

Towards Administration of a Hybrid Role Hierarchy

Suroop Mohan Chandran James B. D. Joshi

Dept. of Information Science and Telecommunications, University of Pittsburgh, Pittsburgh, PA

{sum22@pitt.edu; jjoshi@mail.sis.pitt.edu}

Abstract

Role-Based Access Control (RBAC) models have emerged

as a leading access control approach for today’s

information systems. Hybrid role hierarchies introduced

in the Generalized Temporal RBAC model have shown to

be very desirable for capturing fine-grained access

control semantics. However, its administration can

become significantly complex. Efficient techniques are

needed to administer such hierarchies to support the

development of high performance access control systems.

In this paper, we present two approaches to implementing

a hybrid role hierarchy in the context of the GTRBAC

model and analyze and compare their complexities.

1. Introduction

Role based access control (RBAC) has emerged as a

promising alternative to traditional discretionary and

mandatory access control (DAC and MAC) models,

which have inherent limitations [2, 3, 8, 9]. Several

beneficial features such as policy neutrality, support for

least privilege and efficient access control management

are associated with RBAC models [1, 9].

An important feature of the the RBAC models is the role

hierarchy. A hierarchical relation between two roles

defines permission acquisition and role activation

semantics that can be utilized for efficiently and

effectively structuring functional roles of an organization.

Joshi et al. established a clear distinction between the

three role hierarchies - permission-inheritance-only

hierarchy (I-hierarchy), activation-only hierarchy (A-

hierarchy), and the combined permission-inheritance and

activation hierarchy (IA-hierarchy) - within the context of

the Generalized Temporal RBAC model (GTRBAC) [4].

It has been shown that such a fine-grained hierarchical

semantics facilitates capturing a wide range of security

requirements, including the specification of fine-grained

time-based SoD constraints on the roles including those

within a hierarchy, time-constrained inheritance and

activation relations, and user-centric or permission-centric

cardinality constraints on roles in a hierarchy [3, 7, 9].

An important issue in authorization decision making

process is to know which set of roles a user is allowed to

activate in a single session. Furthermore, the system

should be able to determine what roles are required to be

activated to avail of a certain set of permissions. The

significance of such information is the following:

1. When a user requests the activation of a set of roles

which may be hierarchically related in a session, the

authorization system should be able to determine

whether to grant that request or not.

2. By determining which roles a user can activate within

a single session, the authorization system can find

and even resolve possible conflicts between the role

hierarchy and the SoD constraints specified.

3. As the policy evolves a hierarchy may be

transformed. In such a case, the original permission

inheritance and role activation semantics need to be

carefully maintained. Such transformations occur

when roles in a hierarchy are deleted or modified, or

new roles are added to the hierarchy. In emerging

applications, policy evolution is a crucial issue as

policies are very dynamic and constantly evolve [6].

Administering a role hierarchy, particularly in presence of

other constraints (SoD, cardinality, and dependencies),

can be seen as the most challenging aspect of RBAC

systems [7, 10]. Efficient techniques are needed to

maintain the permission inheritance and role activation

semantics to support the scenarios indicated above and to

support efficient administration and management of the

RBAC policies. Earlier works have addressed modeling

issues related to the administration of RBAC policies as

well as hierarchy transformation [10]. However, they are

limited to the traditional RBAC models where only IA-

hierarchy is applicable. Inclusion of the three different

types of hierarchies makes the issue of hierarchy

administration significantly challenging. Joshi et al. have

developed a theoretical basis for the analysis of a general

hybrid hierarchy [7]. This paper is built on its theoretical

results and describes the algorithms for supporting

hierarchy administration. To the best of our knowledge,

no other works have addressed the issue of administration

and management of hybrid hierarchies.

5000-7803-9093-8/05/$20.00 ©2005 IEEE.

In this paper, we describe a Java-based implementation of

a hybrid role hierarchy and present associated algorithms

for their analysis. The implementation presented here is

based on our earlier work on hybrid hierarchies within the

GTRBAC framework [4, 5, 6, 7]. In particular, we present

two approaches to compute uniquely activable sets of role

sets for a user assigned to a role within a hybrid hierarchy.

The first approach is based on decomposing a hybrid

hierarchy into its component linear components and then

constructing the activable set by combining those

associated with these components. The second approach

involves using inference rules that facilitate the

construction of the derived relations between indirectly

related pairs of hierarchical roles. For formal details of

these approaches we refer the readers to [6].

The paper is organized as follows. Section 2 presents a

brief background on hybrid hierarchies. Section 3

discusses implementation approaches, and algorithms

used in the implementation. In Section 4, we present the

complexity analysis of the approaches presented in

Section 3. In section 5, we present our conclusions and

some future work.

2. Background

Among several benefits of an RBAC model is the role

hierarchy. A role hierarchy provides for the efficient

handling of permission distribution to users [9] by virtue

of the role-role relationships that define permission-

acquisition and role-activation semantics. That is, if a

hierarchy uses the permission inheritance semantics,

anyone explicitly assigned to a role also is authorized for

its junior roles. Similarly, if a hierarchy uses the role-

activation semantics, anyone explicitly assigned to a role

can also activate its junior roles. In both cases, users

assigned to the senior role need not be explicitly assigned

to the junior roles.

r1

r2 r3

r4

r6
r7

r5

Legend

A-hierarchy (≥a)

I-hierarchy (≥i)

IA-hierarchy (≥)

Figure 1: An example hybrid role hierarchy

2.1 Hybrid Role Hierarchy

Joshi et al. classify a role hierarchy into three types – I-

hierarchy, A-hierarchy and IA-hierarchy. A hybrid

hierarchy allows different hierarchical relations to coexist

among roles in the hierarchy. Hybrid hierarchies have

been shown to be desirable for capturing fine-grained

access control requirements [4]. Figure 1 shows an

example of a hybrid hierarchy.

2.2 Uniquely Activable Set (UAS)

In a hybrid hierarchy, maintaining permission acquisition

and role activation semantics can become quite

challenging. Joshi et al. introduce the concept of Uniquely

Activable Sets (UAS), to facilitate the analysis of hybrid

hierarchies and simplify the process of determining the

activation and permission-acquisition sets [6]. Next we

briefly introduce these concepts.

The UAS associated with a hierarchy is essentially the set

of role sets that can be activated by a user assigned to a

role of the hierarchy in a single session. Hence, UAS is

mainly relevant from the perspective of the principle of

the least privilege. We assume that H is a hierarchy with a

single root (seniormost) role, SH. UAS(H) represents the

UAS associated with a user assigned to SH. We use L to

denote a monotype linear chain of hierarchically related

roles and Lh to denote a hybrid linear chain of

hierarchically related roles. LH will be used to refer to

either L or Lh. The theorems in Table 1, presented in [7],

formally characterize the UAS for a given hierarchy.

Table 1: Theorems to generate UAS [6]

Theorem 1(Monotype Linear Hierarchy): For L = (X, <f>), <f>∈

{≥a ≥i ≥}:

UAS(Lh,

t)= {

{{SH}} if (<f> = ≥i)

2X \∅ if (<f> = ≥a)

{{x1}, {x2}, …, {xn}} if (<f> = ≥)

Theorem 2 (Hybrid Linear hierarchy):

Lh = (L1, LH2), L1 = (X1, <f1>),

LH2 = (Lx, LH’), Lx = (Xx, <fx>), <fx> ≠ <f1>:

if <f1> = ≥i
 then UAS(Lh) = UAS(L1)

if <f1> = ≥a
 then

UAS(Lh)= {

UAS(L1) if (<fx> = ≥i)

UAS(
1

U

L) ∪ UAS(LH2)

∪ (UAS (
1

U

L) ⊗ UAS(LH2)) if (<fx> = ≥)

if <f1> = ≥ then

UAS(Lh)= {

UAS(L1) if (<fx> = ≥i)

UAS(L1)
 ∪ UAS(

2

L

LH)

∪ (UAS(L1) ⊗ UAS(
2

L

LH)) if (<fx> = ≥)

Theorem 3 (Hybrid Non-Linear Hierarchy): H = (X, [f]) = (LH1,

H1)∃ x, y, z ∈ X, (x<f>y) ∧ (x<f>z):

• UAS(H) = I\C, where

• I = (UAS(LH1) ∪
 UAS(H1) ∪ (UAS(LH1)\B ⊗ UAS(H1)\B)),

• B = (UAS(LH1) ∏ UAS(H1)), where, X ∏ Y = {X, Y | X ∈

UAS(LH1), Y∈ UAS(H1) and X ∩Y ≠ ∅}, and

• C = {Z | Z ∈ I, such that ∃ x, y ∈ Z, x ≥ y}.

501

We use the notation LH
U
 to refer to the segment of the

linear path component LH without the junior-most role.

Similarly, we write LH
L
 to refer to the segment of the

linear path component LH, without the senior-most

element.

3. Role Hierarchy Management

In this section, we present the implementation and

associated algorithms for hybrid hierarchy management.

3.1 Implementation Approaches

We present two techniques implemented to compute the

UAS. The first is the Decomposition approach, which

uses the Theorems in Table 1. The second is the Derived

Relations approach, which uses inference rules from [6,

7]. Due to space limitations, we shall elaborate on the first

approach and discuss the implementation of the second

approach. We refer the readers to [6] for the details on the

inference rules which have been shown to be sound and

complete.

3.2 Decomposition Approach

The UAS is calculated in an incremental manner as

shown in Figure 2. Initially, the role hierarchy is checked

to determine if it is a monotype or hybrid hierarchy. If it

is monotype, the UAS is not computed; instead, the

hierarchy type information is stored and when the UAS is

required, it is used to dynamically generate the UAS using

Theorem 1 from Table 1.

If the hierarchy is hybrid, then the UAS is computed

using Theorems 1, 2 and 3 from Table 1. The Linear Path

Decomposition of the Hybrid Hierarchy (LPDHH) refers

to the generation of individual linear paths for the senior-

most role. Each components Lhi, is decomposed into its

linear monotype components. The UAS of each Li,k is

calculated from Theorem 1 in Table 1. Then, the UASs of

the Li,ks are incrementally combined using Theorem 2

(denoted by ⊕2), to obtain the UAS of Lhi. Finally the

UASs of the Lhi are incrementally combined using

Theorem 3 (denoted by ⊕3), to obtain the UAS of the

hybrid hierarchy with a root.

The algorithm for computing the UAS of a hierarchy is

given in Figure 3. An important module in this

implementation is the LPDHH. A depth-first-search

approach is used to obtain the linear components. UAS

generation is implemented as a sequential procedure,

taking the role for which the UAS is to be computed as

uasGeneration(r1)

INITIALIZE the hierarchy H

IF checkHybrid() is FALSE

 H.type = hierarchyType(H)

ELSE

 Generate Linear Path Components {Lh1, Lh2, …., Lhm}

 FOR each Lhi, 1 ≤ i ≤ m , DO

 Monotype decomposition of Lhi to obtain {Li,1, Li,2, …. Li,n}

 FOR each Li,k, 1 ≤ k ≤ m, DO

 ULi,k = uasLinearMonotype(Li,k)

 ULhi = uasLinear(ULi,1, ULi,2, …., ULi,n)

 UH = uasHierarchy(ULh1, ULh2, …., ULhm)

RETURN UH

uasLinearMonotype(Li,k)

IF Li,k.type=”I-hierarchy”, ULi,k =
,i kL

S

IF Li,k .type=”A-hierarchy”, ULi,k = 2|X| - ∅

IF Li,k..ype=”IA-hierarchy”, ULi,k = {r0, r1, ….., rn}, where

 ri ∈ Li,k, 0 ≤ i ≤ sizeof(Li,k)

RETURN ULi,k

uasLinear(Lhi, ULi,1; ULi;2, …., ULi,n)

FOR each pair of ULi,k-1 and ULi,k 2 ≤ k ≤ n, DO

 IF Li,k-1.type=”I-hierarchy” or Li,k.type=”I-hierarchy”

 ULi,k-1 = ULi-k

 ELSE

 IF Li,k-1.type=”A-Hierarchy” and Li,k.type=”IA-Hierarchy”

 ULi,k-1 = uasMonotype(
, 1

L

i k
UL

−
)

 ELSE

 ULi,k = uasMonotype(
,

L

i k
UL)

 LET ULtemp be the set of all pairings of elements from ULi,k-1

 and ULi,k

 ADD elements of ULtemp and ULi,k to ULi,k-1

RETURN UL1

uasHierarchy(ULh1, ULh2, …, ULhm)

FOR each pair of ULhi and ULhi+1 1 ≤ i ≤ m-1, DO

LET B be the set of pairings (s,t), such that s and t have no

common elements.

 LET d1 and d2 be the sets of elements of ULhi and

 ULhi+1, respectively, without the elements of B.

 LET I be all pairings of elements from d1 and d2

 ADD elements of ULhi and ULhi+1 to I

 LET C be the set of elements Z such that for all (x,y) where x and

y are elements of Z and immediateSenior(x, y, "IA- Hierarchy")

 SET ULhi + 1 as the set of elements of I that are not

 elements of C

RETURN ULhm

……………………..

H

Lh1
Lhm

L1,1 L1,n

……………………

UAS(L
1,1

)

UAS(Lh
1
) UAS(Lh

m
)

UAS(H)

LPDHH

MDHP

UASM

Legend

2+ – Combined Using Theorem 2

3+ – Combined Using Theorem 3

………………

…… Lm,1 Lm,n

……

Lh2

……D
ec

o
m

p
o
si

ti
o
n

U
A

S
C

o
m

p
u
ta

ti
o
n

…………………….. ……………………………..UAS(L
1,1

) UAS(Ln,1) UAS(Ln,1)

2+ 2+

……………………………………….

3+

Figure 2: Decomposition approach

Figure 3: Algorithm for UAS calculation

502

input. The sequence of steps involved in the computation

of the UAS is as follows:

1. Generate the hybrid linear path components by

performing a DFS with path storing.

2. For each hybrid linear path component, decompose it

into its monotype components.

3. For each monotype component apply Theorem 1 to

obtain the UAS

4. Use Theorem 2 to compose the UAS for each hybrid

linear path component given the UASs of its

monotype components.

5. Find the composite UAS of the hierarchy given the

UASs of the linear components, using Theorem 3.

Module uasGeneration() computes the UAS, using

uasLinearMonotype() to perform step 3, uasLinear() to

perform step 4, and uasHierarchy() to perform step 5. The

following example illustrates the decomposition approach

to computing the UAS:

Example 1: Consider the hierarchy given in Figure 4. Let

SH = r3. After the linear path decomposition of the

hierarchy, we get the linear path components shown in the

Figure 4, i.e.

H=(Lh1, Lh2, Lh3, Lh4).

Lh1= L11 ; Lh2= (L22, L21)

Rolesof(L11)=(r3,r2,r1); Rolesof(L21)=(r2,r4)

Lh3= (L32, L31); Lh4 = (L42, L41)

Rolesof(L31)=(r5,r4); Rolesof(L32)=(r3,r5)

Rolesof(L41)=(r3,r5,r6); Rolesof(L42)=(r6,r7)

1. UAS(L11) = {{r3},{r2},{r1}}

 UAS(Lh1) = {{r3},{r2},{r1})

2. UAS(L21) = {{r2},{r4},{r2,r4}}

 UAS(L22) = {{r3},{r2}}

 UAS(Lh2) = {{{r4}, {r2}, {r3},{r4,r2},{r4,r3}}

3. UAS(L31) = {{r4},{r5}}

 UAS(L32) = {{r4},{r5},{r4,r5}}

 UAS(Lh3) = {{r3}, {r5},{r4},{r5,r3},{r3, r4}}

4. UAS(L41) = {{r3},{r5},{r3,r5},{r6},{r3,r6},

 {r5,r6},{r3,r5,r6}}

 UAS(L42) = {{r6}, {r7}}

 UAS(Lh4) = {{r3}, {r5}, {r6}, {r7}, {r3,r5}, {r3,r6},

 {r3, r7}, {r5, r6}, {r5, r7}, {r3,r5, r6}}

Thus: UAS(H) = {{r
3
}, {r

2
}, {r

1
}, {r

4
}, {r

1
,r

4
}, {r

4
,r

2
},

{r
5
}, {r

2
,r

5
}, {r

1
,r

5
}, {r

6
}, {r

3
,r

6
}, {r

5
,r

6
}, {r

2
,r

6
}, {r

1
,r

6
},

{r
4
,r

6
}, {r

1
,r

4
,r

6
}, {r

4
,r

2
,r

6
}}

3.3 Derived Relations Approach

An alternate approach to resolving a “request to activate”

a set of roles is to maintain a set of all possible relations

that can be first derived from the hierarchy, and then to

construct the UAS based on that. Joshi et al. introduced a

set of inference rules to derive relations between any two

roles of the hierarchy [7]. The resulting derived relations

can be I, A or IA-hierarchical relations. From the

definition of A-hierarchy, if a user u is assigned to a role

say r1, and r1 is A-hierarchically related (directly or

derived) to a set of roles say X’, then if

can_activate(u, r1), holds, then for all r, r∈ X’,

can_activate(u, r) also holds. For more details on

this, refer to [6].

Computing the UAS from the derived relations, involves

performing a DFS on the sub-hierarchy, rooted at r1. For

every r ∈ X’ encountered, a new role set is created with r,

along with the permissions associated with this new role

set, by virtue of their assignments to the roles. Figure 5

shows the algorithm for this approach. This procedure

generates the minimal sets of roles that can be activated in

UAS, to produce certain sets of permissions in P.

4. Complexity Analysis and Comparison

In this section, we analyze the complexities of the two

approaches and compare them.

4.1 Decomposition Approach

For a monotype hierarchy, we shall not calculate the time

complexity as we do not pre-calculate the UAS. Every

Figure 5: Algorithm for derived relations approach

Figure 4: (a) A hybrid hierarchy, and (b) its linear

component

derivedRelationsUAS(r1)

Let P be the set of all possible combinations permission.

Let UAS be the set of minimal sets of role activations be.

Let permissions of r1 be P1 ⊆ P.

Add r1 to UAS.

Start DFS

 FOR ri such that r1 ≥a ri, DO

 Let all permissions possessed by ri be Pi.

 IF ∃r, ri ≥i r or ri ≥ r

 Add permissions assigned to r to Pi.

 Add Pi to P, add ri to UAS.

 FOR all Pk ∈ P, Let P′= Pk ∪ Pi, DO

 IF P′∉ P, THEN

 add P′ to P and add UASj ∪ ri to UAS

r3

r2

r1

r4

r5

r6

r7

r3

r2

r1

r3

r2

r4

r3

r5

r4

r3

r5

r6

r6

Lh1 Lh2 Lh3 Lh4

503

Figure 5: Pseudocode for Derived Relations Approach

time an activation request is to be processed, a DFS is

performed on the hierarchy to determine whether the roles

can be allowed to be activated for a single session. The

complexity of the DFS is be O(|X|+|He|), where |X|

represents the number of roles in the hierarchy, and He

represents the set of the hierarchical relations.

uasGeneration() is the main function that initiates the

computation of the UAS for a given role.

The function to generate the linear path decomposition of

a hybrid hierarchy uses a DFS traversal on the hierarchy,

given the set of hierarchical relations He. The complexity

of a DFS operation on a graph G ={V,E}, where V is the

set of nodes and E is the set of edges, is given as O(|V|

+|E|). Thus the complexity of the decomposition step is:

O(|X|+|He|).

The function to generate the monotype components of a

linear path, LHi,, performs a linear search on the roles in

the component to generate its monotype components.

Hence, the complexity of this function is

O(|Rolesof(LHi)|).

The function uasLinearMonotype(Li,k) generates the UAS

for the monotype component Li,k, which is dependant on

the type of the hierarchy and the number of roles. The

complexity of this function is given as: uLMi,k = O(,| |
2 i kL

)

Function uasLinear(LHi) generates the UAS for the linear

component LHi, by combining those of its monotype

components (Li,1, Li,2,….Li,n). The complexity of this

function is dependant on the sizes of the UASs of its

monotype components and is given as follows:

uLi = O(uLMi,1 × uLMi,2 × …. × uLMi,n)

Where n represents the number of linear monotype

components obtained from the decomposition of LHi.

Function uasHierarchy (LHi) generates the UAS of the

hierarchy H, by combining those of its linear components

(LH1, LH2,….LHm). The complexity of this function

depends on the sizes of the UASs of each of the linear

components and is given as:

uH = O(uL1 × uL2 × …… × uLm)

Where m represents the number of linear path components

of H. From the algorithm, we see that the overall

complexity of computing the UAS is the sum of the

complexities of the LPDHH, the monotype decomposition

of the linear paths and the complexity of uasHierarchy().

Thus we have

O(|X|+|He|+

1

()

n

i
i

LH

=

∑ Rolesof + uH (1)

When a request for activation is to be processed, a simple

linear search of the stored UASs for the role ri assigned to

the user and a second linear search on UAS(ri), will yield

a result. Thus the complexity of processing the request is:

O(|X| + |UAS(ri)|)

Figure 6a presents sample complexity plots for some

specialized hierarchies. The graphs are “log(Complexity)

vs. No of Roles” plots. Plots were obtained from random

hierarchy types with the following structures:

• A monotype hierarchy of A-Hierarchy type

• A simple hybrid hierarchy, where the hybrid hierarchy

has linear path components that are monotype.

• A general hybrid hierarchy that has hybrid linear path

components. For the plot, we have assumed that each

linear path component has no more than 3 linear

monotype segments.

The complexities are calculated from (1).

4.2 Derived Relations Based Approach

Determining all the direct and derived relations in a

hierarchy is equivalent to a single DFS, which has a

complexity of O(|X| + |He|). The complexity of computing

the UAS from the derived relations is:

O((

| '|

1

(2 1)
X

i

i=

−∑ × |X|) + |He|).

So the overall complexity of determining the UAS is

O((|X| + |He|) + ((

| '|

1

(2 1)
X

i

i=

−∑ × |X|)+|He|) (2)

Figure 6b shows the complexity of the derived relation

based approach. This approach has greater complexity

with high values of log(C) and is independent of the

hierarchy type.

0

5

10

15

20

25

30

35

40

45

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

Any Hierarchy (using Derived Relations Approach)

No. of Roles

log(C)

0

1

2

3

4

5

6

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

Simple Hybrid Hierarchy General Hybrid Hierarchy Monotype Hierarchy

No. of Roles

log(C)

a) Decomposition Approach

b) Derived Relations Approach

Figure 4: Complexities of computing the UAS

504

4.3 Discussion

From the plots, we see that the complexity of calculating

the UAS of a monotype hierarchy dynamically is

significantly lower than that for a hybrid hierarchy.

Furthermore, the complexity of computing the UAS for

the simple hybrid hierarchy is also much lesser than that

for the general hybrid hierarchy. This means if the

hierarchy could be segmented into multiple monotype

hierarchies or even simple hybrid hierarchies, then the

complexity of computing the UAS for each and

combining them together would be much lesser than that

of computing the UAS for the general hybrid hierarchy.

We are pursuing this approach currently. We can see that

the decomposition approach is dependant on the sizes of

the linear monotype segments, whereas the derived

relations based approach is dependant on the size of the

entire sub-hierarchy rooted at a role. This makes the

derived relations approach more complex in terms of the

processing time. The two approaches were tested in the

implementation of our GTRBAC framework, adopted

from [4]. The implementation in [4] does not consider

hybrid hierarchies. Figure 8 shows the snapshots of

hierarchy administration component in our

implementation.

6. Conclusions and Future Work

In this paper, we have shown two techniques for

computing the UAS of a hybrid hierarchy, the

decomposition based and the derived relations based

approaches. The decomposition approach is better in

terms of complexity than the derived relations approach.

As a future work, we plan to increase the efficiency of

this approach by using segmentation of the hybrid

hierarchy into component monotype hierarchies.

Furthermore, the current implementation has not

addressed the temporal constraints on hierarchically

related roles. This work is also motivated by the need to

support hierarchy transformations as the policy evolves.

To provide support for evolution management, both UAS

and derived relations need to be incrementally handled for

a hierarchy. We are currently extending these algorithms

to support such incremental updates.

References

[1] D. F. Ferraiolo, D. M. Gilbert, N Lynch. “An Examination

of Federal and Commercial Access Control Policy Needs”,

Proceedings of NISTNCSC National Computer Security

Conference, pages 107-116, September 20-23 1993.

[2] Luigi Giuri, “Role-Based Access Control in JavaTM ”, In

Proceedings of the third ACM Workshop on Role-based

access control, 91-100, 1998

[3] J. B.D. Joshi, W. G. Aref, A. Ghafoor, E. H. Spafford.

“Security Models for Web-based Applications”.

Communications of the ACM, 44(2), 38-72, 2001.

[4] James B D Joshi, Elisa Bertino, Arif Ghafoor, “Temporal

hierarchies and inheritance semantics for GTRBAC”,

Proceedings of the seventh ACM SACMAT, Monterey,

California, USA, pages 74 – 83, 2002

[5] James B. D. Joshi, Basit Shafiq, Arif Ghafoor, Elisa

Bertino, “Dependencies and separation of duty constraints

in GTRBAC”, Proceedings of the eighth ACM SACMAT,

Como, Italy, page 51 – 64, 2003

[6] James B D Joshi, Elisa Bertino, Arif Ghafoor, “Formal

Foundations for Hybrid Role Hierarchies in GTRBAC”,

Submitted to ACM Transactions on Information and

System Security.

[7] J. B. D. Joshi, E. Bertino, U. Latif, A. Ghafoor, “A

Generalised Temporal Role Based Access Control Model”.

IEEE Transactions on Knowledge and Data Engineering,

17(1):4-23, Jan. 2005

[8] S. Osborn, R. Sandhu, Q. Munawer. “Configuring Role-

based Access Control to Enforce Mandatory and

Discretionary Access Control Policies”. ACM Transactions

on Information and System Security, 3(2):85-106, May

2000.

[9] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman.

“Role-Based Access Control Models”. IEEE Computer

29(2): 38-47, IEEE Press, 1996

[10] Jason Crampton, and George Loizou, “Administrative

Scope: A Foundation for Administrative Models”, ACM

Transactions on Information and System Security, 6(2),

201–231, 2003.

Figure 7: Snapshot of our administration module

505

