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ABSTRACT 
The role hierarchy is one of the most distinguished features of an 
RBAC approach to securing large systems as it facilitates efficient 
administration of permissions. However, the role hierarchy as 
defined in the currently standardized RBAC model has limitations 
in capturing generic policy requirements such as separation of 
duty, time-based and cardinality constraints. To address such 
limitations, permission inheritance and activation inheritance 
semantics have been introduced to define three different types of 
role hierarchies. In presence of a hybrid hierarchy that allows all 
the three types of hierarchies to coexist, the overall hierarchy 
administration problem becomes quite complex. A key problem is 
to efficiently handle authorization queries to decide whether a 
user’s request to activate a set of roles should be granted. A 
hybrid hierarchy also makes the problem of mapping a request for 
a set of permissions to a minimal set of roles difficult. Such a 
mapping is crucial in multidomain environments where different 
security domains have to establish and engage in secure 
interoperation by first mapping their security policies. In this 
paper, we investigate these two problems and present solutions 
that are efficient and practical. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection]: Access controls;  
G.4 [Mathematical Software]: Algorithm, design and analysis. 

General Terms 
Algorithms, Security, Theory. 

Keywords 
Role based access control, hierarchy, role mapping, multidomain, 
secure interoperation. 

1. INTRODUCTION 
Role based access control (RBAC) has become the predominant 
approach for advanced access control in large, distributed systems 
[7, 12]. It not only encompasses traditional discretionary and 
mandatory access control (DAC/MAC) models, but also offers 

many attractive features, such as policy neutrality, support for 
least privilege and efficient access control management [6, 15 11]. 

One of the most distinguished characteristics of the RBAC 
approach is the role hierarchy. A role hierarchy defines 
inheritance semantics related to permission acquisitions and role 
activations through role-role relationships that can be utilized to 
efficiently and effectively structure functional roles of an 
organization having related access control needs. Joshi et al. have 
established a clear distinction among the following three types of 
role hierarchies in the context of the generalized temporal RBAC 
(GTRBAC) model [11]: permission-inheritance-only hierarchy (I-
hierarchy, ≥i), activation-inheritance-only hierarchy (A-hierarchy, 
≥a), and the combined permission-inheritance and activation 
hierarchy (IA-hierarchy, ≥). It has been shown that such a fine-
grained hierarchical semantics facilitates capturing a wide range 
of security requirements, including the specification of fine-
grained separation of duty (SoD) and temporal constraints on 
hierarchically related roles, and user-centric as well as 
permission-centric cardinality constraints on roles in the hierarchy 
[12, 17]. Furthermore, hybrid hierarchies where all three types of 
hierarchical relations can coexist, allow flexible ways to express a 
given policy [14], and provide better support for policy 
integration in multidomain environments [19].  

Given a role hierarchy, the system must maintain knowledge of 
the set of roles that a user is allowed to activate in a single session 
in order to process a user’s request to activate a set of roles. In the 
presence of a hybrid hierarchy, maintaining permission 
acquisition and role activation semantics can become quite 
challenging. Joshi et al. introduce the concept of uniquely 
activable set (UAS) to facilitate the analysis of hybrid hierarchies 
and simplify the process of determining the activation and 
permission-acquisition sets [11]. A UAS is a set each element of 
which is a set of roles that can be activated in a single session by 
a specific user. In other words, a user assigned to a role in a 
hierarchy can activate only those set of roles that occur in a UAS 
associated with him. Computing UAS has been shown to be a 
complex task [3]. Chandran et al. have presented two approaches 
for computing the UAS of a hierarchy [3]: the decomposition 
based (DB) approach that constructs the UAS by computing 
UASs of the sub-hierarchies, and the derived relations based 
(DRB) approach that uses a set of implication rules, introduced in 
[13], to derive hierarchical relations between every pairs of roles 
in the hierarchy and then compute the UAS from them [3]. While 
these approaches are useful for carrying out exhaustive analysis of 
policies, they have non-polynomial time complexities.  
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The presence of hybrid hierarchies in RBAC-based policies also 
makes the issue of secure interoperation between two domains 
very difficult. In particular, one of the key requirements when two 
systems interoperate is to make sure that their policies are 
appropriately mapped, including mapping of role hierarchies, so 
that the principles of security and autonomy are preserved [12, 
19]. In a loosely coupled environment, when two domains that are 
not known to each other decide to interact, we assume the process 
starts with the specification of service requirements of each 
domain. Hence, the underlying issue related to secure 
interoperation is that of appropriately mapping policies to satisfy 
each request of a domain by the other domain, where each request 
is represented as a set of permissions required. These requested 
set of permissions in turn need to be satisfied by identifying the 
set of local roles that may be hierarchically related. Ideally, we 
want to identify the minimal number of roles that are associated 
with the requested set of permissions. This approach to inter-
domain mapping has been introduced in [16].  

In this paper, we focus on these two crucial problems centered on 
the use of hybrid hierarchies. For the first problem, referred to as 
the authorization query (AQ) problem, we present an approach 
simpler than the DB or the DRB approaches to determine whether 
a user’s request to activate a set of roles can be granted. We 
define a special matrix called assistant matrix (AM) that encodes 
some relationships among the hierarchically related roles. For the 
second problem, referred to as the inter-domain role mapping 
(IDRM) problem, we show that finding the minimal set of roles 
that satisfy an external domain’s request, represented as a set of 
permissions, is NP-complete. We, therefore, present a heuristic 
greedy search approach to find a sub-optimal solution and 
enhance it by including a probability parameter to get a better 
result. The novelties of our contributions are as follows:  

1. To the best of our knowledge, work related to UAS and 
hybrid hierarchy, and hence the AQ problem is new and has 
not been carried out by other researchers. The proposed 
solution is efficient and can also be extended to address 
policy analysis. Note that the AM does not completely 
encode all the UAS elements or the derived relations as is 
done by the DB and DRB approaches, respectively. 
However, this approach can be used to identify undesirable 
UAS elements (thus indicating undesirable hierarchy design) 
by querying whether the undesirable set of roles are allowed 
by the hybrid hierarchy to be activated in a single session. As 
the DB and DRB approaches have non-polynomial time 
complexities, this approach will support for the practical use 
of the hybrid hierarchy. 

2. We show that, during inter-domain mapping in presence of 
hybrid hierarchy, finding the minimal set of roles that match 
a set of permissions is NP-complete. We extend an existing 
heuristic greedy approach to get better sub-optimal solution 
to this problem. The extended algorithm has the flavor of 
both the simulated annealing and genetic algorithms. To the 
best of our knowledge, the IDRM problem in this form has 
not been addressed by other researchers, let alone the 
problem in presence of the hybrid hierarchy. 

The rest of the paper is organized as follows. In Section 2, we 
provide an overview of the concept of hybrid hierarchy and 
relevant background material on the GTRBAC. In Section 3, we 
discuss the AQ problem and present our proposed solution. In 

Section 4, we investigate the IDRM problem and show that it is 
NP-complete. We then present an enhanced greedy search 
algorithm to find a sub-optimal solution for the IDRM problem. 
We present brief overview of implementation in Section 5, the 
related work in Section 6 and conclusions and future work in 
Section 7. 

2. GTRBAC and HYBRID HIERARCHY 
The GTRBAC model introduces the separate notion of role 
enabling and role activation, and provides constraints and event 
expressions associated with both [12]. In the GTRBAC model, an 
enabled role indicates that a valid user can activate it, whereas an 
activated role indicates that at the least one user has activated the 
role. The basic GTRBAC model proposed in [12], allows 
specification of the following set of constraints:  
1. temporal constraints on role enabling/disabling that allow 

specification of intervals and durations in which a role is 
enabled; (ii)  

2. temporal constraints on user-role and role-permission 
assignments that allow specifying intervals and durations in 
which a user or permission is assigned to a role; (iii) 

3. activation constraints: These constraints allow specification 
of restrictions on the activation of a role. These include, for 
example, specifying the total duration for which a user may 
activate a role, or the number of concurrent activations of the 
role at a particular time;  

4. run-time events that allow an administrator and users to 
dynamically initiate the various role events, or enable the 
duration or activation constraints;  

5. constraint enabling that events that enable or disable 
duration and role activation constraints mentioned earlier; 
and  

6. triggers that allow expressing dependencies among events 
and conditions 

Semantically, a role hierarchy expands the scope of the 
permission-acquisition and role-activation semantics beyond the 
explicit user-role and role-permission assignments to inheritance 
through the hierarchical relations defined among roles. Within the 
GTRBAC framework, the following three hierarchy types have 
been identified: permission-inheritance-only hierarchy (I-
hierarchy), role-activation-only hierarchy (A-hierarchy) and the 
combined inheritance-activation hierarchy (IA-hierarchy) [12]. 
Table 1 captures the predicate notations used in defining the 
semantics of these hierarchies [12]. Predicates enabled(r, t), 
assigned(u, r, t) and assigned(p, r, t) refer to the status of roles, 
user-role and role-permission assignments at time t. Predicate 
can_activate(u, r, t) indicates that user u can activate role r at 
time t, implying that user u is implicitly or explicitly assigned to 
role r at time t. active(u, r, s, t) indicates that role r is active in 
user u’s session s at time t, whereas, acquires(u, p, s, t) implies 
that u acquires permission p at time t in session s. The axioms in 
Table 1 capture the key relationships among these predicates and 
identify precisely the permission-acquisitions and role-activations 
allowed in GTRBAC [12]. Axiom (1) states that if a permission is 
assigned to a role, then it can be acquired through that role. 
Axiom (2) states that all users assigned to a role can activate that 
role. Axiom (3) states that if a user u can activate a role r, then all 
the permissions that can be acquired through r can be acquired 
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by u. Similarly, axiom (4) states that if there is a user session in 
which a user u has activated a role r then u acquires all the 
permissions that can be acquired through role r. We note that 
axioms (1) and (2) indicate that permission-acquisition and role-
activation semantics are governed by explicit user-role and role-
permission assignments. We ignore the time parameter for the rest 
of the paper.  
In Table 2, the semantics of each hierarchy type is defined by its 
corresponding implication rule in the last column. The rule for the 
I-hierarchy, (x≥iy), implies that if (x≥iy) holds, then the 
permissions that can be acquired through role x include all the 
permissions that can be acquired through role y. In other words, 
permissions of the junior roles are inherited by the senior role. 
Similarly, the rule for the A-hierarchy implies that if user u can 
activate role x, and x≥ay is defined, then user u can also activate 
role y even if he is not explicitly assigned to y. Note that it does 
not imply that user u can acquire y’s permissions by merely 
activating x. In other words, permission-inheritance is not implied 
in an A-hierarchy. The IA-hierarchy is the most general form and 
includes both permission-inheritance and role-activation 
semantics. In the remaining sections we do not use the time 
parameter t in any expression. 

We represent a hybrid hierarchy as H = (R, F), where R is a set of 
roles, R = {r1, r2,…, rn}; F is a set of hierarchy relations defined 
on R,  F ⊆ {≥i, ≥a, ≥}. If F = {<f>} is a singleton set with 
hierarchy relation <f>, then we call H a monotype hierarchy and 
write (R, <f>). We use notation Pau(r) to refer to the set of 
authorized permissions of role r, which is a set of permissions that 
can be acquired by activating r. That is, 

• Pau(r) = can_be_acquired(r, p), and 
• Pau(R) = U

Rr
au rP

∈

)( . 

Formally, the UAS can be defined as follows [13]. 

Definition 1: Let H = (R, F) be a rooted hybrid hierarchy. Then, 
UAS(H) = {Y1, Y2, …, Ym}, where ∅ ⊂ Yi ⊆ R for each i ∈{1, 2, 

…, m}, is the Uniquely Activable Set (UAS) of role sets for a user 
assigned to the senior-most role SH of H if the following 
conditions hold: 
• ∀i, j ∈{1, 2, …, m} and i ≠ j, P(Yi) ≠ P(Yj), and 
• ∀Z ⊆ R s.t. Z ∉ UAS(H), if P(Y) = P(Z) for a Y ∈ UAS(H), 

then  (|Y| < |Z|); where |A| is the cardinality of set A. 

Example 1: An example hybrid hierarchy is illustrated in 
Figure 1. I, A and IA-hierarchies are represented by a simple 
line, a dotted line and a line with arrows on both ends, 
respectively. For this hierarchy, the UAS for a user assigned to r1 
is: 

{ {r1}, {r2}, {r3}, {r4}, {r5}, {r6}, { r7} {r1, r3}，{r1,r5}, {r1,r6},   
   {r1,r7}, {r2, r3}, {r2,r5}, {r2,r6}, {r2,r7}, {r3,r4}, {r3,r6}, {r3,r7},  
   {r4,r5}, {r4,r6}, {r4,r7}, {r5,r6},{r5,r7}, {r1,r3,r6}, {r1,r3,r7},   
   {r1,r5,r6},{r1,r5,r7}, {r2,r3,r6}, {r2,r5,r6}, {r2,r5,r7}, {r4,r3,r6},  

{r4,r3,r7}, {r4,r5,r6}, {r4,r5,r7} } 

 

Table 1. Status predicates 
Predicate Meaning Axioms 

enabled(r, t) Role r is enabled at time t 

u_assigned(u, r, t) User u is assigned to role r at time t 

For all r ∈ Roles, u ∈ Users, p ∈ Permissions, s ∈ 
Sessions, and time instant t ≥ 0, the following implications 
hold: 

p_assigned(p, r, t) Permission p is assigned to role r at time t 1. p_assigned(p, r, t)→  can_be_acquired(p, r, t) 

can_activate (u, r, t) User u can activate role r at time t 2.  u_assigned(u, r, t) → can_activate (u, r, t) 

can_acquire (u,  p, t) User u can acquire permission p at time t 

can_be_acquired(p, r, t) Permission p can be acquired through role r at time t 
3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t) →           

can_acquire (u, p,t) 

active(u, r, s, t) Role r is active in user u’s session s at time t 

acquires(u, p, s, t) User u’ acquires permission p in session s  at time t 
4. active(u, r, s, t) ∧ can_be_acquired(p, r, t)  →   

acquires(u, p, s, t) 

Table 2. Role hierarchies in GTRBAC 

Category Short form Notation The following implication rule holds 

I-hierarchy (x≥iy) ∀p, (x≥iy) ∧ can_be_acquired(p, y, t)→ can_be_acquired(p, x, t) 

A-hierarchy (x≥ay) ∀u, (x≥ay) ∧ can_activate (u, x, t)    → can_activate (u, y, t)   

Unrestricted 
hierarchies 

(No effect of timing 
constraints on role) IA-hierarchy (x≥y) (x≥y) ↔ (x≥iy) ∧ (x≥ay) 

Consistency Property: Let <f1><f2> ∈{≥i, ≥a, ≥}. Let x and y be distinct roles such that (x<f1>y); then the condition ¬(y <f2> x) must hold. 

r1

r2 r3

r4 r5 r6

r7

Legend 

A-hierarchy 

IA-hierarchy 

I-hierarchy 

Figure 1. An illustration of hybrid hierarchy and UAS 
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3. AUTHORIZATION QUERY 
Efficient techniques are needed to maintain the permission 
inheritance and role activation semantics to support efficient 
administration and management of hybrid hierarchy. One of the 
most challenging tasks for the administration of the security of 
hybrid hierarchy is to determine whether to grant a user’s request 
for activating a set of roles. Earlier work has tried to address this 
problem by building UAS of a hybrid hierarchy by using the DB 
and DRB approaches mentioned earlier, and presented in [3]. 
However, both of these approaches are computation intensive. 
Besides, even with a UAS available, to answer whether a request 
is in the UAS or not is prohibitively expensive, because the 
number of elements in a UAS can range over from one to the 
power set (associated with an A-hierarchy) of roles. Neither 
computing nor storing the whole UAS for a large hierarchy is 
viable for practical systems. 

In this section, we investigate a polynomial time approach by first 
proving an important property of UAS, and utilizing an assistant 
matrix (AM) that only keeps pair wise UAS information, to 
support authorization query in a very efficient way. In our 
approach, we do not actually build the UAS, but only keep the 
pair-wise UAS information.  

3.1 UAS Checking Criterion  
We use the pair-wise UAS sets to infer the actual UAS set. The 
following theorem establishes the required basis for using the AM 
to make the authorization decision. 

Theorem 1:  Let H = (R, F) be a hybrid hierarchy; where R = 
{r1, r2,… rn} is a set of roles, F  ⊆ {≥i, ≥a, ≥} is a set of hierarchy 
relations over R. Let R1= {r1, r2,…,rm}, then the following 
condition holds, 

• R1 ∈ UAS(H)⇔{ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m). 

The proof for the theorem is as follows. 

 (Proof for ⇒): If R1∈ UAS(H), then each role ri ∈{r1, r2,…, rm} 
is activable. Obviously, each role pair {ri, rj} for 0 ≤ i, j ≤ m, is 
also activable in a single session. Now, we prove the permission 
set for each {ri, rj} for 0 ≤ i, j ≤ m, is also unique. If we assume 
there is one {ri, rj} for which the permission set is not unique, 
then a subset of {ri, rj} should have the same set of permissions as 
that of the {ri, rj}. Let us assume it to be {ri}, then we can replace 
{ri, rj} in R1 with {ri}, the resulting set R’1= (r1, r2, …, rm}\ rj 
should have the same set of permissions same as P(R1). That 
means R’1 is a smaller set than R1 and hence, R1 ∉ USA(H), which 
results in a contradiction that R1∈ UAS(H). Hence,  

R1 ∈ UAS(H) ⇒{ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m) 

(Proof for ⇐): For a given set {r1, r2,…, rm}, if {ri, rj}∈ UAS(H) 
(0 ≤ i, j ≤ m) holds, then each role ri ∈{r1, r2,…, rm} is activable. 
Now we prove uniqueness. If {ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m), 
assume the corresponding permission set for each {ri, rj} is pi, 
which is minimized by the definition of UAS, then the 
corresponding permission set for {r1, r2,…, rm} is U ip , which is 

also minimized. So, {r1,…rm} ∈ UAS(H). Hence,     

{ri, rj}∈ UAS (H) ⇒ R1∈ UAS(H) (0 ≤ i, j ≤ m) 

Therefore, R1∈UAS(H)⇔{ri, rj}∈UAS (H) (0 ≤ i, j ≤ m). 

 

 r1 r2 r3   r1 r2 r3   r1 r2 r3 

r1 1 1 1  r1 1 0 0  r1 1 1 1 

r2 1 1 1  r2 0 1 0  r2 1 1 1 

r3 1 1 1  r3 0 0 1  r3 1 1 1 

 

 

 r1 r2 r3  r1 r2 r3  r1 r2 r3 

r1 1 0 1 r1 1 1 1 r1 1 0 1 

r2 0 1 1 r2 1 1 1 r2 0 1 1 

r3 1 1 1 

=

r3 1 1 1 

AND 

r3 1 1 1 

 

 

 r1 r2 r3   r1 r2 r3   r1 r2 R3 

r1 1 0 0  r1 1 1 1  r1 1 0 0 

r2 0 1 0  r2 1 1 0  r2 0 1 0 

r3 0 0 1  r3 1 0 1  r3 0 0 1 

 

 

 r1 r2 r3   r1 r2 r3   r1 r2 r3 

r1 1 0 0  r1 1 0 1  r1 1 1 1 

r2 0 1 0  r2 0 1 1  r2 1 1 0 

r3 0 0 1  r3 1 1 1  r3 1 0 1 
 

Figure 2. Relationship between hierarchy graph and AM 
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3.2 Assistant Matrix  
UAS is defined as the uniquely activable set for a user assigned to 
the senior most role. Here, we shall extend the definition for a 
generic hierarchy.  We construct an AM to maintain the pair-wise 
UAS information. We formally characterize the AM as per 
definition 2.  

Definition 2: Assistant Matrix (AM): For a given hybrid 
hierarchy H = (R, F), where R = {r1, r2,… rn} is a set of roles, and 
F ⊆ {≥i, ≥a, ≥} is a set of hierarchy relations, AM is defined as 
follows,  

∀role ri, rj,  if ri = rj, AM[i][j] ←1 
 if {ri, rj} ⊆ UAS(H)  ⇒  AM[i][j] = 1 
                             if {ri, rj} ⊄ UAS(H)  ⇒  AM[i][j] = 0  

Note that AM is a symmetric matrix. Now, we look at the 
relationship between hierarchical structure and the AM as 
illustrated in Figure 2. Figure 2(a) depicts a case that has no 
hierarchical structure. We use it for construction purpose. If there 
is no relationship between two roles, both of them can be in the 
UAS. So, the AM matrix for this case is essentially a unit matrix. 
Figure 2(b) shows a monotype I-hierarchy. In this kind of 
hierarchy, if a user is assigned to a role r1, then the corresponding 
UAS is {r1} with permissions {p1, p2, p3}. If a user is assigned to 
role r2, then the corresponding UAS is {r2} with permissions {p2, 
p3}, and similarly, we get another UAS = {r3} with permission 
{p3} when a user is assigned to role r3. The corresponding AM is 
an identity matrix as shown under the graph.  

Figure 2(c) shows a monotype A-hierarchy. In this kind of 
hierarchy, the UAS for user assigned to r1 is the power set of the 
roles, {{r1},{r2}, {r3}, {r1, r2}, {r1, r3}, {r2, r3},{r1, r2, r3}}. For a 
user assigned to r2, the corresponding UAS is {{r2}, {r3}, {r2, 
r3}}. For a user assigned to r3, the corresponding UAS is {r3}.  

Figure 2(d) illustrates a hybrid hierarchy that can be constructed 
from the three basic structures in figures 2(a), 2(b) and 2(c). In 
[13], it has been proved that a hybrid hierarchy can be split into 
an I-hierarchy and an A-hierarchy because of the fact that an IA 
relation represents the presence of both the A and I relations. This 
is captured by the fact that the AM of a hybrid hierarchy is equal 
to the logical and of the AM of the corresponding I-hierarchy and 
the corresponding A-hierarchy. 

Figures 2(e)-(j) illustrate all other possible basic linear hybrid 
hierarchies for three roles and their corresponding AMs.  

Based on the relationship between hierarchy graph and AM, we 
next present algorithm Build-AM() that produces an AM from a 
hybrid hierarchy graph. The algorithm divides role relationships 
into four categories corresponding to four categories of cells in 
the AM.   

(a) The diagonal element of the AM is “1” by definition.  
(b) If there is a direct A-hierarchy relationship (ri ≥a rj) between 

two roles, the AM cell value is set to “1”. If there is a direct 
I-hierarchy or IA-hierarchy (ri ≥i rj or ri ≥ rj) relationship 
between two roles, the AM cell value is set to “0”. 

(c) Note that there may be multiple paths between two nodes. In 
such a case, the derived relation is the combination of the 
two relations derived through each path [13]. For instance, if 
one path derives an I-relation and another path derives an A-
relation between the same two roles, then the derived 

relation between them is actually an IA-relation; hence, the 
AM entry will correspond to IA-relation. 

(d) All other roles are not related to each other, which means 
they can always be activated by different user assignments, 
so the AM cell is set to “1”. 

The time complexity of Build-AM() is O(n2), where n is the 
total number of roles in a given hybrid hierarchy.    

 

Build-AM (Hierarchy_Graph g)  
Input: g ⎯ the graph representation of the hybrid hierarchy   
structure  
Output: Assistant Matrix, am 
1         initialize am[n][n] ={-1} 
2         foreach  role ri in g 
3               foreach role rj in g 
4                    if i = j  
5                         am[i][j] ←1 
6                    if  ri ≥a rj   
7                         am[i][j] ← 1 
8                         am[j][i] ← 1 
9                    else if (ri ≥i rj) or ( ri ≥ rj)  
10                       am[i][j] ← 0 
11                       am[j][i] ← 0 
12                  if rj is_non_direct_offspring_of (ri) 
13                       if there is  ri ≥a rj  on the path 
14                            if am[i][j] unfilled  
15                                 am[i][j] ← 1 
16                                 am[j][i] ← 1 
17                       else  
18                            am[i][j]  ← 0 
19                            am[j][i]  ← 0             
20                  if am[i][j] = -1 
21                       am[i][j] ← 1 
22                       am[j][i] ← 1 
23        return am         
 

 

Figure 3. Assistant matrix building algorithm 

Example 2: Figure 4 shows the application of Build-AM() to 
build an AM from a hybrid hierarchy. On the left hand side is the 
graphic representation of a hybrid hierarchy with 7 roles. On the 
right hand side is the corresponding AM built from the graphic 
representation according to Build-AM().  

 

 r1 r2 r3 r4 r5 r6 r7 

r1 1 0 1 0   1 1 1 

r2 0 1 1 0 1 1 1 

r3 1 1 1 1 0 1 1 

r4 0 0 1 1 1 1 1 

r5 1 1 0 1 1 1 1 

r6 1 1 1 1 1 1 0 

r7 1 1 1 1 1 0 1 

Figure 4. An example of AM building 

r1

r2 r3

r4 r5 r6

r7
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3.3 Authorization Query Algorithm  
We use the UAS checking criterion shown in Theorem 1 and the 
AM proposed earlier to develop a simple and efficient algorithm 
Auth_Query() to determine whether a set of roles can be 
uniquely activated or not. The essential part of the algorithm is to 
check the pair-wise relations which have been stored in the AM 
by applying algorithm Build_AM(). For a request to activate a 
set of roles RQ = {r1, r2,…, rm}, if at least any pair of roles, {ri, 
rj}(0 ≤ i, j ≤ m) is not in the UAS then the requested set RQ can 
not be in UAS. The requested role set RQ can be in a UAS if and 
only if all pairs of roles {ri, rj}⊆ RQ (0 ≤ i, j ≤ m) are in the UAS.  

The time complexity of Auth_Query() is O(n2), and n is the 
total number of roles in a given hybrid hierarchy. 

 

Auth-Query(RQ, AM am) 
Input: RQ ={r1, r2,…, rm}—  the query, a set of roles roles to 

be activated in a session 
            am — the AM built from algorithm Build-AM() 
Output: TRUE if RQ uniquely activable  
               FALSE if RQ not uniquely activable 
1        Srest  ← RQ 
2              foreach ri∈ RQ 
3       Srest  ← Srest \ {ri}              
4                   foreach rj ∈ Srest  
5                        if em[i][j] = 0 
6                             return FALSE 
7        return TRUE 
 

 

Figure 5. Authorization query algorithm 

4. INTER-DOMAIN ROLE MAPPING 
In this section, we address the inter-domain policy mapping 
(IDRM) problem. We first show that finding a minimal set of 
roles that matches a given set of permissions is NP-complete. 
Then we propose some enhanced heuristics to get a sub-optimal 
solution. 

4.1 The IDRM Problem 
An important requirement of emerging system is to be able to 
share information with other systems [1, 8, 10]. When a system 
needs to allow previously unknown entities to access its 
resources, mechanisms should be in place to ensure that the 
accesses granted are limited to pre-defined sharing requirements. 
We emphasize that a requirements-driven interoperation is needed 
in a loosely coupled environment, and there should be an efficient 
mechanism to facilitate an external entity to access a local 
domain’s resources by mapping external entities to local entities 
[16]. We assume use of RBAC-based policies in such interacting 
domains. 

Figure 6 illustrates an inter-domain interoperation scenario [16]. 
Assuming two domains interoperate, each domain first sends the 
access requirements to the other. Once the requirements have 
been received, the requests are fulfilled by identifying the set of 
roles that can satisfy the requested permissions. The goal is to 
find a minimal set of roles that match the requested set of 
permissions. In an earlier work, we have proposed designating 
special external roles that are mapped to exported roles through 
an A-hierarchy relation – this semantically means that the 

external entity has to activate the specified exported roles in the 
provider domain. The exported roles are themselves made I-
seniors of other local roles that satisfy the requested accesses to 
ensure that the external entities can not activate other local roles. 
By using these A and I hierarchy structures, we can prevent the 
transitivity of the activation semantics that is usually the 
underlying problem in inter-domain access [8]. For more details 
on this methodology, we refer the readers to [16]. 

 

Domain 1 Domain 2

Subset of roles in domain 1 through 
which domain 2 will be accessed

Subset of roles in domain 2 through 
which domain 1 will be accessed

A-hierarchy
relations only

Set of roles 
exported to 
domain 2

Set of roles 
exported to 
domain 1

I-hierarchy
relations only

 
Figure 6. Inter-domain interoperation scenario 

We represent a domain requested permission set as RQ. Our goal 
is to find the minimal set of roles that can provide the RQ. 
Formally,  

Inter-domain Role Mapping (IDRM) Problem: For a request 
RQ = {p1,p2,…,pm} and a given hybrid hierarchy H = (R, F), 
where R = {r1, r2,… rn} is a set of roles and F ⊆ {≥i, ≥a, ≥} is a set 
of hierarchy relations, find the minimal set of roles R′ ⊆ R, such 
that Pau(R′) = RQ.   

4.2 IDRM is NP-Complete 
In a monotype I-hierarchy, as the permissions of a junior role 
can_be_acquired by senior roles, the role hierarchy can facilitate 
a top-down scan to solve the IDRM problem. However, the 
presence of a hybrid hierarchy presents a more complicated and 
realistic model, in which a senior role may not have more 
permissions than a junior role (as illustrated in the Example 3). 
Here, we take a set-based approach to solve the IDRM problem. 

Without loss of generality, we can simplify the IDRM problem by 
assuming R1 ⊆ R, such that, ∀r, r ∈ R1 ⇒ Pau(r) ⊆ RQ, and 
Pau(R1) = RQ.  This can be done in linear time by removing all the 
roles r in R such that Pau(r) ⊄ RQ. Then the problem is how can 
we find the minimal set of roles R′ ⊆ R1, such that Pau(R′) = RQ.  

Obviously, without the condition of finding the minimal set of 
roles, the simplest way to solve this problem is to first select one 
role from R1 arbitrarily (there are total n choices, assuming |R1| = 
n), then selecting another role from the rest of R1, and so on, until 
the selected set R′ satisfies Pau(R′) = RQ. However, with the 
minimal set of roles condition, the question becomes hard.  

When given a set of roles R, we can quickly check to determine 
whether Pau(R) = RQ or not. This can all be done in linear time. 
Hence, Q1 is in NP.  
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However, there is no polynomial time solution to find the minimal 
set of roles that exactly cover the requested set of permissions. In 
essence, the IDRM problem is NP-complete. To prove this, we 
reduce a classic NP-complete problem Minimal Set Cover (MSC) 
with uniform cost to the IDRM problem. 

Minimal Set Cover (MSC) [4]: Given a collection C of subsets 
of a finite set S such that every element in S belongs to at least 

one member of C (S = U
Cc

i
i

c
∈

), the MSC problem is to find C′⊆C 

that satisfies the following: 

• C’ is a set cover for S, i.e., S = U
Cc

i
i

c
∈

, and  

• the cardinality of C’, i.e., |C′| is minimized.  

We do the following simple construction. Let each ei in S 
correspond to a pi in RQ. Then C = {c1, c2, …, cm} maps to R1 = 
{r1, r2, … rm}, such that ci corresponds to P(ri) (Note that, ∀r, r ∈ 

R1 ⇒ Pau(r)  ⊆ RQ, and RQrP iau =U )( ). The mapping can 

be easily shown in polynomial time. Hence, the set R’ discussed 
earlier now corresponds to C’. Hence, if we can find R’ in 
polynomial time, we also solve the MSC problem in polynomial 
time.  

Greedy-Search (R, RQ) 
Input: R -- a set of roles,  
Output: R* -- set of roles, such that  Pau(R*)  = RQ, (R*⊆R) 
1        foreach r in R 
2               if Pau(r)  ⊆ RQ 
3                    R1  ← r 
4        R*← ∅  
5        while  RQ ≠ ∅ do 
6               Find set V ∈ R1 \ R* that maximize Pau(V) ∩ RQ 
7               R*   ← R*  ∪ V 
8               RQ ← RQ  \ V 
9        return R* 

Figure 8. Greedy search algorithm 

There are well-known approximation algorithms with time 
complexity within 1+ln|S| for MSC problem [9], which we have 
adopted in the greedy search algorithm shown in Figure 8 for our 
IDRM problem. The algorithm does not guarantee to find the 
optimal solution R’. However, it has been proved that Greedy-
Search algorithm is an Hn-approximation algorithm for the 
MSC problem. That is, 
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|'|
|*|

1RVVH
R
R
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and H(d) is the dth harmonic number [4], which is equal to  
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Example 3: Consider the hybrid hierarchy H shown in 
Figure 8. Here R ={r1, r2,…, r18}, and 

Pau(r0) ={p1, p2, p3, p4, p5, p6, p7, p8, p11, p12},  
Pau(r1) ={p1, p2, p3, p4, p11};    Pau(r2)  ={p5, p6, p7, p8, p12},  
Pau(r3) ={p6, p7, p8, p13}, Pau(r4)  ={p1, p2, p3},  
Pau(r5) ={p1, p4}, Pau(r6)  ={p2, p3, p4, p5},  
Pau(r7)={p4, p5, p6}, Pau(r8)  ={p5, p6, p7, p8},  
Pau(r9)={p6, p7, p8},  Pau(r10) ={p7, p8, p10}, 
Pau(r11)={p0},   Pau(r12)={p1},   
Pau(r13)={p2, p3},  Pau(r14)={p4},  
Pau(r15)={p5},   Pau(r16)={p6},  
Pau(r17)={ p7, p8}, Pau(r18)={p9}.  

Table 3. Results for each step of Example 3 
Step 1 Step 3 Step 5 

R*=∅ 
V = r6 

R* = {r6, r8} 
RQ  = { p1,p10} 

V = r4 

R* = {r6, r8, r4, 
r10} 

RQ  = ∅ 
Step 2 Step 4  

R* = {r6}  
RQ  = { p1, p6, p7, p8,p10} 

V = r8 

R* = {r6, r8, r4} 
RQ  = {p10}  

V = r10 

 

r0

r1 r2 r3

r4 r5 r6 r7 r8 r9 r10 

r11 r12 r13 r14 r15 r16 r17 r18 

 p11  p12  p13

p10 

  p0  p1  p2,p3  p4  p5  p6  p7,p8    p9 

Figure 7. An example of greedy search in hybrid hierarchy  
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Assuming RQ = {p1, p2, p3, p4,p5, p6, p7, p8, p10}, Greedy-
Search()algorithm first constructs R1 = {r4, r5, r6, r7, r8, r9, r10, 
r12, r13, r14, r15, r16, r17}. Then the results for each step in the while 
loop are as shown in Table 3. 
Example 3 illustrates the application of Greedy-Search() 
algorithm in a hybrid hierarchy shown in Figure 7. There are 18 
roles and the request is for 9 permissions. The solution R* = {r6, 
r8, r4, r10}, with cardinality |R*|= 4, returned by Greedy-
Search() algorithm, is not optimal. The optimal solution is R’ 
= {r4, r7, r10} with cardinality |R’| =3. On the other hand, we have 

.083.2)4(})|:(max{| 1 ≈=∈ HXVVH So the upper-bound of 
cardinality of the solutions returned by Greedy-Search() 
algorithm is |R’| ∗ H(4) = 3 * 2.083 ≈ 6.25. Hence, the Greedy-
Search() algorithm guarantees that at most a set of 6 roles can 
provide the required set of permissions.  

 

Probabilistic-Greedy-Search(R ,RQ) 
Input: R -- a set of roles,  
Output: R* -- minimal set of roles, such that  
              Pau(R*)  = RQ, (R′⊆R) 
1        foreach r in R 
2               if Pau(r)  ⊆ RQ 
3                    R1 ← r 
4          R* ← ∅  
5          while  RQ ≠ ∅ do 
6                with probability p  
7                      Find set V ∈ R1 \ R* that maximize Pau(V) ∩ RQ 
8                with probability 1-p 
9                      Randomly find a set V ∈ R1 \ R*    
10              R* ← R*  ∪ V 
11              RQ ← RQ  \ V 
12         return R* 

 

Figure 9. Enhanced greedy search algorithm 

4.3 Enhanced Greedy Search Algorithm        
Greedy search algorithm used above suffers from local maxima 
problem [4]. One possible approach to alleviate this problem is by 
introducing a random parameter, such as in the Simulated 

Annealing algorithm, which has been used for optimization 
problems in the literature [18].  

In the Probability-Greedy-Search() algorithm, shown 
in Figure 9, we enhance the earlier algorithm with a probability 
parameter. With probability p (usually near 1), the algorithm will 
execute the statement 7 just like in Greedy-Search() 
algorithm. With probability 1-p, the algorithm will randomly 
select a candidate set, which helps the Greedy-Search() 
algorithm avoid local maxima. The algorithm can be run multiple 
times in order to get the best result. Probabilistic-Greedy-
Search() algorithm has both the flavor of simulated annealing 
search and genetic algorithm, but with much less computational 
overhead.  

5. IMPLEMENTATION 
We have implemented our algorithms in our java based GTRBAC 
prototype system where we had tested our earlier proposed DB 
and DRB approaches [3]. The prototype has been extended to 
include trust-based requirements driven policy mapping in loosely 
coupled mobile environment. We plan to use Blackberry devices 
to implement secure interoperation between two mobile security 
domains for simple applications using the proposed algorithm.  

6. RELATED WORK  
Several research efforts [2, 5, 8] have been devoted to the topic of 
policy composition and secure interoperation in multi-domain 
environment. In [19], an integer programming approach has been 
proposed to allow policy integration between multiple RBAC 
policies. More relevantly, [3] has tried different approaches to 
facilitate the administration of role hierarchy by constructing the 
actual UAS set. Two techniques have been proposed for 
computing the UAS of a hierarchy and compared. The DB 
approach constructs the UAS by composing the computed UASs 
of sub-hierarchies. The DRB approach, on the other hand, uses a 
set of implication rules, (we refer to [13] for the details), to derive 
hierarchical relations between every pairs of roles in the hierarchy 
and then compute the UAS from them. While the first approach is 
slightly better in terms of time complexity, both these approaches 
are non-polynomial solutions. In [20], Shehab et al. proposed  a 

 

   
Figure 10. Snapshot of the our hybrid hierarchy administration 
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distributed secure interoperability protocol that ensures secure 
interoperation of the multiple collaborating domains without 
compromising the security of collaborating domains. They use 
access paths and path discovery algorithms to query 
interoperating domains for the set of secure access paths between 
different domains. No requirement based mapping has been 
addressed. In [16], the authors propose a breadth-first-search-
based algorithm for policy mapping between two loosely coupled 
interacting domains for sharing resources. However, the algorithm 
proposed does not do an exhausted search; instead, it creates new 
roles even if there is possible a combination of roles in the local 
domain that can satisfy the requested permissions. Other earlier 
work related to hybrid hierarchy that highlight its importance can 
be found in [11, 17]. 

7. CONCLUSION AND FUTURE WORK 
In this paper, we have investigated the key problems introduced 
by hybrid hierarchy. While a hybrid hierarchy is important to 
make an RBAC approach generic enough to capture very diverse 
set of access requirements as well as to support flexible policy 
expression and inter-domain policy mapping, it introduces 
complexity in terms of the maintenance of the overall policy. We 
addressed two key problems in presence of hybrid hierarchy. The 
first problem relates to determining whether a user’s request for 
activating a set of roles can be granted or not. The second 
problem is to find a set of roles that may belong to a hierarchy 
that satisfies a request for a set of permissions, which needs to be 
solved to address ad-hoc policy mapping in loosely coupled 
environments. We have shown that finding the minimal set of 
roles that matches the requested permission set is NP-complete 
and then presented an efficient heuristic algorithm with a flavor of 
simulated annealing and genetic algorithms. We plan to use these 
results to address (i) the issue of the management of an RBAC 
policy as it evolves – here administering hybrid hierarchies is a 
key challenge, and (ii) the problem of efficiently mapping 
security policies to facilitate secure interoperation in loosely 
coupled interactions. The result for the query problem needs to be 
extended and applied within the context of a generic GTRBAC 
policy with SoD and cardinality constraints. 
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