
Software Security 
Touchpoints

Software Security 
Touchpoints

March 27, 2006March 27, 2006

Three pillars of security

Risk 
Management

Risk 
Management TouchpointsTouchpoints KnowledgeKnowledge

Software Security



Applied risk 
management

• Architectural risk analysis
– Sometimes called threat modeling or security 

design analysis

– Is a best practice and is a touchpoint

• Risk management framework
– Considers risk analysis and mitigation as a full 

life cycle activity

Risk management 
framework

• RMF occurs in parallel with SDLC activities

Understand 
the Business

context

Understand 
the Business

context

Identify 
the Business

and Technical 
Risk

Identify 
the Business

and Technical 
Risk

Artifact Analysis

Synthesize and
Rank the Risks
Synthesize and
Rank the Risks

Define the Risk
Mitigation 
Strategy

Define the Risk
Mitigation 
Strategy

Carry out fixes 
And validate

Carry out fixes 
And validate

Business
Context

1 2 3 4

5

Measurement and reporting



Software security 
touchpoints

• “Software security is not security software”
– Software security 

• is system-wide issues (security mechanisms and design security)
• Emergent property

• Touchpoints in order of effectiveness (based on experience)
– Code review (bugs)
– Architectural risk analysis (flaws)

• These two can be swapped
– Penetration testing
– Risk-based security tests
– Abuse cases
– Security requirements
– Security operations

Software security 
touchpoints

• Many organization
– Penetration first

• Is a reactive approach

• CR and ARA can be switched however 
skipping one solves only half of the 
problem

• Big organization may adopt these 
touchpoints simultaneously



Knowledge

• Software security knowledge catalogs
– Principles
– Guidelines
– Rules
– Vulnerabilities
– Exploits
– Attack patterns
– Historical risks

• These can be grouped into following categories
– Prescriptive knowledge
– Diagnostic knowledge
– Historical knowledge

Code review

• Focus is on implementation bugs
– Essentially those that static analysis can find

– Security bugs are real problems – but architectural 
flaws are just as big a problem

• Code review can capture only half of the problems

– E.g. 
• Buffer overflow bug in a particular line of code

– Architectural problems are very difficult to find by 
looking at the code

• Specially true for today’s large software



Code review

• Taxonomy of coding errors
– Input validation and representation

• Some source of problems
– Metacharacters, alternate encodings, numeric representations
– Forgetting input validation
– Trusting input too much
– Example: buffer overflow; integer overflow

– API abuse
• API represents contract between caller and callee
• E.g., failure to enforce principle of least privilege

– Security features
• Getting right security features is difficult
• E.g., insecure randomness, password management, 

authentication, access control, cryptography, privilege 
management, etc.

Code review

• Taxonomy of coding errors
– Time and state

• Typical race condition issues

• E.g., TOCTOU; deadlock

– Error handling
• Security defects related to error handling are very common

• Two ways
– Forget to handle errors or handling them roughly

– Produce errors that either give out way too much information or 
so radioactive no one wants to handle them

• E.g., unchecked error value; empty catch block



Code review

• Taxonomy of coding errors
– Code quality

• Poor code quality leads to unpredictable behavior
• Poor usability
• Allows attacker to stress the system in unexpected ways
• E.g., Double free; memory leak

– Encapsulation
• Object oriented approach
• Include boundaries
• E.g., comparing classes by name

– Environment
• Everything outside of the code but is important for the security of the 

software
• E.g., password in configuration file (hardwired)

Code review

• Static analysis tools
– False negative (wrong sense of security)

• A sound tool does not generate false negatives

– False positives

– Some examples
• ITS4 (It’s The Software Stupid Security Scanner); 

• RATS; Flawfinder



Cigital Static analysis 
process

• Figure 4-7

Architectural risk 
analysis

• Design flaws 
– about 50% of security problem
– Can’t be found by looking at code

• A higher level of understanding required

• Risk analysis
– Track risk over time
– Quantify impact 
– Link system-level concerns to probability and impact 

measures
– Fits with the RMF



ARA within RMF

Understand 
the Business

context

Understand 
the Business

context

Synthesize and
Rank the Risks
Synthesize and
Rank the Risks

Define the Risk
Mitigation 
Strategy

Define the Risk
Mitigation 
Strategy

Validate the 
artifacts

Validate the 
artifacts

Business
Context

1 4 5

7

Fix the artifactsFix the artifacts

6

Validation loop

Identify 
the Business

and Technical 
Risk

Identify 
the Business

and Technical 
Risk

Artifact Analysis

2

Identify 
the Business

and Technical 
Risk

Identify 
the Business

and Technical 
Risk

Artifact Analysis

3

Technical
expertise

Measurement and reporting

Initiate process
improvement

Initiate process
improvement

ARA process

• Figure 5-4



ARA process

• Attack resistance analysis
– Steps

• Identify general flaws using secure design literature and 
checklists

– Knowledge base of historical risks useful

• Map attack patterns using either the results of abuse case or a 
list of attack patterns

• Identify risk based on checklist

• Understand and demonstrate the viability of these known 
attacks

– Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARA process

• Ambiguity analysis
– Discover new risks – creativity requried
– A group of analyst and experience helps – use multiple points of view

• Unify understanding after independent analysis
– Uncover ambiguity and inconsistencies

• Weakness analysis
– Assess the impact of external software dependencies
– Modern software 

• is built on top of middleware such as .NET and J2EE
• Use DLLs or common libraries

– Need to consider
• COTS
• Framework
• Network topology
• Platform
• Physical environment
• Build environment



Software penetration 
testing

• Most commonly used today
• Currently

– Outside->in approach
– Better to do after code review and ARA
– As part of final preparation acceptance regimen
– One major limitation

• Almost always a too-little-too-late attempt at the end of a 
development cycle

– Fixing things at this stage 
» May be very expensive
» Reactive and defensive

Software penetration 
testing

• A better approach
– Penetration testing from the beginning and throughout 

the life cycle
– Penetration test should be driven by perceived risk
– Best suited for finding configuration problems and 

other environmental factors
– Make use of tools

• Takes care of majority of grunt work
• Tool output lends itself to metrics
• Eg., 

– fault injection tools; 
– attacker’s toolkit: disassemblers and decompilers; coverage 

tools monitors



Risk based security 
testing

• Testing must be
– Risk-based 
– grounded in both the system’s architectural 

reality and the attacker’s mindset
• Better than classical black box testing

– Different from penetration testing
• Level of approach
• Timing of testing

– Penetration testing is primarily on completed software in 
operating environment; outside->in

Risk based security 
testing

• Security testing
– Should start at feature or component/unit level 

testing

– Must involve two diverse approaches
• Functional security testing

– Testing security mechanisms to ensure that their 
functionality is properly implemented

• Adversarial security testing
– Performing risk-based security testing motivated by 

understanding and simulating the attacker’s approach



Abuse cases

• Figure 8-1

Abuse cases

• Creating anti-requirements
– Important to think about 

• Things that you don’t want your software to do
• Requires: security analysis + requirement analysis

– Anti-requirements
• Provide insight into how a malicious user, attacker, 

thrill seeker, competitor can abuse your system
• Considered throughout the lifecyle

– indicate what happens when a required security function 
is not included



Abuse cases

• Creating an attack model
– Based on known attacks and attack types

– Do the following
• Select attack patterns relevant to your system –

build abuse case around the attack patterns

• Include anyone who can gain access to the system 
because threats must encompass all potential 
sources

– Also need to model attacker

Security requirements 
and operations

• Security requirements
– Difficult tasks
– Should over both overt functional security and 

emergent characteristics
• Use requirements engineering approach

• Security operations
– Integrate security operations

• E.g., software security should be integrated with 
network security


