

Supporting Authorization Query and Inter-domain Role
Mapping in Presence of Hybrid Role Hierarchy

Siqing Du James B. D. Joshi
LERSAIS & Department of Information Science and Telecommunications, University of Pittsburgh, Pittsburgh, USA

{sdu, jjoshi}@mail.sis.pitt.edu

ABSTRACT
The role hierarchy is one of the most distinguished features of an
RBAC approach to securing large systems as it facilitates efficient
administration of permissions. However, the role hierarchy as
defined in the currently standardized RBAC model has limitations
in capturing generic policy requirements such as separation of
duty, time-based and cardinality constraints. To address such
limitations, permission inheritance and activation inheritance
semantics have been introduced to define three different types of
role hierarchies. In presence of a hybrid hierarchy that allows all
the three types of hierarchies to coexist, the overall hierarchy
administration problem becomes quite complex. A key problem is
to efficiently handle authorization queries to decide whether a
user’s request to activate a set of roles should be granted. A
hybrid hierarchy also makes the problem of mapping a request for
a set of permissions to a minimal set of roles difficult. Such a
mapping is crucial in multidomain environments where different
security domains have to establish and engage in secure
interoperation by first mapping their security policies. In this
paper, we investigate these two problems and present solutions
that are efficient and practical.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls;
G.4 [Mathematical Software]: Algorithm, design and analysis.

General Terms
Algorithms, Security, Theory.

Keywords
Role based access control, hierarchy, role mapping, multidomain,
secure interoperation.

1. INTRODUCTION
Role based access control (RBAC) has become the predominant
approach for advanced access control in large, distributed systems
[7, 12]. It not only encompasses traditional discretionary and
mandatory access control (DAC/MAC) models, but also offers

many attractive features, such as policy neutrality, support for
least privilege and efficient access control management [6, 15 11].

One of the most distinguished characteristics of the RBAC
approach is the role hierarchy. A role hierarchy defines
inheritance semantics related to permission acquisitions and role
activations through role-role relationships that can be utilized to
efficiently and effectively structure functional roles of an
organization having related access control needs. Joshi et al. have
established a clear distinction among the following three types of
role hierarchies in the context of the generalized temporal RBAC
(GTRBAC) model [11]: permission-inheritance-only hierarchy (I-
hierarchy, ≥i), activation-inheritance-only hierarchy (A-hierarchy,
≥a), and the combined permission-inheritance and activation
hierarchy (IA-hierarchy, ≥). It has been shown that such a fine-
grained hierarchical semantics facilitates capturing a wide range
of security requirements, including the specification of fine-
grained separation of duty (SoD) and temporal constraints on
hierarchically related roles, and user-centric as well as
permission-centric cardinality constraints on roles in the hierarchy
[12, 17]. Furthermore, hybrid hierarchies where all three types of
hierarchical relations can coexist, allow flexible ways to express a
given policy [14], and provide better support for policy
integration in multidomain environments [19].

Given a role hierarchy, the system must maintain knowledge of
the set of roles that a user is allowed to activate in a single session
in order to process a user’s request to activate a set of roles. In the
presence of a hybrid hierarchy, maintaining permission
acquisition and role activation semantics can become quite
challenging. Joshi et al. introduce the concept of uniquely
activable set (UAS) to facilitate the analysis of hybrid hierarchies
and simplify the process of determining the activation and
permission-acquisition sets [11]. A UAS is a set each element of
which is a set of roles that can be activated in a single session by
a specific user. In other words, a user assigned to a role in a
hierarchy can activate only those set of roles that occur in a UAS
associated with him. Computing UAS has been shown to be a
complex task [3]. Chandran et al. have presented two approaches
for computing the UAS of a hierarchy [3]: the decomposition
based (DB) approach that constructs the UAS by computing
UASs of the sub-hierarchies, and the derived relations based
(DRB) approach that uses a set of implication rules, introduced in
[13], to derive hierarchical relations between every pairs of roles
in the hierarchy and then compute the UAS from them [3]. While
these approaches are useful for carrying out exhaustive analysis of
policies, they have non-polynomial time complexities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SACMAT'06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006...$5.00.

228

The presence of hybrid hierarchies in RBAC-based policies also
makes the issue of secure interoperation between two domains
very difficult. In particular, one of the key requirements when two
systems interoperate is to make sure that their policies are
appropriately mapped, including mapping of role hierarchies, so
that the principles of security and autonomy are preserved [12,
19]. In a loosely coupled environment, when two domains that are
not known to each other decide to interact, we assume the process
starts with the specification of service requirements of each
domain. Hence, the underlying issue related to secure
interoperation is that of appropriately mapping policies to satisfy
each request of a domain by the other domain, where each request
is represented as a set of permissions required. These requested
set of permissions in turn need to be satisfied by identifying the
set of local roles that may be hierarchically related. Ideally, we
want to identify the minimal number of roles that are associated
with the requested set of permissions. This approach to inter-
domain mapping has been introduced in [16].

In this paper, we focus on these two crucial problems centered on
the use of hybrid hierarchies. For the first problem, referred to as
the authorization query (AQ) problem, we present an approach
simpler than the DB or the DRB approaches to determine whether
a user’s request to activate a set of roles can be granted. We
define a special matrix called assistant matrix (AM) that encodes
some relationships among the hierarchically related roles. For the
second problem, referred to as the inter-domain role mapping
(IDRM) problem, we show that finding the minimal set of roles
that satisfy an external domain’s request, represented as a set of
permissions, is NP-complete. We, therefore, present a heuristic
greedy search approach to find a sub-optimal solution and
enhance it by including a probability parameter to get a better
result. The novelties of our contributions are as follows:

1. To the best of our knowledge, work related to UAS and
hybrid hierarchy, and hence the AQ problem is new and has
not been carried out by other researchers. The proposed
solution is efficient and can also be extended to address
policy analysis. Note that the AM does not completely
encode all the UAS elements or the derived relations as is
done by the DB and DRB approaches, respectively.
However, this approach can be used to identify undesirable
UAS elements (thus indicating undesirable hierarchy design)
by querying whether the undesirable set of roles are allowed
by the hybrid hierarchy to be activated in a single session. As
the DB and DRB approaches have non-polynomial time
complexities, this approach will support for the practical use
of the hybrid hierarchy.

2. We show that, during inter-domain mapping in presence of
hybrid hierarchy, finding the minimal set of roles that match
a set of permissions is NP-complete. We extend an existing
heuristic greedy approach to get better sub-optimal solution
to this problem. The extended algorithm has the flavor of
both the simulated annealing and genetic algorithms. To the
best of our knowledge, the IDRM problem in this form has
not been addressed by other researchers, let alone the
problem in presence of the hybrid hierarchy.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the concept of hybrid hierarchy and
relevant background material on the GTRBAC. In Section 3, we
discuss the AQ problem and present our proposed solution. In

Section 4, we investigate the IDRM problem and show that it is
NP-complete. We then present an enhanced greedy search
algorithm to find a sub-optimal solution for the IDRM problem.
We present brief overview of implementation in Section 5, the
related work in Section 6 and conclusions and future work in
Section 7.

2. GTRBAC and HYBRID HIERARCHY
The GTRBAC model introduces the separate notion of role
enabling and role activation, and provides constraints and event
expressions associated with both [12]. In the GTRBAC model, an
enabled role indicates that a valid user can activate it, whereas an
activated role indicates that at the least one user has activated the
role. The basic GTRBAC model proposed in [12], allows
specification of the following set of constraints:
1. temporal constraints on role enabling/disabling that allow

specification of intervals and durations in which a role is
enabled; (ii)

2. temporal constraints on user-role and role-permission
assignments that allow specifying intervals and durations in
which a user or permission is assigned to a role; (iii)

3. activation constraints: These constraints allow specification
of restrictions on the activation of a role. These include, for
example, specifying the total duration for which a user may
activate a role, or the number of concurrent activations of the
role at a particular time;

4. run-time events that allow an administrator and users to
dynamically initiate the various role events, or enable the
duration or activation constraints;

5. constraint enabling that events that enable or disable
duration and role activation constraints mentioned earlier;
and

6. triggers that allow expressing dependencies among events
and conditions

Semantically, a role hierarchy expands the scope of the
permission-acquisition and role-activation semantics beyond the
explicit user-role and role-permission assignments to inheritance
through the hierarchical relations defined among roles. Within the
GTRBAC framework, the following three hierarchy types have
been identified: permission-inheritance-only hierarchy (I-
hierarchy), role-activation-only hierarchy (A-hierarchy) and the
combined inheritance-activation hierarchy (IA-hierarchy) [12].
Table 1 captures the predicate notations used in defining the
semantics of these hierarchies [12]. Predicates enabled(r, t),
assigned(u, r, t) and assigned(p, r, t) refer to the status of roles,
user-role and role-permission assignments at time t. Predicate
can_activate(u, r, t) indicates that user u can activate role r at
time t, implying that user u is implicitly or explicitly assigned to
role r at time t. active(u, r, s, t) indicates that role r is active in
user u’s session s at time t, whereas, acquires(u, p, s, t) implies
that u acquires permission p at time t in session s. The axioms in
Table 1 capture the key relationships among these predicates and
identify precisely the permission-acquisitions and role-activations
allowed in GTRBAC [12]. Axiom (1) states that if a permission is
assigned to a role, then it can be acquired through that role.
Axiom (2) states that all users assigned to a role can activate that
role. Axiom (3) states that if a user u can activate a role r, then all
the permissions that can be acquired through r can be acquired

229

by u. Similarly, axiom (4) states that if there is a user session in
which a user u has activated a role r then u acquires all the
permissions that can be acquired through role r. We note that
axioms (1) and (2) indicate that permission-acquisition and role-
activation semantics are governed by explicit user-role and role-
permission assignments. We ignore the time parameter for the rest
of the paper.
In Table 2, the semantics of each hierarchy type is defined by its
corresponding implication rule in the last column. The rule for the
I-hierarchy, (x≥iy), implies that if (x≥iy) holds, then the
permissions that can be acquired through role x include all the
permissions that can be acquired through role y. In other words,
permissions of the junior roles are inherited by the senior role.
Similarly, the rule for the A-hierarchy implies that if user u can
activate role x, and x≥ay is defined, then user u can also activate
role y even if he is not explicitly assigned to y. Note that it does
not imply that user u can acquire y’s permissions by merely
activating x. In other words, permission-inheritance is not implied
in an A-hierarchy. The IA-hierarchy is the most general form and
includes both permission-inheritance and role-activation
semantics. In the remaining sections we do not use the time
parameter t in any expression.

We represent a hybrid hierarchy as H = (R, F), where R is a set of
roles, R = {r1, r2,…, rn}; F is a set of hierarchy relations defined
on R, F ⊆ {≥i, ≥a, ≥}. If F = {<f>} is a singleton set with
hierarchy relation <f>, then we call H a monotype hierarchy and
write (R, <f>). We use notation Pau(r) to refer to the set of
authorized permissions of role r, which is a set of permissions that
can be acquired by activating r. That is,

• Pau(r) = can_be_acquired(r, p), and
• Pau(R) = U

Rr
au rP

∈

)(.

Formally, the UAS can be defined as follows [13].

Definition 1: Let H = (R, F) be a rooted hybrid hierarchy. Then,
UAS(H) = {Y1, Y2, …, Ym}, where ∅ ⊂ Yi ⊆ R for each i ∈{1, 2,

…, m}, is the Uniquely Activable Set (UAS) of role sets for a user
assigned to the senior-most role SH of H if the following
conditions hold:
• ∀i, j ∈{1, 2, …, m} and i ≠ j, P(Yi) ≠ P(Yj), and
• ∀Z ⊆ R s.t. Z ∉ UAS(H), if P(Y) = P(Z) for a Y ∈ UAS(H),

then (|Y| < |Z|); where |A| is the cardinality of set A.

Example 1: An example hybrid hierarchy is illustrated in
Figure 1. I, A and IA-hierarchies are represented by a simple
line, a dotted line and a line with arrows on both ends,
respectively. For this hierarchy, the UAS for a user assigned to r1
is:

{ {r1}, {r2}, {r3}, {r4}, {r5}, {r6}, { r7} {r1, r3}，{r1,r5}, {r1,r6},
 {r1,r7}, {r2, r3}, {r2,r5}, {r2,r6}, {r2,r7}, {r3,r4}, {r3,r6}, {r3,r7},
 {r4,r5}, {r4,r6}, {r4,r7}, {r5,r6},{r5,r7}, {r1,r3,r6}, {r1,r3,r7},
 {r1,r5,r6},{r1,r5,r7}, {r2,r3,r6}, {r2,r5,r6}, {r2,r5,r7}, {r4,r3,r6},

{r4,r3,r7}, {r4,r5,r6}, {r4,r5,r7} }

Table 1. Status predicates
Predicate Meaning Axioms

enabled(r, t) Role r is enabled at time t

u_assigned(u, r, t) User u is assigned to role r at time t

For all r ∈ Roles, u ∈ Users, p ∈ Permissions, s ∈
Sessions, and time instant t ≥ 0, the following implications
hold:

p_assigned(p, r, t) Permission p is assigned to role r at time t 1. p_assigned(p, r, t)→ can_be_acquired(p, r, t)

can_activate (u, r, t) User u can activate role r at time t 2. u_assigned(u, r, t) → can_activate (u, r, t)

can_acquire (u, p, t) User u can acquire permission p at time t

can_be_acquired(p, r, t) Permission p can be acquired through role r at time t
3. can_activate (u, r, t) ∧ can_be_acquired(p, r, t) →

can_acquire (u, p,t)

active(u, r, s, t) Role r is active in user u’s session s at time t

acquires(u, p, s, t) User u’ acquires permission p in session s at time t
4. active(u, r, s, t) ∧ can_be_acquired(p, r, t) →

acquires(u, p, s, t)

Table 2. Role hierarchies in GTRBAC

Category Short form Notation The following implication rule holds

I-hierarchy (x≥iy) ∀p, (x≥iy) ∧ can_be_acquired(p, y, t)→ can_be_acquired(p, x, t)

A-hierarchy (x≥ay) ∀u, (x≥ay) ∧ can_activate (u, x, t) → can_activate (u, y, t)

Unrestricted
hierarchies

(No effect of timing
constraints on role) IA-hierarchy (x≥y) (x≥y) ↔ (x≥iy) ∧ (x≥ay)

Consistency Property: Let <f1><f2> ∈{≥i, ≥a, ≥}. Let x and y be distinct roles such that (x<f1>y); then the condition ¬(y <f2> x) must hold.

r1

r2 r3

r4 r5 r6

r7

Legend

A-hierarchy

IA-hierarchy

I-hierarchy

Figure 1. An illustration of hybrid hierarchy and UAS

230

3. AUTHORIZATION QUERY
Efficient techniques are needed to maintain the permission
inheritance and role activation semantics to support efficient
administration and management of hybrid hierarchy. One of the
most challenging tasks for the administration of the security of
hybrid hierarchy is to determine whether to grant a user’s request
for activating a set of roles. Earlier work has tried to address this
problem by building UAS of a hybrid hierarchy by using the DB
and DRB approaches mentioned earlier, and presented in [3].
However, both of these approaches are computation intensive.
Besides, even with a UAS available, to answer whether a request
is in the UAS or not is prohibitively expensive, because the
number of elements in a UAS can range over from one to the
power set (associated with an A-hierarchy) of roles. Neither
computing nor storing the whole UAS for a large hierarchy is
viable for practical systems.

In this section, we investigate a polynomial time approach by first
proving an important property of UAS, and utilizing an assistant
matrix (AM) that only keeps pair wise UAS information, to
support authorization query in a very efficient way. In our
approach, we do not actually build the UAS, but only keep the
pair-wise UAS information.

3.1 UAS Checking Criterion
We use the pair-wise UAS sets to infer the actual UAS set. The
following theorem establishes the required basis for using the AM
to make the authorization decision.

Theorem 1: Let H = (R, F) be a hybrid hierarchy; where R =
{r1, r2,… rn} is a set of roles, F ⊆ {≥i, ≥a, ≥} is a set of hierarchy
relations over R. Let R1= {r1, r2,…,rm}, then the following
condition holds,

• R1 ∈ UAS(H)⇔{ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m).

The proof for the theorem is as follows.

 (Proof for ⇒): If R1∈ UAS(H), then each role ri ∈{r1, r2,…, rm}
is activable. Obviously, each role pair {ri, rj} for 0 ≤ i, j ≤ m, is
also activable in a single session. Now, we prove the permission
set for each {ri, rj} for 0 ≤ i, j ≤ m, is also unique. If we assume
there is one {ri, rj} for which the permission set is not unique,
then a subset of {ri, rj} should have the same set of permissions as
that of the {ri, rj}. Let us assume it to be {ri}, then we can replace
{ri, rj} in R1 with {ri}, the resulting set R’1= (r1, r2, …, rm}\ rj
should have the same set of permissions same as P(R1). That
means R’1 is a smaller set than R1 and hence, R1 ∉ USA(H), which
results in a contradiction that R1∈ UAS(H). Hence,

R1 ∈ UAS(H) ⇒{ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m)

(Proof for ⇐): For a given set {r1, r2,…, rm}, if {ri, rj}∈ UAS(H)
(0 ≤ i, j ≤ m) holds, then each role ri ∈{r1, r2,…, rm} is activable.
Now we prove uniqueness. If {ri, rj}∈ UAS(H) (0 ≤ i, j ≤ m),
assume the corresponding permission set for each {ri, rj} is pi,
which is minimized by the definition of UAS, then the
corresponding permission set for {r1, r2,…, rm} is U ip , which is

also minimized. So, {r1,…rm} ∈ UAS(H). Hence,

{ri, rj}∈ UAS (H) ⇒ R1∈ UAS(H) (0 ≤ i, j ≤ m)

Therefore, R1∈UAS(H)⇔{ri, rj}∈UAS (H) (0 ≤ i, j ≤ m).

 r1 r2 r3 r1 r2 r3 r1 r2 r3

r1 1 1 1 r1 1 0 0 r1 1 1 1

r2 1 1 1 r2 0 1 0 r2 1 1 1

r3 1 1 1 r3 0 0 1 r3 1 1 1

 r1 r2 r3 r1 r2 r3 r1 r2 r3

r1 1 0 1 r1 1 1 1 r1 1 0 1

r2 0 1 1 r2 1 1 1 r2 0 1 1

r3 1 1 1

=

r3 1 1 1

AND

r3 1 1 1

 r1 r2 r3 r1 r2 r3 r1 r2 R3

r1 1 0 0 r1 1 1 1 r1 1 0 0

r2 0 1 0 r2 1 1 0 r2 0 1 0

r3 0 0 1 r3 1 0 1 r3 0 0 1

 r1 r2 r3 r1 r2 r3 r1 r2 r3

r1 1 0 0 r1 1 0 1 r1 1 1 1

r2 0 1 0 r2 0 1 1 r2 1 1 0

r3 0 0 1 r3 1 1 1 r3 1 0 1

Figure 2. Relationship between hierarchy graph and AM

(d)

r2

r3

= + p2

 p3

 p1r1

r2

r3

 p2

 p3

 p1 r1

r2

r3

 p2

 p3

 p1r1

(a)

r2

r3

(b) (c)

 p2

 p3

r1

r2

r3

 p2

 p3

p1 r1

r2 p2

 p3

 p1r1

(h)

r2

r3

(i)

 p2

 p3

r2

r3

 p2

 p3

(j)

r2

r3

 p2

 p3

 p1 r1 p1r1 r1 p1

(e)

r2

r3

(f)

 p2

 p3

r2

r3

 p2

 p3

 p1 r1 (g)

r2 p2

 p3r3

r1 p1 r1 p1

 p1

r3

231

3.2 Assistant Matrix
UAS is defined as the uniquely activable set for a user assigned to
the senior most role. Here, we shall extend the definition for a
generic hierarchy. We construct an AM to maintain the pair-wise
UAS information. We formally characterize the AM as per
definition 2.

Definition 2: Assistant Matrix (AM): For a given hybrid
hierarchy H = (R, F), where R = {r1, r2,… rn} is a set of roles, and
F ⊆ {≥i, ≥a, ≥} is a set of hierarchy relations, AM is defined as
follows,

∀role ri, rj, if ri = rj, AM[i][j] ←1
 if {ri, rj} ⊆ UAS(H) ⇒ AM[i][j] = 1
 if {ri, rj} ⊄ UAS(H) ⇒ AM[i][j] = 0

Note that AM is a symmetric matrix. Now, we look at the
relationship between hierarchical structure and the AM as
illustrated in Figure 2. Figure 2(a) depicts a case that has no
hierarchical structure. We use it for construction purpose. If there
is no relationship between two roles, both of them can be in the
UAS. So, the AM matrix for this case is essentially a unit matrix.
Figure 2(b) shows a monotype I-hierarchy. In this kind of
hierarchy, if a user is assigned to a role r1, then the corresponding
UAS is {r1} with permissions {p1, p2, p3}. If a user is assigned to
role r2, then the corresponding UAS is {r2} with permissions {p2,
p3}, and similarly, we get another UAS = {r3} with permission
{p3} when a user is assigned to role r3. The corresponding AM is
an identity matrix as shown under the graph.

Figure 2(c) shows a monotype A-hierarchy. In this kind of
hierarchy, the UAS for user assigned to r1 is the power set of the
roles, {{r1},{r2}, {r3}, {r1, r2}, {r1, r3}, {r2, r3},{r1, r2, r3}}. For a
user assigned to r2, the corresponding UAS is {{r2}, {r3}, {r2,
r3}}. For a user assigned to r3, the corresponding UAS is {r3}.

Figure 2(d) illustrates a hybrid hierarchy that can be constructed
from the three basic structures in figures 2(a), 2(b) and 2(c). In
[13], it has been proved that a hybrid hierarchy can be split into
an I-hierarchy and an A-hierarchy because of the fact that an IA
relation represents the presence of both the A and I relations. This
is captured by the fact that the AM of a hybrid hierarchy is equal
to the logical and of the AM of the corresponding I-hierarchy and
the corresponding A-hierarchy.

Figures 2(e)-(j) illustrate all other possible basic linear hybrid
hierarchies for three roles and their corresponding AMs.

Based on the relationship between hierarchy graph and AM, we
next present algorithm Build-AM() that produces an AM from a
hybrid hierarchy graph. The algorithm divides role relationships
into four categories corresponding to four categories of cells in
the AM.

(a) The diagonal element of the AM is “1” by definition.
(b) If there is a direct A-hierarchy relationship (ri ≥a rj) between

two roles, the AM cell value is set to “1”. If there is a direct
I-hierarchy or IA-hierarchy (ri ≥i rj or ri ≥ rj) relationship
between two roles, the AM cell value is set to “0”.

(c) Note that there may be multiple paths between two nodes. In
such a case, the derived relation is the combination of the
two relations derived through each path [13]. For instance, if
one path derives an I-relation and another path derives an A-
relation between the same two roles, then the derived

relation between them is actually an IA-relation; hence, the
AM entry will correspond to IA-relation.

(d) All other roles are not related to each other, which means
they can always be activated by different user assignments,
so the AM cell is set to “1”.

The time complexity of Build-AM() is O(n2), where n is the
total number of roles in a given hybrid hierarchy.

Build-AM (Hierarchy_Graph g)
Input: g ⎯ the graph representation of the hybrid hierarchy
structure
Output: Assistant Matrix, am
1 initialize am[n][n] ={-1}
2 foreach role ri in g
3 foreach role rj in g
4 if i = j
5 am[i][j] ←1
6 if ri ≥a rj
7 am[i][j] ← 1
8 am[j][i] ← 1
9 else if (ri ≥i rj) or (ri ≥ rj)
10 am[i][j] ← 0
11 am[j][i] ← 0
12 if rj is_non_direct_offspring_of (ri)
13 if there is ri ≥a rj on the path
14 if am[i][j] unfilled
15 am[i][j] ← 1
16 am[j][i] ← 1
17 else
18 am[i][j] ← 0
19 am[j][i] ← 0
20 if am[i][j] = -1
21 am[i][j] ← 1
22 am[j][i] ← 1
23 return am

Figure 3. Assistant matrix building algorithm

Example 2: Figure 4 shows the application of Build-AM() to
build an AM from a hybrid hierarchy. On the left hand side is the
graphic representation of a hybrid hierarchy with 7 roles. On the
right hand side is the corresponding AM built from the graphic
representation according to Build-AM().

 r1 r2 r3 r4 r5 r6 r7

r1 1 0 1 0 1 1 1

r2 0 1 1 0 1 1 1

r3 1 1 1 1 0 1 1

r4 0 0 1 1 1 1 1

r5 1 1 0 1 1 1 1

r6 1 1 1 1 1 1 0

r7 1 1 1 1 1 0 1

Figure 4. An example of AM building

r1

r2 r3

r4 r5 r6

r7

232

3.3 Authorization Query Algorithm
We use the UAS checking criterion shown in Theorem 1 and the
AM proposed earlier to develop a simple and efficient algorithm
Auth_Query() to determine whether a set of roles can be
uniquely activated or not. The essential part of the algorithm is to
check the pair-wise relations which have been stored in the AM
by applying algorithm Build_AM(). For a request to activate a
set of roles RQ = {r1, r2,…, rm}, if at least any pair of roles, {ri,
rj}(0 ≤ i, j ≤ m) is not in the UAS then the requested set RQ can
not be in UAS. The requested role set RQ can be in a UAS if and
only if all pairs of roles {ri, rj}⊆ RQ (0 ≤ i, j ≤ m) are in the UAS.

The time complexity of Auth_Query() is O(n2), and n is the
total number of roles in a given hybrid hierarchy.

Auth-Query(RQ, AM am)
Input: RQ ={r1, r2,…, rm}— the query, a set of roles roles to

be activated in a session
 am — the AM built from algorithm Build-AM()
Output: TRUE if RQ uniquely activable
 FALSE if RQ not uniquely activable
1 Srest ← RQ
2 foreach ri∈ RQ
3 Srest ← Srest \ {ri}
4 foreach rj ∈ Srest
5 if em[i][j] = 0
6 return FALSE
7 return TRUE

Figure 5. Authorization query algorithm

4. INTER-DOMAIN ROLE MAPPING
In this section, we address the inter-domain policy mapping
(IDRM) problem. We first show that finding a minimal set of
roles that matches a given set of permissions is NP-complete.
Then we propose some enhanced heuristics to get a sub-optimal
solution.

4.1 The IDRM Problem
An important requirement of emerging system is to be able to
share information with other systems [1, 8, 10]. When a system
needs to allow previously unknown entities to access its
resources, mechanisms should be in place to ensure that the
accesses granted are limited to pre-defined sharing requirements.
We emphasize that a requirements-driven interoperation is needed
in a loosely coupled environment, and there should be an efficient
mechanism to facilitate an external entity to access a local
domain’s resources by mapping external entities to local entities
[16]. We assume use of RBAC-based policies in such interacting
domains.

Figure 6 illustrates an inter-domain interoperation scenario [16].
Assuming two domains interoperate, each domain first sends the
access requirements to the other. Once the requirements have
been received, the requests are fulfilled by identifying the set of
roles that can satisfy the requested permissions. The goal is to
find a minimal set of roles that match the requested set of
permissions. In an earlier work, we have proposed designating
special external roles that are mapped to exported roles through
an A-hierarchy relation – this semantically means that the

external entity has to activate the specified exported roles in the
provider domain. The exported roles are themselves made I-
seniors of other local roles that satisfy the requested accesses to
ensure that the external entities can not activate other local roles.
By using these A and I hierarchy structures, we can prevent the
transitivity of the activation semantics that is usually the
underlying problem in inter-domain access [8]. For more details
on this methodology, we refer the readers to [16].

Domain 1 Domain 2

Subset of roles in domain 1 through
which domain 2 will be accessed

Subset of roles in domain 2 through
which domain 1 will be accessed

A-hierarchy
relations only

Set of roles
exported to
domain 2

Set of roles
exported to
domain 1

I-hierarchy
relations only

Figure 6. Inter-domain interoperation scenario

We represent a domain requested permission set as RQ. Our goal
is to find the minimal set of roles that can provide the RQ.
Formally,

Inter-domain Role Mapping (IDRM) Problem: For a request
RQ = {p1,p2,…,pm} and a given hybrid hierarchy H = (R, F),
where R = {r1, r2,… rn} is a set of roles and F ⊆ {≥i, ≥a, ≥} is a set
of hierarchy relations, find the minimal set of roles R′ ⊆ R, such
that Pau(R′) = RQ.

4.2 IDRM is NP-Complete
In a monotype I-hierarchy, as the permissions of a junior role
can_be_acquired by senior roles, the role hierarchy can facilitate
a top-down scan to solve the IDRM problem. However, the
presence of a hybrid hierarchy presents a more complicated and
realistic model, in which a senior role may not have more
permissions than a junior role (as illustrated in the Example 3).
Here, we take a set-based approach to solve the IDRM problem.

Without loss of generality, we can simplify the IDRM problem by
assuming R1 ⊆ R, such that, ∀r, r ∈ R1 ⇒ Pau(r) ⊆ RQ, and
Pau(R1) = RQ. This can be done in linear time by removing all the
roles r in R such that Pau(r) ⊄ RQ. Then the problem is how can
we find the minimal set of roles R′ ⊆ R1, such that Pau(R′) = RQ.

Obviously, without the condition of finding the minimal set of
roles, the simplest way to solve this problem is to first select one
role from R1 arbitrarily (there are total n choices, assuming |R1| =
n), then selecting another role from the rest of R1, and so on, until
the selected set R′ satisfies Pau(R′) = RQ. However, with the
minimal set of roles condition, the question becomes hard.

When given a set of roles R, we can quickly check to determine
whether Pau(R) = RQ or not. This can all be done in linear time.
Hence, Q1 is in NP.

233

However, there is no polynomial time solution to find the minimal
set of roles that exactly cover the requested set of permissions. In
essence, the IDRM problem is NP-complete. To prove this, we
reduce a classic NP-complete problem Minimal Set Cover (MSC)
with uniform cost to the IDRM problem.

Minimal Set Cover (MSC) [4]: Given a collection C of subsets
of a finite set S such that every element in S belongs to at least

one member of C (S = U
Cc

i
i

c
∈

), the MSC problem is to find C′⊆C

that satisfies the following:

• C’ is a set cover for S, i.e., S = U
Cc

i
i

c
∈

, and

• the cardinality of C’, i.e., |C′| is minimized.

We do the following simple construction. Let each ei in S
correspond to a pi in RQ. Then C = {c1, c2, …, cm} maps to R1 =
{r1, r2, … rm}, such that ci corresponds to P(ri) (Note that, ∀r, r ∈

R1 ⇒ Pau(r) ⊆ RQ, and RQrP iau =U)(). The mapping can

be easily shown in polynomial time. Hence, the set R’ discussed
earlier now corresponds to C’. Hence, if we can find R’ in
polynomial time, we also solve the MSC problem in polynomial
time.

Greedy-Search (R, RQ)
Input: R -- a set of roles,
Output: R* -- set of roles, such that Pau(R*) = RQ, (R*⊆R)
1 foreach r in R
2 if Pau(r) ⊆ RQ
3 R1 ← r
4 R*← ∅
5 while RQ ≠ ∅ do
6 Find set V ∈ R1 \ R* that maximize Pau(V) ∩ RQ
7 R* ← R* ∪ V
8 RQ ← RQ \ V
9 return R*

Figure 8. Greedy search algorithm

There are well-known approximation algorithms with time
complexity within 1+ln|S| for MSC problem [9], which we have
adopted in the greedy search algorithm shown in Figure 8 for our
IDRM problem. The algorithm does not guarantee to find the
optimal solution R’. However, it has been proved that Greedy-
Search algorithm is an Hn-approximation algorithm for the
MSC problem. That is,

})|:(max{|
|'|
|*|

1RVVH
R
R

∈≤

and H(d) is the dth harmonic number [4], which is equal to

).1()log(11...
3
1

2
11

1
Od

id
d

i
+==++++ ∑ =

Example 3: Consider the hybrid hierarchy H shown in
Figure 8. Here R ={r1, r2,…, r18}, and

Pau(r0) ={p1, p2, p3, p4, p5, p6, p7, p8, p11, p12},
Pau(r1) ={p1, p2, p3, p4, p11}; Pau(r2) ={p5, p6, p7, p8, p12},
Pau(r3) ={p6, p7, p8, p13}, Pau(r4) ={p1, p2, p3},
Pau(r5) ={p1, p4}, Pau(r6) ={p2, p3, p4, p5},
Pau(r7)={p4, p5, p6}, Pau(r8) ={p5, p6, p7, p8},
Pau(r9)={p6, p7, p8}, Pau(r10) ={p7, p8, p10},
Pau(r11)={p0}, Pau(r12)={p1},
Pau(r13)={p2, p3}, Pau(r14)={p4},
Pau(r15)={p5}, Pau(r16)={p6},
Pau(r17)={ p7, p8}, Pau(r18)={p9}.

Table 3. Results for each step of Example 3
Step 1 Step 3 Step 5

R*=∅
V = r6

R* = {r6, r8}
RQ = { p1,p10}

V = r4

R* = {r6, r8, r4,
r10}

RQ = ∅
Step 2 Step 4

R* = {r6}
RQ = { p1, p6, p7, p8,p10}

V = r8

R* = {r6, r8, r4}
RQ = {p10}

V = r10

r0

r1 r2 r3

r4 r5 r6 r7 r8 r9 r10

r11 r12 r13 r14 r15 r16 r17 r18

 p11 p12 p13

p10

 p0 p1 p2,p3 p4 p5 p6 p7,p8 p9

Figure 7. An example of greedy search in hybrid hierarchy

234

Assuming RQ = {p1, p2, p3, p4,p5, p6, p7, p8, p10}, Greedy-
Search()algorithm first constructs R1 = {r4, r5, r6, r7, r8, r9, r10,
r12, r13, r14, r15, r16, r17}. Then the results for each step in the while
loop are as shown in Table 3.
Example 3 illustrates the application of Greedy-Search()
algorithm in a hybrid hierarchy shown in Figure 7. There are 18
roles and the request is for 9 permissions. The solution R* = {r6,
r8, r4, r10}, with cardinality |R*|= 4, returned by Greedy-
Search() algorithm, is not optimal. The optimal solution is R’
= {r4, r7, r10} with cardinality |R’| =3. On the other hand, we have

.083.2)4(})|:(max{| 1 ≈=∈ HXVVH So the upper-bound of
cardinality of the solutions returned by Greedy-Search()
algorithm is |R’| ∗ H(4) = 3 * 2.083 ≈ 6.25. Hence, the Greedy-
Search() algorithm guarantees that at most a set of 6 roles can
provide the required set of permissions.

Probabilistic-Greedy-Search(R ,RQ)
Input: R -- a set of roles,
Output: R* -- minimal set of roles, such that
 Pau(R*) = RQ, (R′⊆R)
1 foreach r in R
2 if Pau(r) ⊆ RQ
3 R1 ← r
4 R* ← ∅
5 while RQ ≠ ∅ do
6 with probability p
7 Find set V ∈ R1 \ R* that maximize Pau(V) ∩ RQ
8 with probability 1-p
9 Randomly find a set V ∈ R1 \ R*
10 R* ← R* ∪ V
11 RQ ← RQ \ V
12 return R*

Figure 9. Enhanced greedy search algorithm

4.3 Enhanced Greedy Search Algorithm
Greedy search algorithm used above suffers from local maxima
problem [4]. One possible approach to alleviate this problem is by
introducing a random parameter, such as in the Simulated

Annealing algorithm, which has been used for optimization
problems in the literature [18].

In the Probability-Greedy-Search() algorithm, shown
in Figure 9, we enhance the earlier algorithm with a probability
parameter. With probability p (usually near 1), the algorithm will
execute the statement 7 just like in Greedy-Search()
algorithm. With probability 1-p, the algorithm will randomly
select a candidate set, which helps the Greedy-Search()
algorithm avoid local maxima. The algorithm can be run multiple
times in order to get the best result. Probabilistic-Greedy-
Search() algorithm has both the flavor of simulated annealing
search and genetic algorithm, but with much less computational
overhead.

5. IMPLEMENTATION
We have implemented our algorithms in our java based GTRBAC
prototype system where we had tested our earlier proposed DB
and DRB approaches [3]. The prototype has been extended to
include trust-based requirements driven policy mapping in loosely
coupled mobile environment. We plan to use Blackberry devices
to implement secure interoperation between two mobile security
domains for simple applications using the proposed algorithm.

6. RELATED WORK
Several research efforts [2, 5, 8] have been devoted to the topic of
policy composition and secure interoperation in multi-domain
environment. In [19], an integer programming approach has been
proposed to allow policy integration between multiple RBAC
policies. More relevantly, [3] has tried different approaches to
facilitate the administration of role hierarchy by constructing the
actual UAS set. Two techniques have been proposed for
computing the UAS of a hierarchy and compared. The DB
approach constructs the UAS by composing the computed UASs
of sub-hierarchies. The DRB approach, on the other hand, uses a
set of implication rules, (we refer to [13] for the details), to derive
hierarchical relations between every pairs of roles in the hierarchy
and then compute the UAS from them. While the first approach is
slightly better in terms of time complexity, both these approaches
are non-polynomial solutions. In [20], Shehab et al. proposed a

Figure 10. Snapshot of the our hybrid hierarchy administration

235

distributed secure interoperability protocol that ensures secure
interoperation of the multiple collaborating domains without
compromising the security of collaborating domains. They use
access paths and path discovery algorithms to query
interoperating domains for the set of secure access paths between
different domains. No requirement based mapping has been
addressed. In [16], the authors propose a breadth-first-search-
based algorithm for policy mapping between two loosely coupled
interacting domains for sharing resources. However, the algorithm
proposed does not do an exhausted search; instead, it creates new
roles even if there is possible a combination of roles in the local
domain that can satisfy the requested permissions. Other earlier
work related to hybrid hierarchy that highlight its importance can
be found in [11, 17].

7. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the key problems introduced
by hybrid hierarchy. While a hybrid hierarchy is important to
make an RBAC approach generic enough to capture very diverse
set of access requirements as well as to support flexible policy
expression and inter-domain policy mapping, it introduces
complexity in terms of the maintenance of the overall policy. We
addressed two key problems in presence of hybrid hierarchy. The
first problem relates to determining whether a user’s request for
activating a set of roles can be granted or not. The second
problem is to find a set of roles that may belong to a hierarchy
that satisfies a request for a set of permissions, which needs to be
solved to address ad-hoc policy mapping in loosely coupled
environments. We have shown that finding the minimal set of
roles that matches the requested permission set is NP-complete
and then presented an efficient heuristic algorithm with a flavor of
simulated annealing and genetic algorithms. We plan to use these
results to address (i) the issue of the management of an RBAC
policy as it evolves – here administering hybrid hierarchies is a
key challenge, and (ii) the problem of efficiently mapping
security policies to facilitate secure interoperation in loosely
coupled interactions. The result for the query problem needs to be
extended and applied within the context of a generic GTRBAC
policy with SoD and cardinality constraints.

Acknowledgement: This research has been supported by the US
National Science Foundation award IIS-0545912. We thank the
anonymous reviewers for their helpful comments.

8. REFERENCES

[1] Biskup, J., Flegel, U., Karabulut, Y. Secure Mediation:
Requirements and Design. Proceedings of 12th Annual IFIP
WG 11.3 Working Conference on Database Security, 1998.

[2] Bonatti, P.A., Sapino, M. L., Subrahmanian, V.S. Merging
Heterogeneous Security Orderings.Esorics'96,183-197.

[3] Chandran, S.M., Joshi, J.B.D. Towards Administration of a
Hybrid Role Hierarchy, IEEE International Conference on
Information Reuse and Integration, 2005.

[4] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.
Introduction to Algorithms, Second Edition, MIT press,
1991.

[5] Dawson, S., Qian, S., Samarati, P. Providing Security and
Interoperation of Heterogeneous Systems. International
Journal of Distributed and Parallel Databases. 2000.

[6] Ferraiolo, D. F., Gilbert, D. M., Lynch, N. An Examination
of Federal and Commercial Access Control Policy Needs,
NISTNCSC National Computer Security,1993, 107-116.

[7] Ferraiolo, D.F, Kuhn, D.R. Role Based Access Control. 15th
National Computer Security Conference,1992.

[8] Gong, L., Qian, X. Computational Issues in Secure
Interoperation. IEEE Transaction on Software and
Engineering, Vol. 22, No. 1, January 1996.

[9] Johnson, D.S., Approximation algorithms for combinatorial
problems. J. Comput. System Sci. 9, 1974. 256-278.

[10] Joshi, J.B.D., Aref, W.G., Ghafoor, A., Spafford, E.H.
Security Models for Web-based Applications.
Communications of the ACM, 44, 2, 2001,38-72.

[11] Joshi, J.B.D., Bertino, E., Ghafoor, A. Temporal hierarchies
and inheritance semantics for GTRBAC, Proceedings of the
seventh ACM symposium on Access control models and
technologies, Monterey, California, USA, 2002, 74 – 83.

[12] Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A. A
Generalised Temporal Role Based Access Control Model.
IEEE Transactions on Knowledge and Data Engineering,
17(1), 2005, 4-23.

[13] Joshi, J.B.D., Bertino, E., Ghafoor, A. Formal Foundation
for Hybrid Hierarchies in GTRBAC. ACM Transactions on
Information and System Security. (revised submission).

[14] Joshi, J.B.D., Bertino, E., Ghafoor, A. An Analysis of
Expressiveness and Design Issues for the Generalized
Temporal Role-Based Access Control Model, IEEE
Transactions on Dependable and Secure Computing, Vol. 2,
No. 2, April 2005.

[15] Osborn, S., Sandhu, R., Munawer, Q. Configuring Role-
based Access Control to Enforce Mandatory and
Discretionary Access Control Policies. ACM Transactions
on Information and System Security, 3(2), 2000, 85-106.

[16] Piromruen, S., Joshi, J.B.D. An RBAC Framework for Time
Constrained Secure Interoperation in Multi-domain
Environment, IEEE Workshop on Object-oriented Real-time
Databases (WORDS-2005), 2005.

[17] Sandhu, R. Role hierarchies and constraints for lattice-based
access controls. Computer Security - Esorics'96, LNCS N.
1146, 1996, 65-79.

[18] Sen, S. Minimal cost set covering using probabilistic
methods. Proceedings of the 1993 ACM/SIGAPP symposium
on Applied computing: states of the art and practice.
Indianapolis, Indiana, United States, 1993, 157-164.

[19] Shafiq, B., Joshi, J.B.D., Bertino, E., Ghafoor, A. Secure
Interoperation in a Multi-Domain Environment Employing
RBAC Policies, Knowledge and Data Engineering, 2005.

[20] Shehab, M., Bertino, E., Ghafoor, A. SERAT: SEcure Role
mApping Technique for Decentralized Secure
Interoperability, In Proceedings of the ACM Symposium on
Access Control, Models and Technologies (SACMAT 05),
Stockholm, Sweden, 2005.

236

