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Abstract 

 
Role-Based Access Control (RBAC) models have emerged 

as a leading access control approach for today’s 

information systems. Hybrid role hierarchies introduced 

in the Generalized Temporal RBAC model have shown to 

be very desirable for capturing fine-grained access 

control semantics. However, its administration can 

become significantly complex. Efficient techniques are 

needed to administer such hierarchies to support the 

development of high performance access control systems. 

In this paper, we present two approaches to implementing 

a hybrid role hierarchy in the context of the GTRBAC 

model and analyze and compare their complexities.  

 

1. Introduction 

 
Role based access control (RBAC) has emerged as a 

promising alternative to traditional discretionary and 

mandatory access control (DAC and MAC) models, 

which have inherent limitations [2, 3, 8, 9]. Several 

beneficial features such as policy neutrality, support for 

least privilege and efficient access control management 

are associated with RBAC models [1, 9].  

An important feature of the the RBAC models is the role 

hierarchy. A hierarchical relation between two roles 

defines permission acquisition and role activation 

semantics that can be utilized for efficiently and 

effectively structuring functional roles of an organization. 

Joshi et al. established a clear distinction between the 

three role hierarchies - permission-inheritance-only 

hierarchy (I-hierarchy), activation-only hierarchy (A-

hierarchy), and the combined permission-inheritance and 

activation hierarchy (IA-hierarchy) - within the context of 

the Generalized Temporal RBAC model (GTRBAC) [4]. 

It has been shown that such a fine-grained hierarchical 

semantics facilitates capturing a wide range of security 

requirements, including the specification of fine-grained 

time-based SoD constraints on the roles including those 

within a hierarchy, time-constrained inheritance and 

activation relations, and user-centric or permission-centric 

cardinality constraints on roles in a hierarchy [3, 7, 9].  

An important issue in authorization decision making 

process is to know which set of roles a user is allowed to 

activate in a single session. Furthermore, the system 

should be able to determine what roles are required to be 

activated to avail of a certain set of permissions. The 

significance of such information is the following: 

1. When a user requests the activation of a set of roles 

which may be hierarchically related in a session, the 

authorization system should be able to determine 

whether to grant that request or not.  

2. By determining which roles a user can activate within 

a single session, the authorization system can find 

and even resolve possible conflicts between the role 

hierarchy and the SoD constraints specified.  

3. As the policy evolves a hierarchy may be 

transformed. In such a case, the original permission 

inheritance and role activation semantics need to be 

carefully maintained. Such transformations occur 

when roles in a hierarchy are deleted or modified, or 

new roles are added to the hierarchy. In emerging 

applications, policy evolution is a crucial issue as 

policies are very dynamic and constantly evolve [6]. 

Administering a role hierarchy, particularly in presence of 

other constraints (SoD, cardinality, and dependencies), 

can be seen as the most challenging aspect of RBAC 

systems [7, 10]. Efficient techniques are needed to 

maintain the permission inheritance and role activation 

semantics to support the scenarios indicated above and to 

support efficient administration and management of the 

RBAC policies. Earlier works have addressed modeling 

issues related to the administration of RBAC policies as 

well as hierarchy transformation [10]. However, they are 

limited to the traditional RBAC models where only IA-

hierarchy is applicable. Inclusion of the three different 

types of hierarchies makes the issue of hierarchy 

administration significantly challenging. Joshi et al. have 

developed a theoretical basis for the analysis of a general 

hybrid hierarchy [7]. This paper is built on its theoretical 

results and describes the algorithms for supporting 

hierarchy administration. To the best of our knowledge, 

no other works have addressed the issue of administration 

and management of hybrid hierarchies.   
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In this paper, we describe a Java-based implementation of 

a hybrid role hierarchy and present associated algorithms 

for their analysis. The implementation presented here is 

based on our earlier work on hybrid hierarchies within the 

GTRBAC framework [4, 5, 6, 7]. In particular, we present 

two approaches to compute uniquely activable sets of role 

sets for a user assigned to a role within a hybrid hierarchy. 

The first approach is based on decomposing a hybrid 

hierarchy into its component linear components and  then 

constructing the activable set by combining those 

associated with these components. The second approach 

involves using inference rules that facilitate the 

construction of the derived relations between indirectly 

related pairs of hierarchical roles. For formal details of 

these approaches we refer the readers to [6]. 

The paper is organized as follows. Section 2 presents a 

brief background on hybrid hierarchies. Section 3 

discusses implementation approaches, and algorithms 

used in the implementation. In Section 4, we present the 

complexity analysis of the approaches presented in 

Section 3. In section 5, we present our conclusions and 

some future work. 

    

2. Background 

 
Among several benefits of an RBAC model is the role 

hierarchy. A role hierarchy provides for the efficient 

handling of permission distribution to users [9] by virtue 

of the role-role relationships that define permission-

acquisition and role-activation semantics. That is, if a 

hierarchy uses the permission inheritance semantics, 

anyone explicitly assigned to a role also is authorized for 

its junior roles. Similarly, if a hierarchy uses the role-

activation semantics, anyone explicitly assigned to a role 

can also activate its junior roles. In both cases, users 

assigned to the senior role need not be explicitly assigned 

to the junior roles.   
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Figure 1: An example hybrid role hierarchy 
 

2.1 Hybrid Role Hierarchy 
 

Joshi et al. classify a role hierarchy into three types – I-

hierarchy, A-hierarchy and IA-hierarchy. A hybrid 

hierarchy allows different hierarchical relations to coexist 

among roles in the hierarchy. Hybrid hierarchies have 

been shown to be desirable for capturing fine-grained 

access control requirements [4]. Figure 1 shows an 

example of a hybrid hierarchy.  
 

2.2 Uniquely Activable Set (UAS) 
 

In a hybrid hierarchy, maintaining permission acquisition 

and role activation semantics can become quite 

challenging. Joshi et al. introduce the concept of Uniquely 

Activable Sets (UAS), to facilitate the analysis of hybrid 

hierarchies and simplify the process of determining the 

activation and permission-acquisition sets [6]. Next we 

briefly introduce these concepts.  

The UAS associated with a hierarchy is essentially the set 

of role sets that can be activated by a user assigned to a 

role of the hierarchy in a single session. Hence, UAS is 

mainly relevant from the perspective of the principle of 

the least privilege. We assume that H is a hierarchy with a 

single root (seniormost) role, SH.  UAS(H) represents the 

UAS associated with a user assigned to SH. We use L to 

denote a monotype linear chain of hierarchically related 

roles and Lh to denote a hybrid linear chain of 

hierarchically related roles. LH will be used to refer to 

either L or Lh. The theorems in Table 1, presented in [7], 

formally characterize the UAS for a given hierarchy.  
 

Table 1: Theorems to generate UAS [6] 
 
 

 

Theorem 1(Monotype Linear Hierarchy):  For L = (X, <f>), <f>∈ 

{≥a ≥i ≥}: 

UAS(Lh, 

t)= {
 

{{SH}}                                        if  (<f> = ≥i)  

2X \∅                       if  (<f> = ≥a)  

{{x1}, {x2}, …, {xn}}                      if  (<f> = ≥) 

Theorem 2 (Hybrid Linear hierarchy): 

Lh =  (L1, LH2), L1 = (X1, <f1>), 

LH2 = (Lx, LH’), Lx = (Xx, <fx>), <fx> ≠ <f1>: 

if <f1> =  ≥i
  then   UAS(Lh) = UAS(L1) 

if <f1> =  ≥a
   then 

UAS(Lh)= {
 

UAS(L1)                                    if  (<fx> = ≥i)  
 

UAS(
1

U

L ) ∪ UAS(LH2)   

∪ (UAS (
1

U

L ) ⊗ UAS(LH2))            if  (<fx> = ≥) 

if <f1> =  ≥  then 

UAS(Lh)= {
 

UAS(L1)                       if (<fx> = ≥i) 
 

UAS(L1)
 ∪ UAS(

2

L

LH )  

∪ (UAS(L1) ⊗ UAS(
2

L

LH ))       if (<fx> = ≥)  

Theorem 3 (Hybrid Non-Linear Hierarchy): H = (X, [f]) = (LH1, 

H1)∃ x, y, z ∈ X,  (x<f>y) ∧ (x<f>z):  
 

• UAS(H) = I\C, where  

• I = (UAS(LH1) ∪
 UAS(H1) ∪ (UAS(LH1)\B ⊗ UAS(H1)\B)),    

• B = (UAS(LH1) ∏ UAS(H1)), where, X ∏ Y = {X, Y | X ∈ 

UAS(LH1), Y∈ UAS(H1)  and X ∩Y ≠ ∅}, and  

• C = {Z | Z ∈ I, such that ∃ x, y  ∈ Z, x ≥ y}. 
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We use the notation LH
U
 to refer to the segment of the 

linear path component LH without the junior-most role. 

Similarly, we write LH
L
 to refer to the segment of the 

linear path component LH, without the senior-most 

element. 

3. Role Hierarchy Management 
 

In this section, we present the implementation and 

associated algorithms for hybrid hierarchy management.  

 

3.1 Implementation Approaches   
 

We present two techniques implemented to compute the 

UAS. The first is the Decomposition approach, which 

uses the Theorems in Table 1. The second is the Derived 

Relations approach, which uses inference rules from [6, 

7]. Due to space limitations, we shall elaborate on the first 

approach and discuss the implementation of the second 

approach. We refer the readers to [6] for the details on the 

inference rules which have been shown to be sound and 

complete. 

 

3.2 Decomposition Approach 

 
The UAS is calculated in an incremental manner as 

shown in Figure 2. Initially, the role hierarchy is checked 

to determine if it is a monotype or hybrid hierarchy. If it 

is monotype, the UAS is not computed; instead, the 

hierarchy type information is stored and when the UAS is 

required, it is used to dynamically generate the UAS using 

Theorem 1 from Table 1. 

If the hierarchy is hybrid, then the UAS is computed 

using Theorems 1, 2 and 3 from Table 1. The Linear Path 

Decomposition of the Hybrid Hierarchy (LPDHH) refers 

to the generation of individual linear paths for the senior-

most role. Each components Lhi, is decomposed into its 

linear monotype components. The UAS of each Li,k is 

calculated from Theorem 1 in Table 1. Then, the UASs of 

the Li,ks are incrementally combined using Theorem 2 

(denoted by ⊕2), to obtain the UAS of Lhi. Finally the 

UASs of the Lhi are incrementally combined using 

Theorem 3 (denoted by ⊕3), to obtain the UAS of the 

hybrid hierarchy with a root. 

The algorithm for computing the UAS of a hierarchy is 

given in Figure 3. An important module in this 

implementation is the LPDHH. A depth-first-search 

approach is used to obtain the linear components. UAS 

generation is implemented as a sequential procedure, 

taking the role for which the UAS is to be computed as 

uasGeneration(r1) 

INITIALIZE the hierarchy H 

IF checkHybrid() is FALSE 

 H.type = hierarchyType(H) 

ELSE 

 Generate Linear Path Components {Lh1, Lh2, …., Lhm}  

  FOR each Lhi, 1 ≤ i ≤ m , DO 

   Monotype decomposition of Lhi to obtain  {Li,1, Li,2, …. Li,n} 

  FOR each Li,k,  1 ≤ k ≤ m, DO 

   ULi,k = uasLinearMonotype(Li,k) 

   ULhi = uasLinear(ULi,1, ULi,2, …., ULi,n) 

  UH = uasHierarchy(ULh1, ULh2, …., ULhm) 

RETURN UH 

uasLinearMonotype(Li,k)  

IF Li,k.type=”I-hierarchy”, ULi,k = 
,i kL

S  

IF Li,k .type=”A-hierarchy”, ULi,k = 2|X| - ∅ 

IF Li,k..ype=”IA-hierarchy”, ULi,k = {r0,  r1, …..,  rn}, where  

 ri ∈ Li,k, 0 ≤ i ≤ sizeof(Li,k) 

RETURN ULi,k 

uasLinear(Lhi, ULi,1; ULi;2, …., ULi,n) 

FOR each pair of ULi,k-1 and ULi,k 2 ≤ k ≤ n, DO 

  IF Li,k-1.type=”I-hierarchy” or Li,k.type=”I-hierarchy” 

  ULi,k-1 = ULi-k 

    ELSE 

   IF Li,k-1.type=”A-Hierarchy” and Li,k.type=”IA-Hierarchy” 

    ULi,k-1 = uasMonotype(
, 1

L

i k
UL

−
) 

   ELSE 

    ULi,k = uasMonotype(
,

L

i k
UL ) 

  LET ULtemp be the set of all pairings of elements from ULi,k-1  

  and ULi,k 

  ADD elements of ULtemp and ULi,k to ULi,k-1 

RETURN UL1 

uasHierarchy(ULh1, ULh2, …,  ULhm) 

FOR each pair of ULhi and ULhi+1 1 ≤ i ≤ m-1, DO 

LET B be the set of pairings (s,t), such that s and t have no 

common elements. 

  LET d1 and d2 be the sets of elements of ULhi and  

    ULhi+1, respectively, without the elements of B. 

  LET I be all pairings of elements from d1 and d2  

  ADD elements of ULhi and ULhi+1 to I 

 LET C be the set of elements Z such that for all (x,y)  where x and  

y are elements of Z and immediateSenior(x, y, "IA- Hierarchy") 

 SET ULhi + 1 as the set of elements of I that are not  

 elements of C 

RETURN ULhm 

……………………..

H

Lh1
Lhm

L1,1 L1,n

……………………

UAS(L
1,1

)

UAS(Lh
1
) UAS(Lh

m
)
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UASM
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Figure 2: Decomposition approach 

Figure 3: Algorithm for UAS calculation 
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input. The sequence of steps involved in the computation 

of the UAS is as follows: 

1. Generate the hybrid linear path components by 

performing a DFS with path storing.  

2. For each hybrid linear path component, decompose it 

into its monotype components. 

3. For each monotype component apply Theorem 1 to 

obtain the UAS 

4. Use Theorem 2 to compose the UAS for each hybrid 

linear path component given the UASs of its 

monotype components.   

5. Find the composite UAS of the hierarchy given the 

UASs of the linear components, using Theorem 3. 

 

Module uasGeneration() computes the UAS, using 

uasLinearMonotype() to perform step 3, uasLinear() to 

perform step 4, and uasHierarchy() to perform step 5. The 

following example illustrates the decomposition approach 

to computing the UAS:  

Example 1: Consider the hierarchy given in Figure 4. Let 

SH = r3. After the linear path decomposition of the 

hierarchy, we get the linear path components shown in the 

Figure 4, i.e.  

H=(Lh1, Lh2, Lh3, Lh4). 

Lh1= L11 ; Lh2= (L22, L21)  

Rolesof(L11)=(r3,r2,r1); Rolesof(L21)=(r2,r4)   
 

Lh3= (L32, L31); Lh4 = (L42, L41)  

Rolesof(L31)=(r5,r4); Rolesof(L32)=(r3,r5) 

Rolesof(L41)=(r3,r5,r6); Rolesof(L42)=(r6,r7) 

1.  UAS(L11)  = {{r3},{r2},{r1}} 

     UAS(Lh1)  =  {{r3},{r2},{r1}) 
 

2.  UAS(L21)  = {{r2},{r4},{r2,r4}}  

 UAS(L22)  = {{r3},{r2}}  

 UAS(Lh2)  =  {{{r4}, {r2}, {r3},{r4,r2},{r4,r3}} 
 

3.  UAS(L31)  =  {{r4},{r5}}   

 UAS(L32)  =  {{r4},{r5},{r4,r5}} 

 UAS(Lh3)  =  {{r3}, {r5},{r4},{r5,r3},{r3, r4}} 
 

4. UAS(L41)  =  {{r3},{r5},{r3,r5},{r6},{r3,r6},               

                             {r5,r6},{r3,r5,r6}} 
  

 UAS(L42)  =  {{r6}, {r7}} 

 UAS(Lh4) = {{r3}, {r5}, {r6}, {r7}, {r3,r5}, {r3,r6}, 

                           {r3, r7}, {r5, r6}, {r5, r7}, {r3,r5, r6}} 

 
 

Thus:  UAS(H) = {{r
3
}, {r

2
}, {r

1
}, {r

4
}, {r

1
,r

4
}, {r

4
,r

2
}, 

{r
5
}, {r

2
,r

5
}, {r

1
,r

5
}, {r

6
}, {r

3
,r

6
}, {r

5
,r

6
}, {r

2
,r

6
}, {r

1
,r

6
}, 

{r
4
,r

6
}, {r

1
,r

4
,r

6
}, {r

4
,r

2
,r

6
}} 

 
 
 

 

3.3 Derived Relations Approach 
 

An alternate approach to resolving a “request to activate” 

a set of roles is to maintain a set of all possible relations 

that can be first derived from the hierarchy, and then to 

construct the UAS based on that. Joshi et al. introduced a 

set of inference rules to derive relations between any two 

roles of the hierarchy [7]. The resulting derived relations 

can be I, A or IA-hierarchical relations. From the 

definition of A-hierarchy, if a user u is assigned to a role 

say r1, and r1 is A-hierarchically related (directly or 

derived) to a set of roles say X’, then if 

can_activate(u, r1), holds, then for all r, r∈ X’, 

can_activate(u, r) also holds. For more details on 

this, refer to [6].  

Computing the UAS from the derived relations, involves 

performing a DFS on the sub-hierarchy, rooted at r1. For 

every r ∈ X’ encountered, a new role set is created with r, 

along with the permissions associated with this new role 

set, by virtue of their assignments to the roles. Figure 5 

shows the algorithm for this approach. This procedure 

generates the minimal sets of roles that can be activated in 

UAS, to produce certain sets of permissions in P. 
 

4. Complexity Analysis and Comparison 
 

In this section, we analyze the complexities of the two 

approaches and compare them. 

  

4.1 Decomposition Approach 
 

For a monotype hierarchy, we shall not calculate the time 

complexity as we do not pre-calculate the UAS. Every 

Figure 5: Algorithm for derived relations approach 

Figure 4: (a) A hybrid hierarchy, and (b) its linear 

component  

derivedRelationsUAS(r1) 

Let P be the set of all possible combinations permission. 

Let UAS be the set of minimal sets of role activations be. 

Let permissions of r1 be P1 ⊆ P.   

Add r1 to UAS.  

Start DFS 

 FOR ri such that r1 ≥a ri, DO 

  Let all permissions possessed by ri be Pi. 

  IF ∃r, ri ≥i r or ri ≥ r 

   Add permissions assigned to r to Pi. 

   Add Pi to P, add ri to UAS.  

   FOR all Pk ∈ P,  Let P′= Pk ∪ Pi, DO 

    IF P′∉ P, THEN  

     add P′ to P and  add UASj ∪ ri to UAS 

r3

r2

r1

r4

r5

r6

r7

r3

r2

r1

r3

r2

r4

r3

r5

r4

r3

r5

r6

r6

Lh1 Lh2 Lh3        Lh4
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Figure 5: Pseudocode for Derived Relations Approach 

time an activation request is to be processed, a DFS is 

performed on the hierarchy to determine whether the roles 

can be allowed to be activated for a single session. The 

complexity of the DFS is be O(|X|+|He|), where |X| 

represents the number of roles in the hierarchy, and He 

represents the set of the hierarchical relations. 

uasGeneration() is the main function that initiates the 

computation of the UAS for a given role. 

The function to generate the linear path decomposition of 

a hybrid hierarchy uses a DFS traversal on the hierarchy, 

given the set of hierarchical relations He. The complexity 

of a DFS operation on a graph G ={V,E}, where V is the 

set of nodes and E is the set of edges, is given as O(|V| 

+|E|). Thus the complexity of the decomposition step is:  

O(|X|+|He|). 

The function to generate the monotype components of a 

linear path, LHi,, performs a linear search on the roles in 

the component to generate its monotype components. 

Hence, the complexity of this function is 

O(|Rolesof(LHi)|). 

The function uasLinearMonotype(Li,k) generates the UAS 

for the monotype component Li,k, which is dependant on 

the type of the hierarchy and the number of roles. The 

complexity of this function is given as: uLMi,k = O( ,| |
2 i kL

) 

Function uasLinear(LHi) generates the UAS for the linear 

component LHi, by combining those of its monotype 

components (Li,1, Li,2,….Li,n).  The complexity of this 

function is dependant on the sizes of the UASs of its 

monotype components and is given as follows: 

uLi = O(uLMi,1 × uLMi,2 × …. × uLMi,n) 

Where n represents the number of linear monotype 

components obtained from the decomposition of LHi. 

Function uasHierarchy (LHi) generates the UAS of the 

hierarchy H, by combining those of its linear components 

(LH1, LH2,….LHm). The complexity of this function 

depends on the sizes of the UASs of each of the linear 

components and is given as: 

uH = O(uL1 ×  uL2 × …… × uLm) 

Where m represents the number of linear path components 

of H. From the algorithm, we see that the overall 

complexity of computing the UAS is the sum of the 

complexities of the LPDHH, the monotype decomposition 

of the linear paths and the complexity of uasHierarchy(). 

Thus we have 

O(|X|+|He|+

1

( )

n

i
i

LH

=

∑ Rolesof  + uH            (1) 

When a request for activation is to be processed, a simple 

linear search of the stored UASs for the role ri assigned to 

the user and a second linear search on UAS(ri), will yield 

a result. Thus the complexity of processing the request is: 

O(|X| + |UAS(ri)|) 

Figure 6a presents sample complexity plots for some 

specialized hierarchies. The graphs are “log(Complexity) 

vs. No of Roles” plots. Plots were obtained from random 

hierarchy types with the following structures:  

• A monotype hierarchy of A-Hierarchy type  

• A simple hybrid hierarchy, where the hybrid hierarchy 

has linear path components that are monotype.  

• A general hybrid hierarchy that has hybrid linear path 

components. For the plot, we have assumed that each 

linear path component has no more than 3 linear 

monotype segments. 

The complexities are calculated from (1).  

 

 
4.2 Derived Relations Based Approach 
 

Determining all the direct and derived relations in a 

hierarchy is equivalent to a single DFS, which has a 

complexity of O(|X| + |He|). The complexity of computing 

the UAS from the derived relations is: 

O((

| '|

1

( 2 1)
X

i

i=

−∑ × |X|) + |He|). 

So the overall complexity of determining the UAS is  

O((|X| + |He|) + ((

| '|

1

( 2 1)
X

i

i=

−∑ × |X|)+|He|)         (2) 

Figure 6b shows the complexity of the derived relation 

based approach. This approach has greater complexity 

with high values of log(C) and is independent of the 

hierarchy type.  
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4.3 Discussion 
 

From the plots, we see that the complexity of calculating 

the UAS of a monotype hierarchy dynamically is 

significantly lower than that for a hybrid hierarchy. 

Furthermore, the complexity of computing the UAS for 

the simple hybrid hierarchy is also much lesser than that 

for the general hybrid hierarchy. This means if the 

hierarchy could be segmented into multiple monotype 

hierarchies or even simple hybrid hierarchies, then the 

complexity of computing the UAS for each and 

combining them together would be much lesser than that 

of computing the UAS for the general hybrid hierarchy. 

We are pursuing this approach currently. We can see that 

the decomposition approach is dependant on the sizes of 

the linear monotype segments, whereas the derived 

relations based approach is dependant on the size of the 

entire sub-hierarchy rooted at a role. This makes the 

derived relations approach more complex in terms of the 

processing time. The two approaches were tested in the 

implementation of our GTRBAC framework, adopted 

from [4]. The implementation in [4] does not consider 

hybrid hierarchies. Figure 8 shows the snapshots of 

hierarchy administration component in our 

implementation.  
 

6. Conclusions and Future Work 

 
In this paper, we have shown two techniques for 

computing the UAS of a hybrid hierarchy, the 

decomposition based and the derived relations based 

approaches. The decomposition approach is better in 

terms of complexity than the derived relations approach. 

As a future work, we plan to increase the efficiency of 

this approach by using segmentation of the hybrid 

hierarchy into component monotype hierarchies. 

Furthermore, the current implementation has not 

addressed the temporal constraints on hierarchically 

related roles. This work is also motivated by the need to 

support hierarchy transformations as the policy evolves. 

To provide support for evolution management, both UAS 

and derived relations need to be incrementally handled for 

a hierarchy. We are currently extending these algorithms 

to support such incremental updates.  
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