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Applied risk 
management

• Architectural risk analysis
– Sometimes called threat modeling or security 

design analysis

– Is a best practice and is a touchpoint

• Risk management framework
– Considers risk analysis and mitigation as a full 

life cycle activity

Risk management 
framework

• RMF occurs in parallel with SDLC activities
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Software security 
touchpoints

• “Software security is not security software”
– Software security 

• is system-wide issues (security mechanisms and design security)
• Emergent property

• Touchpoints in order of effectiveness (based on experience)
– Code review (bugs)
– Architectural risk analysis (flaws)

• These two can be swapped
– Penetration testing
– Risk-based security tests
– Abuse cases
– Security requirements
– Security operations

Software security 
touchpoints

• Many organization
– Penetration first

• Is a reactive approach

• CR and ARA can be switched however 
skipping one solves only half of the 
problem

• Big organization may adopt these 
touchpoints simultaneously



Knowledge

• Software security knowledge catalogs
– Principles
– Guidelines
– Rules
– Vulnerabilities
– Exploits
– Attack patterns
– Historical risks

• These can be grouped into following categories
– Prescriptive knowledge
– Diagnostic knowledge
– Historical knowledge

Code review

• Focus is on implementation bugs
– Essentially those that static analysis can find

– Security bugs are real problems – but architectural 
flaws are just as big a problem

• Code review can capture only half of the problems

– E.g. 
• Buffer overflow bug in a particular line of code

– Architectural problems are very difficult to find by 
looking at the code

• Specially true for today’s large software



Code review

• Taxonomy of coding errors
– Input validation and representation

• Some source of problems
– Metacharacters, alternate encodings, numeric representations
– Forgetting input validation
– Trusting input too much
– Example: buffer overflow; integer overflow

– API abuse
• API represents contract between caller and callee
• E.g., failure to enforce principle of least privilege

– Security features
• Getting right security features is difficult
• E.g., insecure randomness, password management, 

authentication, access control, cryptography, privilege 
management, etc.

Code review

• Taxonomy of coding errors
– Time and state

• Typical race condition issues

• E.g., TOCTOU; deadlock

– Error handling
• Security defects related to error handling are very common

• Two ways
– Forget to handle errors or handling them roughly

– Produce errors that either give out way too much information or 
so radioactive no one wants to handle them

• E.g., unchecked error value; empty catch block



Code review

• Taxonomy of coding errors
– Code quality

• Poor code quality leads to unpredictable behavior
• Poor usability
• Allows attacker to stress the system in unexpected ways
• E.g., Double free; memory leak

– Encapsulation
• Object oriented approach
• Include boundaries
• E.g., comparing classes by name

– Environment
• Everything outside of the code but is important for the security of the 

software
• E.g., password in configuration file (hardwired)

Code review

• Static analysis tools
– False negative (wrong sense of security)

• A sound tool does not generate false negatives

– False positives

– Some examples
• ITS4 (It’s The Software Stupid Security Scanner); 

• RATS; Flawfinder



Cigital Static analysis 
process

• Figure 4-7

Architectural risk 
analysis

• Design flaws 
– about 50% of security problem
– Can’t be found by looking at code

• A higher level of understanding required

• Risk analysis
– Track risk over time
– Quantify impact 
– Link system-level concerns to probability and impact 

measures
– Fits with the RMF



ARA within RMF
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ARA process

• Attack resistance analysis
– Steps

• Identify general flaws using secure design literature and 
checklists

– Knowledge base of historical risks useful

• Map attack patterns using either the results of abuse case or a 
list of attack patterns

• Identify risk based on checklist

• Understand and demonstrate the viability of these known 
attacks

– Use exploit graph or attack graph

- Note: particularly good for finding known problems

ARA process

• Ambiguity analysis
– Discover new risks – creativity requried
– A group of analyst and experience helps – use multiple points of view

• Unify understanding after independent analysis
– Uncover ambiguity and inconsistencies

• Weakness analysis
– Assess the impact of external software dependencies
– Modern software 

• is built on top of middleware such as .NET and J2EE
• Use DLLs or common libraries

– Need to consider
• COTS
• Framework
• Network topology
• Platform
• Physical environment
• Build environment



Software penetration 
testing

• Most commonly used today
• Currently

– Outside->in approach
– Better to do after code review and ARA
– As part of final preparation acceptance regimen
– One major limitation

• Almost always a too-little-too-late attempt at the end of a 
development cycle

– Fixing things at this stage 
» May be very expensive
» Reactive and defensive

Software penetration 
testing

• A better approach
– Penetration testing from the beginning and throughout 

the life cycle
– Penetration test should be driven by perceived risk
– Best suited for finding configuration problems and 

other environmental factors
– Make use of tools

• Takes care of majority of grunt work
• Tool output lends itself to metrics
• Eg., 

– fault injection tools; 
– attacker’s toolkit: disassemblers and decompilers; coverage 

tools monitors



Risk based security 
testing

• Testing must be
– Risk-based 
– grounded in both the system’s architectural 

reality and the attacker’s mindset
• Better than classical black box testing

– Different from penetration testing
• Level of approach
• Timing of testing

– Penetration testing is primarily on completed software in 
operating environment; outside->in

Risk based security 
testing

• Security testing
– Should start at feature or component/unit level 

testing

– Must involve two diverse approaches
• Functional security testing

– Testing security mechanisms to ensure that their 
functionality is properly implemented

• Adversarial security testing
– Performing risk-based security testing motivated by 

understanding and simulating the attacker’s approach



Abuse cases

• Figure 8-1

Abuse cases

• Creating anti-requirements
– Important to think about 

• Things that you don’t want your software to do
• Requires: security analysis + requirement analysis

– Anti-requirements
• Provide insight into how a malicious user, attacker, 

thrill seeker, competitor can abuse your system
• Considered throughout the lifecyle

– indicate what happens when a required security function 
is not included



Abuse cases

• Creating an attack model
– Based on known attacks and attack types

– Do the following
• Select attack patterns relevant to your system –

build abuse case around the attack patterns

• Include anyone who can gain access to the system 
because threats must encompass all potential 
sources

– Also need to model attacker

Security requirements 
and operations

• Security requirements
– Difficult tasks
– Should over both overt functional security and 

emergent characteristics
• Use requirements engineering approach

• Security operations
– Integrate security operations

• E.g., software security should be integrated with 
network security


