enter grade: "; // prompt for input
24 cin >> grade; // read grade from user
25 total = total + grade; // add grade to total
26 gradeCounter = gradeCounter + 1; // increment counter
27 }
28
29 // termination phase
30 average = total / 10; // integer division
31
32 // display result
33 cout << "Class average is " << average << endl;
34
35 return 0; // indicate program ended successfully
36
37 } // end function main

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

The counter gets incremented each
time the loop executes.
Eventually, the counter causes the
loop to end.

 2003 Prentice Hall, Inc. All rights reserved.

50

Sentinel-Controlled Repetition

• Suppose problem becomes:
Develop a class-averaging program that will process an
arbitrary number of grades each time the program is run

– Unknown number of students
– How will program know when to end?

• Sentinel value
– Indicates “end of data entry”
– Loop ends when sentinel input
– Sentinel chosen so it cannot be confused with regular input

• -1 in this case

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
51

fig02_09.cpp
(1 of 3)

1 // Fig. 2.9: fig02_09.cpp
2 // Class average program with sentinel-controlled repetition.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin ;
7 using std::endl;
8 using std::fixed;
9
10 #include <iomanip> // parameterized stream manipulators
11
12 using std::setprecision; // sets numeric output precision
13
14 // function main begins program execution
15 int main()
16 {
17 int total; // sum of grades
18 int gradeCounter; // number of grades entered
19 int grade; // grade value
20
21 double average; // number with decimal point for average
22
23 // initialization phase
24 total = 0; // initialize total
25 gradeCounter = 0; // initialize loop counter

Data type doubleused to represent
decimal numbers.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
52

fig02_09.cpp
(2 of 3)

26
27 // processing phase
28 // get first grade from user
29 cout << "Enter grade, -1 to end: "; // prompt for input
30 cin >> grade; // read grade from user
31
32 // loop until sentinel value read from user
33 while (grade != -1) {
34 total = total + grade; // add grade to total
35 gradeCounter = gradeCounter + 1; // increment counter
36
37 cout << "Enter grade, -1 to end: "; // prompt for input
38 cin >> grade; // read next grade
39
40 } // end while
41
42 // termination phase
43 // if user entered at least one grade ...
44 if (gradeCounter != 0) {
45
46 // calculate average of all grades entered
47 average = static_cast< double >(total) / gradeCounter;
48

static_cast<double>() treats total as a
double temporarily (casting).

Required because dividing two integers truncates the
remainder.

gradeCounter is an int, but it gets promoted to
double.

14

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
53

fig02_09.cpp
(3 of 3)

fig02_09.cpp
output (1 of 1)

49 // display average with two digits of precision
50 cout << "Class average is " << setprecision(2)
51 << fixed << average << endl;
52
53 } // end if part of if/else
54
55 else // if no grades were entered, output appropriate message
56 cout << "No grades were entered" << endl;
57
58 return 0; // indicate program ended successfully
59
60 } // end function main

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

setprecision(2)prints two digits past
decimal point (rounded to fit precision).

Programs that use this must include <iomanip>

fixed forces output to print
in fixed point format (not
scientific notation). Also,
forces trailing zeros and
decimal point to print.

Include <iostream>

 2003 Prentice Hall, Inc. All rights reserved.

54

switch Multiple-Selection Structure

• switch
– Test variable for multiple values
– Series of case labels and optional default case

switch (variable) {
case value1: // taken if variable == value1

statements
break; // necessary to exit switch

case value2:
case value3: // taken if variable == value2 or == value3

statements
break;

default: // taken if none matches
statements
break;

}

 2003 Prentice Hall, Inc. All rights reserved.

55

switch Multiple-Selection Structure

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

 2003 Prentice Hall, Inc. All rights reserved.

56

switch Multiple-Selection Structure

• Example upcoming
– Program to read grades (A-F)
– Display number of each grade entered

• Details about characters
– Single characters typically stored in a char data type

• char a 1-byte integer, so chars can be stored as ints
– Can treat character as int or char

• 97 is the numerical representation of lowercase ‘a’ (ASCII)
• Use single quotes to get numerical representation of character
cout << "The character (" << 'a' << ") has the value "

<< static_cast< int > ('a') << endl;

Prints
The character (a) has the value 97

15

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
57

fig02_22.cpp
(1 of 4)

1 // Fig. 2.22: fig02_22.cpp
2 // Counting letter grades.
3 #include <iostream>
4
5 using std::cout;
6 using std::cin ;
7 using std::endl;
8
9 // function main begins program execution
10 int main()
11 {
12 int grade; // one grade
13 int aCount = 0; // number of As
14 int bCount = 0; // number of Bs
15 int cCount = 0; // number of Cs
16 int dCount = 0; // number of Ds
17 int fCount = 0; // number of Fs
18
19 cout << "Enter the letter grades." << endl
20 << "Enter the EOF character to end input." << endl;
21

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
58

fig02_22.cpp
(2 of 4)

22 // loop until user types end-of-file key sequence
23 while ((grade = cin.get()) != EOF) {
24
25 // determine which grade was input
26 switch (grade) { // switch structure nested in while
27
28 case 'A': // grade was uppercase A
29 case 'a': // or lowercase a
30 ++aCount; // increment aCount
31 break; // necessary to exit switch
32
33 case 'B': // grade was uppercase B
34 case 'b': // or lowercase b
35 ++bCount; // increment bCount
36 break; // exit switch
37
38 case 'C': // grade was uppercase C
39 case 'c': // or lowercase c
40 ++cCount; // increment cCount
41 break; // exit switch
42

cin.get() uses dot notation
(explained chapter 6). This
function gets 1 character from the
keyboard (after Enter pressed),
and it is assigned to grade.

cin.get() returns EOF (end-of-
file) after the EOF character is
input, to indicate the end of data.
EOF may be ctrl-d or ctrl-z,
depending on your OS.

Compares grade (an int)
to the numerical
representations ofA and a.

break causes switch to end and
the program continues with the first
statement after the switch
structure.

Assignment statements have a
value, which is the same as
the variable on the left of the
=. The value of this statement
is the same as the value
returned by cin.get().

This can also be used to
initialize multiple variables:
a = b = c = 0;

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
59

fig02_22.cpp
(3 of 4)

43 case 'D': // grade was uppercase D
44 case 'd': // or lowercase d
45 ++dCount; // increment dCount
46 break; // exit switch
47
48 case 'F': // grade was uppercase F
49 case 'f': // or lowercase f
50 ++fCount; // increment fCount
51 break; // exit switch
52

53 case '\ n': // ignore newlines,
54 case '\ t': // tabs,
55 case ' ': // and spaces in input
56 break; // exit switch
57
58 default : // catch all other characters
59 cout << "Incorrect letter grade entered."
60 << " Enter a new grade." << endl;
61 break; // optional; will exit switch anyway
62
63 } // end switch
64
65 } // end while
66

Notice the default statement, which
catches all other cases.

This test is necessary because
Enter is pressed after each
letter grade is input. This adds
a newlinecharacter that must
be removed. Likewise, we
want to ignore any
whitespace.

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
60

fig02_22.cpp
(4 of 4)

67 // output summary of results
68 cout << "\n\nTotals for each letter grade are:"
69 << "\nA: " << aCount // display number of A grades
70 << "\nB: " << bCount // display number of B grades
71 << "\nC: " << cCount // display number of C grades
72 << "\nD: " << dCount // display number of D grades
73 << "\nF: " << fCount // display number of F grades
74 << endl;
75
76 return 0; // indicate successful termination
77
78 } // end function main

16

 2003 Prentice Hall, Inc. All rights reserved.

61

do/while Repetition Structure

• Similar to while structure
– Makes loop continuation test at end, not beginning
– Loop body executes at least once

• Format
do {

statement
} while (condition);

true

false

action(s)

condition

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
62

fig02_24.cpp
(1 of 1)

fig02_24.cpp
output (1 of 1)

1 // Fig. 2.24: fig02_24.cpp
2 // Using the do/while repetition structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11 int counter = 1; // initialize counter
12
13 do {
14 cout << counter << " "; // display counter
15 } while (++counter <= 10); // end do/while
16
17 cout << endl;
18
19 return 0; // indicate successful termination
20
21 } // end function main

1 2 3 4 5 6 7 8 9 10

Notice the preincrement in
loop -continuation test.

 2003 Prentice Hall, Inc. All rights reserved.

63

break and continue Statements

• break statement
– Immediate exit from while , for , do/while , switch
– Program continues with first statement after structure

• Common uses
– Escape early from a loop
– Skip the remainder of switch

 2003 Prentice Hall, Inc.
All rights reserved.

Outline
64

fig02_26.cpp
(1 of 2)

1 // Fig. 2.26: fig02_26.cpp
2 // Using the break statement in a for structure.
3 #include <iostream>
4
5 using std::cout;
6 using std::endl;
7
8 // function main begins program execution
9 int main()
10 {
11
12 int x; // x declared here so it can be used after the loop
13
14 // loop 10 times
15 for (x = 1; x <= 10; x++) {
16
17 // if x is 5, terminate loop
18 if (x == 5)
19 break; // break loop only if x is 5
20
21 cout << x << " "; // display value of x
22
23 } // end for
24
25 cout << "\nBroke out of loop when x became " << x << endl;

Exits for structure when
break executed.

17

 2003 Prentice Hall, Inc. All rights reserved.

65

Logical Operators

• Used as conditions in loops, i f statements
• && (logical AND)

– true if both conditions are true
if (gender == 1 && age >= 65)

++seniorFemales;

• || (logical OR)
– true if either of condition is true

if (semesterAverage >= 90 || finalExam >= 90)
cout << "Student grade is A" << endl;

 2003 Prentice Hall, Inc. All rights reserved.

66

Logical Operators

• ! (logical NOT, logical negation)
– Returns truewhen its condition is false, & vice versa

if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

Alternative:
if (grade != sentinelValue)

cout << "The next grade is " << grade << endl;

 2003 Prentice Hall, Inc. All rights reserved.

67
Confusing Equality (==) and Assignment (=)
Operators

• Common error
– Does not typically cause syntax errors

• Aspects of problem
– Expressions that have a value can be used for decision

• Zero = false, nonzero = true

– Assignment statements produce a value (the value to be
assigned)

 2003 Prentice Hall, Inc. All rights reserved.

68
Confusing Equality (==) and Assignment (=)
Operators

• Example
if (payCode == 4)

cout << "You get a bonus!" << endl;

– If paycode is 4, bonus given

• If == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;
– Paycode set to 4 (no matter what it was before)
– Statement is true (since 4 is non -zero)
– Bonus given in every case

18

 2003 Prentice Hall, Inc. All rights reserved.

69
Confusing Equality (==) and Assignment (=)
Operators

• Lvalues
– Expressions that can appear on left side of equation
– Can be changed (I.e., variables)

x = 4;

• Rvalues
– Only appear on right side of equation
– Constants, such as numbers (i.e. cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

 2003 Prentice Hall, Inc. All rights reserved.

70

Structured-Programming Summary

• Structured programming
– Programs easier to understand, test, debug and modify

• Rules for structured programming
– Only use single-entry/single-exit control structures
– Rules

1) Begin with the “simplest flowchart”
2) Any rectangle (action) can be replaced by two rectangles

(actions) in sequence
3) Any rectangle (action) can be replaced by any control

structure (sequence, if, if/else, switch, while, do/while or for)
4) Rules 2 and 3 can be applied in any order and multiple times

 2003 Prentice Hall, Inc. All rights reserved.

71

Structured-Programming Summary

Rule 3

Rule 3Rule 3

Representation of Rule 3 (replacing any rectangle with a control structure)

 2003 Prentice Hall, Inc. All rights reserved.

72

Structured-Programming Summary

• All programs broken down into
– Sequence
– Selection

• if, if/else, or switch
• Any selection can be rewritten as an if statement

– Repetition
• while, do/while or for
• Any repetition structure can be rewritten as a while statement

