Software Security
Touchpoints

March 27, 2006

Three pillars of security

Software Security

] ] ]

Risk
Management

Touchpoints Knowledge




Applied risk

management

» Architectural risk analysis

— Sometimes called threat modeling or security
design analysis

— Is a best practice and is a touchpoint
* Risk management framework

— Considers risk analysis and mitigation as a full
life cycle activity

Risk management

framework

 RMF occurs in parallel with SDLC activities

1 2 ldentify 3 4
Understand the Business Svnthesize and Define the Risk
the Business and Technical Y : Mitigation
: Rank the Risks
context Risk Strategy

Artifact Analysis

5

Carry out fixes
And validate




e~ , Software security
- ¢ .F

touchpoints

» “Software security is not security software”
— Software security
* is system-wide issues (security mechanisms and design security)
e Emergent property
* Touchpoints in order of effectiveness (based on experience)
— Code review (bugs)
— Architectural risk analysis (flaws)
e These two can be swapped
Penetration testing
Risk-based security tests
Abuse cases
Security requirements
Security operations

e~ , Software security
- ¢ .F

touchpoints

 Many organization
— Penetration first
* |s a reactive approach
* CR and ARA can be switched however

skipping one solves only half of the
problem

» Big organization may adopt these
touchpoints simultaneously




Knowledge

» Software security knowledge catalogs
— Principles
— Guidelines
— Rules

Vulnerabilities

Exploits

Attack patterns

Historical risks

* These can be grouped into following categories
— Prescriptive knowledge
— Diagnostic knowledge
— Historical knowledge

Code review

* Focus is on implementation bugs
— Essentially those that static analysis can find

— Security bugs are real problems — but architectural
flaws are just as big a problem
» Code review can capture only half of the problems
— E.Q.
 Buffer overflow bug in a particular line of code
— Architectural problems are very difficult to find by
looking at the code
» Specially true for today’s large software




Code review

« Taxonomy of coding errors

— Input validation and representation
* Some source of problems
— Metacharacters, alternate encodings, numeric representations
— Forgetting input validation
— Trusting input too much
— Example: buffer overflow; integer overflow

— API abuse

» API represents contract between caller and callee
* E.g., failure to enforce principle of least privilege

— Security features
» Getting right security features is difficult

» E.g., insecure randomness, password management,
authentication, access control, cryptography, privilege
management, etc.

Code review

« Taxonomy of coding errors

— Time and state
» Typical race condition issues
* E.g., TOCTOU; deadlock

— Error handling
» Security defects related to error handling are very common
* Two ways

— Forget to handle errors or handling them roughly

— Produce errors that either give out way too much information or
so radioactive no one wants to handle them

* E.g., unchecked error value; empty catch block




Code review

e Taxonomy of coding errors

— Code quality
» Poor code quality leads to unpredictable behavior
» Poor usability
» Allows attacker to stress the system in unexpected ways
* E.g., Double free; memory leak

— Encapsulation
» Object oriented approach
* Include boundaries
* E.g., comparing classes by name

— Environment

» Everything outside of the code but is important for the security of the
software

* E.g., password in configuration file (hardwired)

Code review

« Static analysis tools
— False negative (wrong sense of security)
» A sound tool does not generate false negatives
— False positives
— Some examples

* ITS4 (It's The Software Stupid Security Scanner);
* RATS; Flawfinder




Cigital Static analysis

process

« Figure 4-7

Architectural risk

analysis

» Design flaws
— about 50% of security problem
— Can’t be found by looking at code
* A higher level of understanding required
* Risk analysis
— Track risk over time
— Quantify impact
— Link system-level concerns to probability and impact
measures

— Fits with the RMF




ARA within RMF

2 ldentify
the Business
and Technical
Risk
Artifact Analysis
1 4 5

Understand Business Svnthesize and Define the Risk
the Business Context Y Mitigation

Rank the Risks
context 3 Identify Strategy

the Business
and Technical
Risk
Artifact Analysis

7 6

Initiate process Validate the Fix the artifacts

. artifacts
improvement

ARA process

e Figure 5-4




ARA process

» Attack resistance analysis
— Steps
* Identify general flaws using secure design literature and
checklists
— Knowledge base of historical risks useful

Map attack patterns using either the results of abuse case or a
list of attack patterns

Identify risk based on checklist

Understand and demonstrate the viability of these known
attacks

— Use exploit graph or attack graph

Note: particularly good for finding known problems

ARA process

* Ambiguity analysis
— Discover new risks — creativity requried
— A group of analyst and experience helps — use multiple points of view
* Unify understanding after independent analysis
— Uncover ambiguity and inconsistencies
* Weakness analysis
— Assess the impact of external software dependencies
— Modern software
 is built on top of middleware such as .NET and J2EE
» Use DLLs or common libraries
— Need to consider
COTS
Framework
Network topology
Platform
Physical environment
Build environment




Software penetration

testing

* Most commonly used today

« Currently
— Outside->in approach
— Better to do after code review and ARA
— As part of final preparation acceptance regimen

— One major limitation
* Almost always a too-little-too-late attempt at the end of a
development cycle
— Fixing things at this stage
» May be very expensive
» Reactive and defensive

e~ , Software penetration
- @

testing

* A better approach

— Penetration testing from the beginning and throughout
the life cycle

— Penetration test should be driven by perceived risk

— Best suited for finding configuration problems and
other environmental factors

— Make use of tools
» Takes care of majority of grunt work
» Tool output lends itself to metrics
* Eg,,
— fault injection tools;

— attacker’s toolkit: disassemblers and decompilers; coverage
tools monitors




e~ , Risk based security
. : .F_.

testing

» Testing must be
— Risk-based
— grounded in both the system’s architectural
reality and the attacker’s mindset

 Better than classical black box testing

— Different from penetration testing
» Level of approach
» Timing of testing

— Penetration testing is primarily on completed software in
operating environment; outside->in

e~ , Risk based security
. : .F_.

testing

e Security testing

— Should start at feature or component/unit level
testing

— Must involve two diverse approaches

» Functional security testing

— Testing security mechanisms to ensure that their
functionality is properly implemented

» Adversarial security testing

— Performing risk-based security testing motivated by
understanding and simulating the attacker’s approach




Abuse cases

e Figure 8-1

Abuse cases

« Creating anti-requirements

— Important to think about
» Things that you don’t want your software to do
» Requires: security analysis + requirement analysis

— Anti-requirements

» Provide insight into how a malicious user, attacker,
thrill seeker, competitor can abuse your system
» Considered throughout the lifecyle

— indicate what happens when a required security function
is not included




=, , Abuse cases
.F

» Creating an attack model
— Based on known attacks and attack types

— Do the following

» Select attack patterns relevant to your system —
build abuse case around the attack patterns

* Include anyone who can gain access to the system
because threats must encompass all potential
sources

— Also need to model attacker

== , Security requirements
- @

and operations

» Security requirements
— Difficult tasks

— Should over both overt functional security and
emergent characteristics

» Use requirements engineering approach
e Security operations

— Integrate security operations

» E.g., software security should be integrated with
network security




