
Have you heard the one about the disappearing warehouse? One day,
it vanished—not from physical view, but from the watchful eyes of
a well-known retailer’s automated distribution system. A software
glitch had somehow erased the warehouse’s existence, so that goods
destined for the warehouse were rerouted elsewhere, while goods at
the warehouse languished. Because the company was in financial
trouble and had been shuttering other warehouses to save money,
the employees at the “missing” warehouse kept quiet. For three years,
nothing arrived or left. Employees were still getting their paychecks,
however, because a different computer system handled the payroll.
When the software glitch finally came to light, the merchandise in
the warehouse was sold off, and upper management told employees
to say nothing about the episode.

O
D

D
 A

N
D

ER
S

EN
/A

FP
/G

ET
T

Y
IM

A
G

ES

We waste billions of dollars
each year on entirely
preventable mistakes

42 IEEE Spectrum | September 2005 | NA www.spectrum.ieee.org

By Robert N. Charette

AIR JAM: The U.S. Federal Avi
ation

Administration spent
 $2.6 billion

trying to upgrade it
s air-traffic-

control system, only
 to cancel the

project in 1994. Gri
dlocked skies

are still with us to
day.

G
R

A
H

A
M

 B
A

R
C

LAY/B
LO

O
M

B
ER

G
 N

EW
S

/LA
N

D
O

V

www.spectrum.ieee.org September 2005 | IEEE Spectrum | NA 43

This story has been floating around the information
technology industry for 20-some years. It’s probably
apocryphal, but for those of us in the business, it’s
entirely plausible. Why? Because episodes like this hap-
pen all the time. Last October, for instance, the giant
British food retailer J Sainsbury PLC had to write off its
US $526 million investment in an automated supply-chain
management system. It seems that merchandise was stuck
in the company’s depots and warehouses and was not get-
ting through to many of its stores. Sainsbury was forced
to hire about 3000 additional clerks to stock its shelves
manually [see photo, “Market Crash”].

This is only one of the latest in a long, dismal history
of IT projects gone awry [see table, “Software Hall of
Shame” for other notable fiascoes]. Most IT experts agree
that such failures occur far more often than they should.
What’s more, the failures are universally unprejudiced:
they happen in every country; to large companies and
small; in commercial, nonprofit, and governmental
organizations; and without regard to status or reputa-
tion. The business and societal costs of these failures—
in terms of wasted taxpayer and shareholder dollars as

well as investments that can’t be made—are now well
into the billions of dollars a year.

The problem only gets worse as IT grows ubiquitous.
This year, organizations and governments will spend an
estimated $1 trillion on IT hardware, software, and serv-
ices worldwide. Of the IT projects that are initiated, from
5 to 15 percent will be abandoned before or shortly after
delivery as hopelessly inadequate. Many others will arrive
late and over budget or require massive reworking. Few
IT projects, in other words, truly succeed.

The biggest tragedy is that software failure is for the
most part predictable and avoidable. Unfortunately, most
organizations don’t see preventing failure as an urgent
matter, even though that view risks harming the organi-
zation and maybe even destroying it. Understanding why
this attitude persists is not just an academic exercise; it
has tremendous implications for business and society.

SOFTWARE IS EVERYWHERE. It’s what lets us
get cash from an ATM, make a phone call, and drive our
cars. A typical cellphone now contains 2 million lines
of software code; by 2010 it will likely have 10 times as

MARKET CRASH: After its new automated supply-chain managementsystem failed last October, leaving merchandise stuck in company warehouses, British food retailerSainsbury's had to hire 3000 additional clerks to stock its shelves.

44 IEEE Spectrum | September 2005 | NA www.spectrum.ieee.org

Problems with inventory system contribute to $33.3 million* loss.

Software errors contribute to $3.45 billion* tax-credit overpayment.

Enterprise resource planning (ERP) system canceled after $54.5 million† is spent.

Purchasing system abandoned after deployment costing approximately $400 million.

Supply-chain management system abandoned after deployment costing $527 million.†

Problems with ERP system contribute to $160 million loss.

Customer relations management (CRM) upgrade problems lead to revenue loss of $100 million.

The Innovate information-purchasing system canceled after $170 million is spent.

Billing system canceled after $33.2 million† is spent.

Problems with CRM system contribute to $445 million loss.

Problems with supply-chain management system contribute to $100 million loss.

Supply-chain management system canceled after $130 million is spent.

City payroll system abandoned after deployment costing $25 million.

Administrative processing system canceled after $12 million is spent.

Tax system canceled after $11.2 million is spent; state receives $185 million damages.

Problems with ERP system contribute to $151 million loss.

Problems with order-entry system contribute to revenue loss of $50 million.

Tax modernization effort canceled after $4 billion is spent.

Department of Motor Vehicle (DMV) system canceled after $40 million is spent.

Billing and claims system problems contribute to quarterly loss; stock plummets,
leading to $3.4 billion loss in corporate value.

Software specification and design errors cause $350 million Ariane 5 rocket to explode.

$40 million ERP system abandoned after deployment, forcing company into bankruptcy.

Electronic trading system canceled after $25.5 million** is spent.

Advanced Automation System canceled after $2.6 billion is spent.

DMV system canceled after $44 million is spent.

Software error causes a total of $15 million to be deducted from 100 000 customer accounts.

Taurus stock settlement system canceled after $600 million** is spent.

Office automation system abandoned after deployment, costing $130 million.

Dispatch system canceled in 1990 at $11.25 million**; second attempt abandoned after
deployment, costing $15 million.**

Bus reservation system crashes repeatedly upon introduction, contributing to
revenue loss of $61 million.

Travel reservation system canceled after $165 million is spent.

2005

2004-05

2004

2004

2004

2004

2003–04

2002

2002

2002

2001

2001

2000

1999

1999

1999

1998

1997

1997

1997

1996

1996

1995

1994

1994

1994

1993

1993

1993

1993

1992

Hudson Bay Co. [Canada]

UK Inland Revenue

Avis Europe PLC [UK]

Ford Motor Co.

J Sainsbury PLC [UK]

Hewlett-Packard Co.

AT&T Wireless

McDonald’s Corp.

Sydney Water Corp. [Australia]

CIGNA Corp.

Nike Inc.

Kmart Corp.

Washington, D.C.

United Way

State of Mississippi

Hershey Foods Corp.

Snap-on Inc.

U.S. Internal Revenue Service

State of Washington

Oxford Health Plans Inc.

Arianespace [France]

FoxMeyer Drug Co.

Toronto Stock Exchange [Canada]

U.S. Federal Aviation Administration

State of California

Chemical Bank

London Stock Exchange [UK]

Allstate Insurance Co.

London Ambulance Service [UK]

Greyhound Lines Inc.

Budget Rent-A-Car, Hilton Hotels, Marriott
International, and AMR [American Airlines]

Sources: Business Week, CEO Magazine, Computerworld, InfoWeek, Fortune, The New York Times, Time, and The Wall Street Journal
* Converted to U.S. dollars using current exchange rates as of press time.
† Converted to U.S. dollars using exchange rates for the year cited, according to the International Trade Administration, U.S. Department of Commerce.
** Converted to U.S. dollars using exchange rates for the year cited, according to the Statistical Abstract of the United States, 1996 .

OUTCOME (COSTS IN US $)YEAR COMPANY

www.spectrum.ieee.org September 2005 | IEEE Spectrum | NA 45

many. General Motors Corp. estimates that
by then its cars will each have 100 million
lines of code.

The average company spends about 4 to
5 percent of revenue on information tech-
nology, with those that are highly IT
dependent—such as financial and telecom-
munications companies—spending more
than 10 percent on it. In other words, IT is
now one of the largest corporate expenses
outside employee costs. Much of that money
goes into hardware and software upgrades,
software license fees, and so forth, but a big
chunk is for new software projects meant to
create a better future for the organization and
its customers.

Governments, too, are big consumers of
software. In 2003, the United Kingdom had
more than 100 major government IT proj-
ects under way that totaled $20.3 billion.
In 2004, the U.S. government cataloged
1200 civilian IT projects costing more than
$60 billion, plus another $16 billion for military software.

Any one of these projects can cost over $1 billion. To take two
current examples, the computer modernization effort at the U.S.
Department of Veterans Affairs is projected to run $3.5 billion,
while automating the health records of the UK’s National Health
Service is likely to cost more than $14.3 billion for development
and another $50.8 billion for deployment.

Such megasoftware projects, once rare, are now much more com-
mon, as smaller IT operations are joined into “systems of systems.”
Air traffic control is a prime example, because it relies on connec-
tions among dozens of networks that provide communications,
weather, navigation, and other data. But the trick of integration has
stymied many an IT developer, to the point where academic
researchers increasingly believe that computer science itself may
need to be rethought in light of these massively complex systems.

WHEN A SOFTWARE PROJECT FAILS, it jeopardizes
an organization’s prospects. If the failure is large enough, it can
steal the company’s entire future. In one stellar meltdown, a poorly
implemented resource planning system led FoxMeyer Drug Co.,
a $5 billion wholesale drug distribution company in Carrollton,
Texas, to plummet into bankruptcy in 1996.

IT failure in government can imperil national security, as the
FBI’s Virtual Case File debacle has shown. The $170 million VCF
system, a searchable database intended to allow agents to “con-
nect the dots” and follow up on disparate pieces of intelligence,
instead ended five months ago without any system’s being
deployed [see “Who Killed the Virtual Case File?” in this issue].

IT failures can also stunt economic growth and quality of life.
Back in 1981, the U.S. Federal Aviation Administration began look-
ing into upgrading its antiquated air-traffic-control system, but
the effort to build a replacement soon became riddled with prob-
lems [see photo, “Air Jam”]. By 1994, when the agency finally gave
up on the project, the predicted cost had tripled, more than
$2.6 billion had been spent, and the expected delivery date had
slipped by several years. Every airplane passenger who is delayed
because of gridlocked skyways still feels this cancellation; the
cumulative economic impact of all those delays on just the U.S.
airlines (never mind the passengers) approaches $50 billion.

Worldwide, it’s hard to say how many software projects fail or
how much money is wasted as a result. If you define failure as

the total abandonment of a project before or shortly after it is
delivered, and if you accept a conservative failure rate of 5 percent,
then billions of dollars are wasted each year on bad software.

For example, in 2004, the U.S. government spent $60 billion
on software (not counting the embedded software in weapons sys-
tems); a 5 percent failure rate means $3 billion was probably wasted.
However, after several decades as an IT consultant, I am convinced
that the failure rate is 15 to 20 percent for projects that have
budgets of $10 million or more. Looking at the total investment in
new software projects—both government and corporate—over the
last five years, I estimate that project failures have likely cost the
U.S. economy at least $25 billion and maybe as much as $75 billion.

Of course, that $75 billion doesn’t reflect projects that exceed
their budgets—which most projects do. Nor does it reflect proj-
ects delivered late—which the majority are. It also fails to account
for the opportunity costs of having to start over once a project
is abandoned or the costs of bug-ridden systems that have to be
repeatedly reworked.

Then, too, there’s the cost of litigation from irate customers
suing suppliers for poorly implemented systems. When you add
up all these extra costs, the yearly tab for failed and troubled soft-
ware conservatively runs somewhere from $60 billion to $70 billion
in the United States alone. For that money, you could launch the
space shuttle 100 times, build and deploy the entire 24-satellite
Global Positioning System, and develop the Boeing 777 from
scratch—and still have a few billion left over.

WHY DO SOFTWARE PROJECTS FAIL SO OFTEN?
Among the most common factors:

• Unrealistic or unarticulated project goals
• Inaccurate estimates of needed resources
• Badly defined system requirements
• Poor reporting of the project’s status
• Unmanaged risks
• Poor communication among customers, developers, and users
• Use of immature technology
• Inability to handle the project’s complexity
• Sloppy development practices
• Poor project management
• Stakeholder politics
• Commercial pressures

Case Study # 1

COMPANY:
Oxford Health Plans

FAILURE:
New billing system

cannot keep up with

expanding business,

resulting in uncollected

payments of $400 million

from patients and

$650 million owed to

caregivers.

LOSS:
October 1997 announcement of

quarterly loss triggers stock

price to drop from $68 to

$26 in one day, wiping out

$3.4 billion in corporate

value. Company later pays

investors $225 million to

settle lawsuits.

46 IEEE Spectrum | September 2005 | NA www.spectrum.ieee.org

Of course, IT projects rarely fail for just one or two reasons. The
FBI’s VCF project suffered from many of the problems listed above.
Most failures, in fact, can be traced to a combination of technical,
project management, and business decisions. Each dimension inter-
acts with the others in complicated ways that exacerbate project
risks and problems and increase the likelihood of failure.

Consider a simple software chore: a purchasing system that auto-
mates the ordering, billing, and shipping of parts, so that a sales-
person can input a customer’s order, have it automatically checked
against pricing and contract requirements, and arrange to have the
parts and invoice sent to the customer from the warehouse.

The requirements for the system specify four basic steps.
First, there’s the sales process, which creates a bill of sale. That
bill is then sent through a legal process, which reviews the con-
tractual terms and conditions of the potential sale and approves
them. Third in line is the provision process, which sends out the
parts contracted for, followed by the finance process, which sends
out an invoice.

Let’s say that as the first process, for sales, is being written,
the programmers treat every order as if it were placed in the com-
pany’s main location, even though the company has branches in
several states and countries. That mistake, in turn, affects how
tax is calculated, what kind of contract is issued, and so on.

The sooner the omission is detected and corrected, the bet-
ter. It’s kind of like knitting a sweater. If you spot a missed stitch
right after you make it, you can simply unravel a bit of yarn and
move on. But if you don’t catch the mistake until the end, you
may need to unravel the whole sweater just to redo that one stitch.

If the software coders don’t catch their omission until final
system testing—or worse, until after the system has been rolled
out—the costs incurred to correct the error will likely be many
times greater than if they’d caught the mistake while they were
still working on the initial sales process.

And unlike a missed stitch in a sweater, this problem is much
harder to pinpoint; the programmers will see only that errors
are appearing, and these might have several causes. Even after the
original error is corrected, they’ll need to change other calcula-
tions and documentation and then retest every step.

In fact, studies have shown that software specialists spend
about 40 to 50 percent of their time on avoidable rework rather
than on what they call value-added work, which is basically work
that’s done right the first time. Once a piece of software makes
it into the field, the cost of fixing an error can be 100 times as
high as it would have been during the development stage.

If errors abound, then rework can start to swamp a project, like
a dinghy in a storm. What’s worse, attempts to fix an error often
introduce new ones. It’s like you’re bailing out that dinghy, but
you’re also creating leaks. If too many errors are produced, the
cost and time needed to complete the system become so great that
going on doesn’t make sense.

In the simplest terms, an IT project usually fails when the
rework exceeds the value-added work that’s been budgeted for.
This is what happened to Sydney Water Corp., the largest water
provider in Australia, when it attempted to introduce an automated
customer information and billing system in 2002 [see box, “Case
Study #2”]. According to an investigation by the Australian Auditor
General, among the factors that doomed the project were inade-
quate planning and specifications, which in turn led to numer-
ous change requests and significant added costs and delays.
Sydney Water aborted the project midway, after spending
AU $61 million (US $33.2 million).

All of which leads us to the obvious question: why do so many
errors occur?

SOFTWARE PROJECT FAILURES have a lot in common
with airplane crashes. Just as pilots never intend to crash, soft-
ware developers don’t aim to fail. When a commercial plane
crashes, investigators look at many factors, such as the weather,
maintenance records, the pilot’s disposition and training, and
cultural factors within the airline. Similarly, we need to look at
the business environment, technical management, project man-
agement, and organizational culture to get to the roots of soft-
ware failures.

Chief among the business factors are competition and the need
to cut costs. Increasingly, senior managers expect IT departments
to do more with less and do it faster than before; they view software
projects not as investments but as pure costs that must be controlled.

Political exigencies can also wreak havoc on an IT project’s
schedule, cost, and quality. When Denver International Airport
attempted to roll out its automated baggage-handling system, state
and local political leaders held the project to one unrealistic sched-
ule after another. The failure to deliver the system on time delayed
the 1995 opening of the airport (then the largest in the United
States), which compounded the financial impact manyfold.

Even after the system was completed, it never worked reliably:
it chewed up baggage, and the carts used to shuttle luggage around
frequently derailed. Eventually, United Airlines, the airport’s main
tenant, sued the system contractor, and the episode became a tes-
tament to the dangers of political expediency.

A lack of upper-management support can also damn an IT
undertaking. This runs the gamut from failing to allocate enough
money and manpower to not clearly establishing the IT project’s
relationship to the organization’s business. In 2000, retailer Kmart
Corp., in Troy, Mich., launched a $1.4 billion IT modernization
effort aimed at linking its sales, marketing, supply, and logis-
tics systems, to better compete with rival Wal-Mart Corp., in
Bentonville, Ark. Wal-Mart proved too formidable, though, and
18 months later, cash-strapped Kmart cut back on moderniza-
tion, writing off the $130 million it had already invested in IT.
Four months later, it declared bankruptcy; the company contin-
ues to struggle today.

Frequently, IT project managers eager to get funded resort to
a form of liar’s poker, overpromising what their project will do,
how much it will cost, and when it will be completed. Many, if
not most, software projects start off with budgets that are too
small. When that happens, the developers have to make up for
the shortfall somehow, typically by trying to increase produc-
tivity, reducing the scope of the effort, or taking risky shortcuts
in the review and testing phases. These all increase the likelihood
of error and, ultimately, failure.

A state-of-the-art travel reservation system spearheaded by
a consortium of Budget Rent-A-Car, Hilton Hotels, Marriott, and
AMR, the parent of American Airlines, is a case in point. In 1992,
three and a half years and $165 million into the project, the group
abandoned it, citing two main reasons: an overly optimistic devel-
opment schedule and an underestimation of the technical diffi-
culties involved. This was the same group that had earlier built
the hugely successful Sabre reservation system, proving that past
performance is no guarantee of future results.

AFTER CRASH INVESTIGATORS CONSIDER the
weather as a factor in a plane crash, they look at the airplane itself.
Was there something in the plane’s design that caused the crash?
Was it carrying too much weight?

In IT project failures, similar questions invariably come up
regarding the project’s technical components: the hardware and
software used to develop the system and the development prac-

G
R

EG
 W

O
O

D
/A

FP
/G

ETT
Y IM

A
G

ES

www.spectrum.ieee.org September 2005 | IEEE Spectrum | NA 47

tices themselves. Organizations are often seduced by the siren
song of the technological imperative—the uncontrollable urge
to use the latest technology in hopes of gaining a competitive
edge. With technology changing fast and promising fantastic new
capabilities, it is easy to succumb. But using immature or untested
technology is a sure route to failure.

In 1997, after spending $40 million, the state of Washington
shut down an IT project that would have processed driver’s
licenses and vehicle registrations. Motor vehicle officials admit-
ted that they got caught up in chasing technology instead of con-
centrating on implementing a system that met their requirements.
The IT debacle that brought down FoxMeyer Drug a year earlier
also stemmed from adopting a state-of-the-art resource-planning
system and then pushing it beyond what it could feasibly do.

A project’s sheer size is a fountainhead of failure. Studies indi-
cate that large-scale projects fail three to five times more often than
small ones. The larger the project, the more complexity there is
in both its static elements (the discrete pieces of software, hard-
ware, and so on) and its dynamic ele-
ments (the couplings and interactions
among hardware, software, and users;
connections to other systems; and so
on). Greater complexity increases the
possibility of errors, because no one
really understands all the interacting
parts of the whole or has the ability to
test them.

Sobering but true: it’s impossible to
thoroughly test an IT system of any real
size. Roger S. Pressman pointed out in
his book Software Engineering, one of the
classic texts in the field, that “exhaustive
testing presents certain logistical prob-
lems.…Even a small 100-line program
with some nested paths and a single loop
executing less than twenty times may
require 10 to the power of 14 possible
paths to be executed.” To test all of those
100 trillion paths, he noted, assuming
each could be evaluated in a millisecond,
would take 3170 years.

All IT systems are intrinsically frag-
ile. In a large brick building, you’d have to remove hundreds of
strategically placed bricks to make a wall collapse. But in a
100 000-line software program, it takes only one or two bad lines
to produce major problems. In 1991, a portion of AT&T’s telephone
network went out, leaving 12 million subscribers without service,
all because of a single mistyped character in one line of code.

Sloppy development practices are a rich source of failure, and
they can cause errors at any stage of an IT project. To help organi-
zations assess their software-development practices, the U.S.
Software Engineering Institute, in Pittsburgh, created the Capability
Maturity Model, or CMM. It rates a company’s practices against five
levels of increasing maturity. Level 1 means the organization is using
ad hoc and possibly chaotic development practices. Level 3 means
the company has characterized its practices and now understands
them. Level 5 means the organization quantitatively understands
the variations in the processes and practices it applies.

As of January, nearly 2000 government and commercial organ-
izations had voluntarily reported CMM levels. Over half acknowl-
edged being at either level 1 or 2, 30 percent were at level 3, and only
17 percent had reached level 4 or 5. The percentages are even more
dismal when you realize that this is a self-selected group; obvi-

ously, companies with the worst IT practices won’t subject them-
selves to a CMM evaluation. (The CMM is being superseded by the
CMM-Integration, which aims for a broader assessment of an orga-
nization’s ability to create software-intensive systems.)

Immature IT practices doomed the U.S. Internal Revenue
Service’s $4 billion modernization effort in 1997, and they have
continued to plague the IRS’s current $8 billion modernization. It
may just be intrinsically impossible to translate the tax code
into software code—tax law is complex and based on often-vague
legislation, and it changes all the time. From an IT developer’s
standpoint, it’s a requirements nightmare. But the IRS hasn’t been
helped by open hostility between in-house and outside pro-
grammers, a laughable underestimation of the work involved, and
many other bad practices.

THE PILOT'S ACTIONS JUST BEFORE a plane crashes
are always of great interest to investigators. That’s because the pilot
is the ultimate decision-maker, responsible for the safe operation of

the craft. Similarly, project managers play a crucial role in software
projects and can be a major source of errors that lead to failure.

Back in 1986, the London Stock Exchange decided to auto-
mate its system for settling stock transactions. Seven years later,
after spending $600 million, it scrapped the Taurus system’s devel-
opment, not only because the design was excessively complex and
cumbersome but also because the management of the project
was, to use the word of one of its own senior managers, “delu-
sional.” As investigations revealed, no one seemed to want to
know the true status of the project, even as more and more prob-
lems appeared, deadlines were missed, and costs soared [see
box, “Case Study #3”].

The most important function of the IT project manager is to
allocate resources to various activities. Beyond that, the project
manager is responsible for project planning and estimation, con-
trol, organization, contract management, quality management, risk
management, communications, and human resource management.

Bad decisions by project managers are probably the single great-
est cause of software failures today. Poor technical management, by
contrast, can lead to technical errors, but those can generally be
isolated and fixed. However, a bad project management decision—

Case Study #2

COMPANY:
Sydney Water Corp.

FAILURE:
Project to automate

customer information

and billing for

Australia's largest

water provider is

canceled in 2002, due

to inadequate plan-

ning, numerous change

requests, and cost and

schedule overruns.

COST:

$33.2 million

48 IEEE Spectrum | September 2005 | NA www.spectrum.ieee.org

JI
M

 W
AT

S
O

N
/A

FP
/G

ET
T

Y
IM

A
G

ES

such as hiring too few programmers or picking the wrong type
of contract—can wreak havoc. For example, the developers of
the doomed travel reservation system claim that they were hob-
bled in part by the use of a fixed-price contract. Such a contract
assumes that the work will be routine; the reservation system
turned out to be anything but.

Project management decisions are often tricky precisely because
they involve tradeoffs based on fuzzy or incomplete knowledge.
Estimating how much an IT project will cost and how long it will
take is as much art as science. The larger or more novel the proj-
ect, the less accurate the estimates. It’s a running joke in the indus-
try that IT project estimates are at best within 25 percent of their
true value 75 percent of the time.

There are other ways that poor project management can hasten
a software project’s demise. A study by the Project Management
Institute, in Newton Square, Pa., showed that risk management is
the least practiced of all project management disciplines across all
industry sectors, and nowhere is it more infrequently applied than

in the IT industry. Without effective risk management, software
developers have little insight into what may go wrong, why it may
go wrong, and what can be done to eliminate or mitigate the risks.
Nor is there a way to determine what risks are acceptable, in turn
making project decisions regarding tradeoffs almost impossible.

Poor project management takes many other forms, including
bad communication, which creates an inhospitable atmosphere
that increases turnover; not investing in staff training; and not
reviewing the project’s progress at regular intervals. Any of these
can help derail a software project.

THE LAST AREA THAT INVESTIGATORS look into
after a plane crash is the organizational environment. Does the
airline have a strong safety culture, or does it emphasize meet-
ing the flight schedule above all? In IT projects, an organization
that values openness, honesty, communication, and collaboration
is more apt to find and resolve mistakes early enough that rework
doesn’t become overwhelming.

If there’s a theme that runs through the tortured history of bad
software, it’s a failure to confront reality. On numerous occasions,
the U.S. Department of Justice’s inspector general, an outside panel
of experts, and others told the head of the FBI that the VCF system
was impossible as defined, and yet the project continued any-

way. The same attitudes existed among those responsible for the
travel reservation system, the London Stock Exchange’s Taurus
system, and the FAA’s air-traffic-control project—all indicative of
organizational cultures driven by fear and arrogance.

A recent report by the National Audit Office in the UK found
numerous cases of government IT projects’ being recommended
not to go forward yet continuing anyway. The UK even has a gov-
ernment department charged with preventing IT failures, but as
the report noted, more than half of the agencies the department
oversees routinely ignore its advice. I call this type of behavior
irrational project escalation—the inability to stop a project even
after it’s obvious that the likelihood of success is rapidly approach-
ing zero. Sadly, such behavior is in no way unique.

IN THE FINAL ANALYSIS, big software failures tend to
resemble the worst conceivable airplane crash, where the pilot was
inexperienced but exceedingly rash, flew into an ice storm in an
untested aircraft, and worked for an airline that gave lip service to

safety while cutting back on training and
maintenance. If you read the investiga-
tor’s report afterward, you’d be shaking
your head and asking, “Wasn’t such a
crash inevitable?”

So, too, the reasons that software proj-
ects fail are well known and have been
amply documented in countless articles,
reports, and books [see sidebar, To Probe
Further]. And yet, failures, near-failures,
and plain old bad software continue to
plague us, while practices known to avert
mistakes are shunned. It would appear
that getting quality software on time and
within budget is not an urgent priority at
most organizations.

It didn’t seem to be at Oxford Health
Plans Inc., in Trumbull, Conn., in 1997.
The company’s automated billing sys-
tem was vital to its bottom line, and yet
senior managers there were more inter-
ested in expanding Oxford’s business

than in ensuring that its billing system could meet its current
needs [see box, “Case Study #1”]. Even as problems arose, such as
invoices’ being sent out months late, managers paid little atten-
tion. When the billing system effectively collapsed, the com-
pany lost tens of millions of dollars, and its stock dropped from
$68 to $26 per share in one day, wiping out $3.4 billion in corpo-
rate value. Shareholders brought lawsuits, and several government
agencies investigated the company, which was eventually fined
$3 million for regulatory violations.

Even organizations that get burned by bad software experi-
ences seem unable or unwilling to learn from their mistakes. In
a 2000 report, the U.S. Defense Science Board, an advisory body
to the Department of Defense, noted that various studies com-
missioned by the DOD had made 134 recommendations for
improving its software development, but only 21 of those rec-
ommendations had been acted on. The other 113 were still valid,
the board noted, but were being ignored, even as the DOD com-
plained about the poor state of defense software development!

Some organizations do care about software quality, as the expe-
rience of the software development firm Praxis High Integrity
Systems, in Bath, England, proves. Praxis demands that its customers
be committed to the project, not only financially, but as active par-
ticipants in the IT system’s creation. The company also spends a

Case Study #3

COMPANY:
London Stock Exchange

FAILURE:
Effort to design new

stock settlement

system is scrapped

in 1993, after seven

years, because of

overly complex and

cumbersome design

and poor project

management.

COST:

$600 million

tremendous amount of time understanding and defining the cus-
tomer’s requirements, and it challenges customers to explain what
they want and why. Before a single line of code is written, both
the customer and Praxis agree on what is desired, what is feasi-
ble, and what risks are involved, given the available resources.

After that, Praxis applies a rigorous development approach that
limits the number of errors. One of the great advantages of this
model is that it filters out the many would-be clients unwilling
to accept the responsibility of articulating their IT requirements
and spending the time and money to implement them properly.
[See “The Exterminators,” in this issue.]

SOME LEVEL OF SOFTWARE FAILURE will always
be with us. Indeed, we need true failures—as opposed to avoid-
able blunders—to keep making technical and economic progress.
But too many of the failures that occur today are avoidable. And
as our society comes to rely on IT systems that are ever larger,
more integrated, and more expensive, the cost of failure may
become disastrously high.

Even now, it’s possible to take bets on where the next great soft-
ware debacle will occur. One of my leading candidates is the IT
systems that will result from the U.S. government’s American
Health Information Community, a public-private collaboration that
seeks to define data standards for electronic medical records. The
idea is that once standards are defined, IT systems will be built
to let medical professionals across the country enter patient records
digitally, giving doctors, hospitals, insurers, and other health-care
specialists instant access to a patient’s complete medical history.
Health-care experts believe such a system of systems will improve
patient care, cut costs by an estimated $78 billion per year, and
reduce medical errors, saving tens of thousands of lives.

But this approach is a mere pipe dream if software practices
and failure rates remain as they are today. Even by the most opti-
mistic estimates, to create an electronic medical record system
will require 10 years of effort, $320 billion in development costs,
and $20 billion per year in operating expenses—assuming that
there are no failures, overruns, schedule slips, security issues,
or shoddy software. This is hardly a realistic scenario, especially
because most IT experts consider the medical community to be
the least computer-savvy of all professional enterprises.

Patients and taxpayers will ultimately pay the price for the
development, or the failure, of boondoggles like this. Given today’s
IT practices, failure is a distinct possibility, and it would be a loss
of unprecedented magnitude. But then, countries throughout the
world are contemplating or already at work on many initiatives of
similar size and impact—in aviation, national security, and the
military, among other arenas.

Like electricity, water, transportation, and other critical parts
of our infrastructure, IT is fast becoming intrinsic to our daily exis-
tence. In a few decades, a large-scale IT failure will become more
than just an expensive inconvenience: it will put our way of life
at risk. In the absence of the kind of industrywide changes that
will mitigate software failures, how much of our future are we will-
ing to gamble on these enormously costly and complex systems?

We already know how to do software well. It may finally be
time to act on what we know. �

ABOUT THE AUTHOR
ROBERT N. CHARETTE is president of ITABHI Corp., a risk-
management consultancy in Spotsylvania, Va. An IEEE member, he is
the author of several books on risk management and chair of the
ISO/IEEE committee revising the 16085 standard on software and sys-
tems engineering risk management.

www.spectrum.ieee.org September 2005 | IEEE Spectrum | NA 49

TO PROBE FURTHER:
SOFTWARE SPECIAL REPORT

WHO KILLED THE VIRTUAL CASE FILE?

For background on the FBI, read Ronald Kessler’s The Bureau:
The Secret History of the FBI (St. Martin’s Press, 2002).

Track FBI CIO Zalmai Azmi’s attempts to drag the bureau into the
21st century at http://www.fbi.gov/hq/ocio/ocio_home.htm.

Read the record testimony of Arnold Punaro, executive vice presi-
dent and general manager of Science International Applications
Corp.—prepared for the 3 February 2005 U.S. Senate hearing on the
Virtual Case File (VCF)—at http://www.saic.com/
cover-archive/law/trilogy.html.

The Government Accountability Office (GAO) and the Department
of Justice’s Office of the Inspector General (OIG) warned Congress of
serious problems with the VCF. Start exploring GAO documents at
http://www.gao.gov. For the September 2003 report "FBI Needs an
Enterprise Architecture to Guide Its Modernization Activities," search
on report number GAO-03-959.

For OIG reports related to the FBI’s IT systems, start digging at
http://www.usdoj.gov/oig/reports/FBI. One must-read: "The Federal
Bureau of Investigation’s Management of the Trilogy Information
Technology Modernization Project" at http://www.usdoj.gov/oig/
reports/FBI/a0507/index.htm.

The graybeards evaluate the VCF in a National Research Council
report at http://www7.nationalacademies.org/cstb/pub_fbi.html.

THE EXTERMINATORS

For an introduction to formal software-design methods, see Jeannette
M. Wing’s "A Specifier’s Introduction to Formal Methods," in
Computer, September 1990, Vol. 23, no. 9. "An Invitation to Formal
Methods," by Jonathan P. Bowen et al. in Computer, April 1996, Vol.
29, no. 4, discusses how to make formal methods more widely used.

For many examples of formal methods used in industry, see
"Formal Methods: State of the Art and Future Directions" at
http://www-2.cs.cmu.edu/~emc/papers/Invited%20Journal%
20Articles/state_art_future.pdf.

Praxis High Integrity Systems offers a number of technical articles
and presentations at http://www.praxis-his.com/publications.

WHY SOFTWARE FAILS

Many good books have been written about the causes of software
failure, including Frederick P. Brooks Jr.’s The Mythical Man-
Month: Essays on Software Engineering, 20th Anniversary
Edition (Addison-Wesley, 1995); Kweku Ewusi-Mensah’s Software
Development Failures (MIT Press, 2003); Stephen Flowers’s
Software Failure: Management Failure (John Wiley & Sons,
1996); Robert L. Glass’s Software Runaways (Prentice Hall PTR,
1998); Capers Jones’s Patterns of Software Systems Failure
and Success (International Thomson Computer Press, 1996);
Peter Neumann’s Computer Related Risks (Addison Wesley,
1995); Ivars Peterson’s Fatal Defect (Vintage Books, 1996);
Susan A. Sherer’s Software Failure Risk (Plenum, 1992); and
Edward Yourdon’s Death March (Prentice Hall, 1997).

The online "Forum on Risks to the Public in Computers and
Related Systems" is at http://catless.ncl.ac.uk/risks.

Frederick P. Brooks Jr.'s classic paper "No Silver Bullet: Essence
and Accidents of Software Engineering" appeared in Computer, April
1987, pp. 10–19.

