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Abstract—Ubiquitous deployment of low-cost mobile posi-
tioning devices and the widespread use of high-speed wireless
networks enable massive collection of large-scale trajectory
data of individuals moving on road networks. Trajectory data
mining finds numerous applications including understanding
users’ historical travel preferences and recommending places of
interest to new visitors. Privacy-preserving trajectory mining is
an important and challenging problem as exposure of sensitive
location information in the trajectories can directly invade the
location privacy of the users associated with the trajectories. In
this paper, we propose a differentially private trajectory analysis
algorithm for points-of-interest recommendation to users that
aims at maximizing the accuracy of the recommendation results
while protecting the privacy of the exposed trajectories with
differential privacy guarantees. Our algorithm first transforms
the raw trajectory dataset into a bipartite graph with nodes
representing the users and the points-of-interest and the edges
representing the visits made by the users to the locations, and
then extracts the association matrix representing the bipartite
graph to inject carefully calibrated noise to meet ε-differential
privacy guarantees. A post-processing of the perturbed associa-
tion matrix is performed to suppress noise prior to performing
a Hyperlink-Induced Topic Search (HITS) on the transformed
data that generates an ordered list of recommended points-of-
interest. Extensive experiments on a real trajectory dataset show
that our algorithm is efficient, scalable and demonstrates high
recommendation accuracy while meeting the required differential
privacy guarantees.

I. INTRODUCTION

Ubiquitous deployment of mobile positioning devices and
the widespread use of high-speed wireless networks enable
massive collection of large-scale trajectory data of individuals
moving on road networks. The rapid proliferation of low-
cost GPS-supported mobile devices enables a wide range of
location-based service (LBS) applications including location-
based social networks [10], [30], location-based advertis-
ing [2], [22], location-based information sharing [9], [24]
and navigation applications [28], [32]. A trajectory represents
a sequence of location information formed by a series of
(latitude, longitude, timestamp) triple that captures a va-
riety of travel information of the users including user’s move-
ment pattern [17], travel paths [36] and travel destination [34],
[35]. Each travel destination in a trajectory reveals that the user
has made a visit to the place. In addition to this information, a
trajectory may also include temporal information such as the

visiting times of the users. While trajectories of an individual
mobile user can be analyzed to understand her personal
travel recommendations comprehensively, aggregate analysis
of historical trajectory data belonging to different mobile users
can provide more generalized travel recommendations such
as ‘Where are the top-10 points-of-interest in a given city?’,
‘Which shopping mall is the most popular in this area?’ and
‘Which users have frequently visited this restaurant?’.

Although historical personal trajectory data provide im-
mense information to generate accurate and useful points-
of-interest recommendation, the exposure of the sensitive
trajectory information can pose significant privacy risks that
can invade the location privacy of the users. In particular, the
location information of the travel destination, represented as a
two-dimensional geographical region, is often associated with
a semantic meaning, such as a university, a shopping mall or
a hospital. The disclosure of the association between a mobile
user and such a location may reveal private information about
the health conditions, life style and social and political beliefs
of the user. For example, if an adversary infers the association
between a user and a treatment center, the health state of the
user may be revealed.

Privacy-preserving trajectory mining is an important and
challenging problem as exposure of sensitive location informa-
tion in the trajectories can directly invade the location privacy
of the users associated with the trajectories. Differential pri-
vacy [12], [13], as a state-of-the-art privacy paradigm, provides
a model to quantify the disclosure risks by ensuring that the
published statistical data does not depend on the presence or
absence of an individual record in the dataset. By carefully
applying differential privacy mechanisms [12], [13], [25] on
trajectory data, the personal trajectory information, such as
the travel destination of the users, can be protected from
the malicious or curious inference from the recommendation
results, thus protecting the location privacy of the mobile users.
In this paper, we propose a differentially private trajectory
analysis algorithm for points-of-interest recommendation to
users that aims at maximizing the accuracy of the recom-
mendation results while protecting the privacy of the exposed
trajectories with differential privacy guarantees. Our algorithm
first transforms the raw trajectory dataset into a bipartite graph
with nodes representing the users and the points-of-interest



Fig. 1: User-location bipartite graph construction

and the edges representing the visits made by the users to the
locations, and then extracts the association matrix representing
the bipartite graph to inject carefully calibrated noise to meet
ε-differential privacy guarantees. A post-processing of the
perturbed association matrix is performed to suppress noise
prior to performing a Hyperlink-Induced Topic Search (HITS)
on the transformed data that generates an ordered list of
recommended points-of-interest. We perform extensive exper-
iments on the Geolife GPS trajectory dataset [34], [35], [36]
which contains 17621 trajectories collected from 182 users
for five years. Our results show that the proposed algorithm
is efficient, scalable and demonstrates good recommendation
accuracy while guaranteeing differential privacy.

The rest of the paper is organized as follows: We first
discuss the related work in Section II. Then, in Section III, we
present the definitions of trajectory processing and differential
privacy and the model to transfer a raw trajectory dataset to a
user-location bipartite graph. In Section IV, we introduce our
privacy goal and explain the proposed differentially private
trajectory analysis algorithm for travel recommendation. We
experimentally evaluate our algorithm in Section V under
varying differential privacy budgets, global sensitivity levels
and database scale. Finally, we conclude in Section VI.

II. RELATED WORK

Location privacy has been an active research area for a long
time. In the past, the location privacy protection mechanisms
mainly focused on prevention by protectively processing and
perturbing the location information prior to disclosure. De-
pending on processing location data discretely or continuously,
the location privacy protection mechanisms can be roughly
classified to location data perturbation techniques represented
by [16], [23], [27], [31], and trajectory inference prevention
techniques represented by [3], [4], [5], [6]. The latter can be
further broken down into trajectory perturbation [6] and Mix-
zone [3], [4], [5] techniques. However, all these techniques
assume to restrict the background knowledge of the adver-
sary, which fails to provide strong and quantifiable privacy
guarantee.

Differential privacy [12], [13], as a state-of-the-art privacy
paradigm, provides a model to quantify the disclosure risks
by ensuring that the published statistical data does not depend
on the presence or absence of an individual record in the
dataset. Differential privacy can dispense with the restriction of
the adversary background knowledge and quantify the privacy

in a mathematically provable manner. By carefully applying
differential privacy mechanisms [12], [13], [25] to the trajec-
tory data, the personal trajectory information can be protected
from malicious inference from the statistical outputs. Usually,
the raw trajectory dataset is first transferred to special data
structures, such as Prefix tree [8], [19] or N-gram [7]. Then,
the differential privacy protection mechanisms (e.g. Laplace
Mechanism [12], Exponential Mechanism [25]) inject noises to
the data structures before releasing them for further processing.
To the best of our knowledge, the work presented in this paper
is the first differential privacy protection mechanism aimed at
processing trajectories modeled as bipartite graphs to generate
accurate travel recommendation while protecting the location
privacy of the users in the trajectories.

III. CONCEPTS AND MODEL

In this section, we first present the background concepts
and the bipartite graph model used to model raw trajectory
datasets and the user-location associations in the dataset. We
then discuss the differential privacy model and mechanisms
for achieving differential privacy.

A. User-location bipartite graph representation

The trajectory dataset analysis typically consists of two ma-
jor components, namely trajectory preprocessing and trajectory
analysis [33]. Depending on the objective of the analysis,
the output of trajectory preprocessing can be organized as
graphs [34], matrix [35] or tensors [29]. For the purpose of
points-of-interest recommendation considered in this work,
the raw trajectory dataset is transformed to be processed as
a bipartite graph [33]. A bipartite graph can be represented
by a graph, G = (U,L,E), containing m = |U | nodes on
the left side, n = |L| nodes on the right side and a set
of edges E ⊆ U × L between the two sets of nodes. This
structure naturally meets the objectives of the points-of-interest
recommendation problem as the left nodes and right nodes
can respectively represent users and point-of-interest (POI)
locations to be recommended. Here an edge eij = (ui, lj) ∈ E
indicates that the user ui visited the POI location lj . In
addition, we expect to know the frequency of visit between
user ui and location lj modeled as the edge weight wij of the
edge eij .

To construct such a user-location bipartite graph from the
raw trajectory dataset, we follow a sequence of three steps as
shown in Figure 1. We start from the raw trajectory dataset:



Definition 1 (RAW TRAJECTORY DATASET). The raw trajec-
tory dataset RTD = {(ui, TDi)|1 ≤ i ≤ m} contains the
trajectory data (TDi) for m users (ui). The trajectory data
TDi = {(xj , yj , tj)|1 ≤ j ≤ ki} of user ui is formed by ki
triple, consisting of latitude xj , longitude yj and timestamp
tj (tj < tj+1).

In the example shown in Figure 1, we find the trajectory
data for users u1 to u6 as six dotted lines as the trajectory
data is always discretely captured by GPS devices. In the first
step, we identify the stop points for all the users. A stop point
is defined as a spatial region that the trajectory data fluctuates
within a distance threshold Dt for at least a time threshold Tt.

Definition 2 (STOP POINTS SET). The stop points set SPS =
{(ui, SPi)|1 ≤ i ≤ m} contains the stop points information
(SPi) for the m users (ui). The stop points information
SPi = {spj = (xj , yj)|1 ≤ j ≤ pi} for user ui is
formed by pi stop points. A stop point sp is detected when
a subset of sequential triple of TDi, {(xj , yj , tj)|a ≤ j ≤ b}
follows ∀a < j ≤ b,

√
(xj − xa)2 + (yj − ya)2 ≤ Dt,√

(xb+1 − xa)2 + (yb+1 − ya)2 > Dt, tb − ta ≥ Tt.

In Figure 1, the stop points are identified as triangles.
Subsequently in the second step, these stop points (triangles)
are clustered through well-known clustering techniques such
as k-means [15], DBSCAN [14] or OPTICS [1] clustering
algorithms. These clustered stop points implicitly recommend
those regions covered by the clusters as attractive places as
multiple users in the RTD dataset have historically visited
(stopped at) them. As can be seen in Figure 1, the stop
points of the six users form four clusters, represented by l1
to l4. We denote each cluster as a location as we need to
assign a geographically semantic meaning to the cluster for
travel recommendation. In practice, these locations can be
represented by the landmarks (e.g. tourist attractions, shopping
malls) within the clusters.

Finally, in the third step, we need to construct the as-
sociations between the users and the locations to build the
user-location bipartite graph. We can connect each stop point
with its associated location with an arrow line pointing to
the location, which denotes that the user of this stop point
has visited the location once. Actually, a user may have more
than one stop points within one cluster, which indicates that
this user visited this location multiple times. This information,
called frequency of visit, is important for travel recommen-
dation since a more frequent visit can implicitly represent a
stronger recommendation. Therefore, if we denote an edge in
the user-location bipartite graph to mean that the user visited
the location, we can apply the frequency of visit as the weight
of the edge to indicate that the user has visited the location
multiple times. Based on this assumption, we define the user-
location bipartite graph as:

Definition 3 (USER-LOCATION BIPARTITE GRAPH). The user-
location bipartite graph ULBG = (U,L,E) consists of the
left set of user nodes U = {ui|1 ≤ i ≤ m}, the right set
of location nodes L = {lj |1 ≤ j ≤ n} and the set of visits

represented as edges E = {eij = (ui, lj , wij)|1 ≤ i ≤ m, 1 ≤
j ≤ n} ⊆ U × L, where wij is the frequency of the visit.

We next introduce the notion of differential privacy and the
mechanisms required to achieve differential privacy guarantees
in a dataset.

B. Differential privacy
Differential privacy is a classical privacy definition [12]

that makes conservative assumptions about the adversary’s
background knowledge and bounds the allowable error in a
quantified manner. In general, differential privacy is designed
to protect a single individual’s privacy by considering adjacent
data sets which differ only in one record. Before presenting
the formal definition of ε-differential privacy, we first define
the notion of adjacent datasets in the context of differential
privacy. A data set D can be considered as a subset of records
from the universe U , represented by D ∈ N|U |, where N stands
for the non-negative set and Di is the number of element
i in N. For example, if U = {a, b, c}, D = {a, b, c} can
be represented as {1, 1, 1} as it contains each element of U
once. Similarly, D′ = {a, c} can be represented as {1, 0, 1}
as it does not contain b. Based on this representation, it is
appropriate to use l1 distance (Manhattan distance) to measure
the distance between data sets.

Definition 4 (DIFFERENTIAL PRIVACY [12]). A randomized
algorithm A guarantees ε-differential privacy if for all adja-
cent datasets D1 and D2 differing by at most one record, and
for all possible results S ⊆ Range(A),

Pr[A(D1) = S] ≤ eε × Pr[A(D2) = S]

where the probability space is over the randomness of A.

In other words, the possible results of the randomized
algorithm, given a dataset and a query, can form a distribution
and differential privacy guarantees that the change of the
distribution for two input databases differing in one record
is bounded by a threshold. Many randomized algorithms have
been proposed to guarantee differential privacy [12], [25]. In
our work, we use the most commonly used differential privacy
mechanism namely the Laplace Mechanism [12]. Given a data
set D, a function f and the budget ε, the Laplace Mechanism
first calculates the actual f(D) and then perturbs this true
answer by adding a carefully calibrated noise [12]. The noise
is calculated based on a Laplace random variable, with the
variance λ = 4f/ε, where 4f is the l1 sensitivity, which is
defined as follows.

Definition 5 (l1 SENSITIVITY [13]). Given a function f :
N|U | → Rd, the l1 sensitivity is measured as:

4f = max
D1,D2∈N|U|

||D1−D2||1=1

||f(D1)− f(D2)||1

where ||f(D1)− f(D2)||1 = |f(D1)− f(D2)| is the Manhat-
tan Distance and U stands for the record universe.

In other words, l1 sensitivity measures the maximum impact
that can be caused by changing a single record in a dataset. It



Fig. 2: Differentially private bipartite graph mining

is only related to the function f itself, but independent of the
data sets.

Definition 6 (LAPLACE MECHANISM [12]). Given a function
f : N|U | → Rd, a budget ε and a data set D, for each output,

ALM (D, f, ε) = f(D) + Lap(4f/ε)

where Lap(4f/ε) is a random variable sampled from the
Laplace distribution with 0 mean and 4f/ε variance.

We next discuss the proposed differentially private bipartite
graph analysis techniques for trajectory analysis that employs a
Laplace Mechanism to achieve differential privacy guarantees
in the exposed points-of-interest recommendation.

IV. DIFFERENTIALLY PRIVATE TRAJECTORY ANALYSIS

The proposed differentially private trajectory analysis tech-
nique analyzes the user-location bipartite graph obtained from
the raw trajectories to generate a list of ordered recommended
locations (points-of-interest) and another list of ordered rec-
ommended users based on their frequency of visits to a
location. We start from presenting the privacy goal, namely
what is identified as a ‘record’ in Definition 4 that needs
to be protected by the differential privacy mechanism. We
then present the proposed differentially private algorithm for
bipartite graph analysis that generates the two recommendation
lists from the user-location bipartite graph.

A. Privacy goal

By considering the user-location bipartite graph as a dataset,
a ‘record’ in Definition 4 has the form ‘< ui, lj >’, repre-
senting user ui visited location lj once, namely a stop point
defined in Definition 2. Therefore, an edge eij = (ui, lj , wij)
in the bipartite graph, which can be considered as a group of
wij of (ui, lj , 1), results in wij of same < ui, lj > records
in the dataset. The entire bipartite graph can be transferred
to a dataset with

∑m,n
i=1,j=1 wij records. Then, by setting the

global l1 sensitivity 4f in Definition 5 to different values, we
can protect different levels of differential privacy. We define
4f ∈ [1, wmax], where wmax represents the maximum weight
among the edges. The proposed differentially private trajectory
analysis algorithm with sensitivity 4f ∈ [1, wmax] can thus
protect differential privacy of a group of 4f records. In other
words, the differential privacy of any edge eij = (ui, lj , wij)
in the bipartite graph with wij ≤ 4f can be protected. When
4f = 1, the edges with wij = 1, namely the visits that only

happened once, can be protected. When 4f = wmax, all the
edges in the bipartite graph corresponding to the association
between each pair of user and location, can be protected. To
sum up, a larger4f results in more noisy edges in the bipartite
graph to be protected but results in lower recommendation
results due to higher injected noise. We will evaluate the
varying 4f later in Section V.

B. Differentially private Points-of-Interest Recommendation

Among the recommendation algorithms [11], [20], [26],
[35], the one that fits the bipartite graph structure best is the
HITS-based algorithm [35]. Hyperlink-Induced Topic Search
(HITS) is a link analysis algorithm originally designed for
web pages rating [21]. It defines a hub as a web page with
many links pointing to other web pages and an authority as
a web page pointed by many other web pages. It assumes
a good hub points to many good authorities and a good
authority is pointed by many good hubs. In the user-location
bipartite graph, edges point to locations from users. Therefore,
by considering users and locations as hubs and authorities
respectively, we can apply HITS algorithm to score every
user and location. A user with higher score represents a more
experienced user who has more knowledge about the given
city and a location with higher score indicates a more popular
place that is worth being visited. Therefore, with the user-
location bipartite graph as input, we expect the algorithm to
output the user and location lists ordered by the scores while
preserving differential privacy. We present a pseudocode of
the differentially private mining algorithm in Algorithm 1 and
illustrate the process in Figure 2.

The differentially private mining algorithm consists of four
steps, namely matrix construction (line 1-2), noise addition
(line 3-9), noise suppression (line 10) and HITS (line 11-12).
In the first step, the bipartite graph structure is transformed
into an association matrix M . The matrix M has m = |U |
rows and n = |L| columns. Each entry in M is denoted by
the weight wij of the edge between user ui and location lj .
If user ui never visited location lj , wij is set to 0.

Then, in the second step, each entry wij is perturbed
using noise calculated by Laplace Mechanism [12] to become
w̃ij = wij + Lap(4fε ) so that M becomes M̃ . Each noise
is a random variable sampled from Laplace distribution with
variance sensitivity

budget . The privacy budget ε is typically consid-
ered to be 1 in many differential privacy settings [12], [13]. A



Algorithm 1: Differentially private bipartite graph mining
Input : User-location bipartite graph ULBG = (U,L,E),

expected privacy level lv ∈ [1, wmax], budget ε.
Output: Recommended authority (locations) list A,

recommended hub (users) list H .
1 Initialize matrix M [m = |U |][n = |L|], M̃ [m][n], M̂ [m][n]

with 0s;
2 Transfer ULBG to matrix M by filling M with
{wij |1 ≤ i ≤ m, 1 ≤ j ≤ n};

3 4f = lv;
4 δ = 4f

ε
;

5 for i = 1 to m do
6 for i = 1 to n do
7 M̃ [i][j] =M [i][j] + Lap(δ);
8 end
9 end

10 M̂ = Sup(M̃);
11 A = powerIte(M̂T · M̂);
12 H = powerIte(M̂ · M̂T );

smaller ε indicates that the difference between the statistical
query replies caused by the change of one record in the dataset
is smaller, thus providing better privacy protection. We will
evaluate the impact of different values of ε in Section V. In
our algorithm, all the entries share the same privacy budget ε
because of their independence and the composition property
of differential privacy:

Theorem 1 (COMPOSITION THEOREM [13]). Let Ai be
εi-differential private algorithms applying to independent
datasets Di for i ∈ [1, k]. Then their combination A∑k

i=1

is max(εi)-differential private.

The sensitivity 4f can be selected from the range
[1, wmax]. However, we note that the noise can be significantly
high without further post-processing. Due to higher noises,
the accuracy of recommendation can actually become too
low to be acceptable. Therefore, in the third step, we apply
consistency constraints to post-process the matrix from M̃
to M̂ to suppress noise and improve the recommendation
accuracy.

Theorem 2 (POST-PROCESSING [13]). Let A be a ε-
differentially private algorithm and g be an arbitrary function.
Then g(A) is also ε-differentially private.

We propose three consistency constraints, named zero con-
sistency constraint(zero-CC), up consistency constraint (up-
CC) and down consistency constraint(down-CC). In zero-CC,
since all the entries wij in M are non-negative, the negative
w̃ij in M̃ after perturbation is constrained to be ŵij = 0 in
M̂ to ensure consistency while the non-negative w̃ij keeps
same in M̂ as ŵij = w̃ij . The up-CC and down-CC follow
the isotonic regression [18]. Specifically, in up-CC, the entries
wij in M are sorted from 0 to wmax in non-decreasing order.
After adding noises to the non-decreasing list of entries, the
perturbed entries w̃ij should also keep the non-decreasing
order to ensure consistency. If one perturbed entry is smaller
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Fig. 3: Edge weight distribution

than the one before it in the list, this perturbed entry will be
adjusted to be equal to the one before it, thus making the
list non-decreasing. After adjusting all w̃ij to ŵij , the non-
decreasing list is transferred back to matrix, namely M̂ . The
down-CC is similar to up-CC, but the list is constrained to
follow a non-increasing order from wmax to 0.

Finally, after generating M̂ , we apply the HITS algorithm to
calculate the recommended authority (locations) list A and the
recommended hub (users) list H . Precisely, we can initialize
A and H to be vectors of 1s with size n and m respectively.
Then, by applying power iteration method [35], we can get the
eigenvectors of M̂T · M̂ and M̂ · M̂T as the final A and H
respectively. We refer the interested readers to [21] for more
details on HITS.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
offered by the proposed differentially private trajectory anal-
ysis algorithm. Before reporting our results, we first present
our experimental setup.

A. Experimental setup

Our experiments were programmed in Java language and
implemented on an Intel Core i7 2.70GHz PC with 16GB
RAM. In our experiments, we apply the Geolife GPS trajectory
dataset [34], [35], [36], which contains 17621 trajectories
collected from 182 users for five years. We first follow the
user-location bipartite graph construction scheme shown in
Figure 1 to process the raw trajectory dataset and generate
the user-location bipartite graph. The sizes of node sets, edge
set and stop point set are shown in Table I (some users are
abundant during clustering). Each edge in the user-location
bipartite graph is assigned a weight w representing the number
of visits. The distribution of weights among the 316 edges is
shown in Figure 3 (we just show the part for w ≤ 100) and the
statistics of weights is shown in Table II. As can be seen, most
edges have small weights, indicating that users have many
rarely visited locations. This suggests the intuition behind our
privacy goal. That is, we can inject little noise to protect most
of the edges in the bipartite graph. Typically, these protected
edges have lower weights but higher sensitivity.
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Fig. 4: Recommended authority list A with varying privacy budget ε
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Fig. 5: Recommended hub list H with varying privacy budget ε

Users 143
Locations 44
Stop points 8017
Edges 316

TABLE I: No. of

First quartile 2
Median 5
Third quartile 18
Max 591

TABLE II: w statistics

B. Experimental results

The goal of our experiments is to evaluate the performance
of the proposed differentially private user-location bipartite
graph analysis algorithm under various privacy budgets and
sensitivity values. That is, we evaluate the accuracy of the
recommendation results while simultaneously meeting the
differential privacy guarantees. We define top-k match rate
to measure the recommendation results. If we denote the
recommended authority (location) list as A = {a1, a2, ..., an}
and the recommended hub (user) list as H = {h1, h2, ..., hn},
where the elements with smaller index have higher score, and
represent the top-k elements in the list as Ak = {a1, a2, ..., ak}
and Hk = {h1, h2, ..., hk} respectively, the top-k match rate
for A is MRk(A) =

org(Ak)
⋂
noised(Ak)

org(Ak)
and the top-k match

rate for H is MRk(H) = org(Hk)
⋂
noised(Hk)

org(Hk)
, where org()

denotes the original lists without injected noise to protect
differential privacy and noised() stands for the differentially
private lists with noise. In other words, for a query like
‘show me top-5 recommended locations in this city’, we
expect the replied 5 locations do not change after adding
noise. Our experiments consist of three components. The noise
calibrated by the Laplace mechanism Lap(4fε ) is affected by
the two parameters, privacy budget ε and global sensitivity
4f . Therefore, in the first part, we adjust the privacy budget
ε to observe the change of MRk(A) and MRk(H). Then, in
the second part, we adjust the global sensitivity4f to evaluate
the algorithm performance. Finally, to evaluate the scalability
of the algorithm, we reduce the raw dataset scale by only
using the first-100-day trajectory data and only using the first-
90-user trajectory data respectively. In all the experiments, we
evaluate the three consistency constraint schemes, denoted by

‘zero-CC’, ‘up-CC’ and ‘down-CC’. For each experiment, we
repeat 1000 times and show the average.

In the first set of experiments, we change the value of
privacy budget ε from 1 to 0.7, 0.4 and 0.1 and show the
results with varying k of MRk(A) and MRk(H) as Figure
4 and Figure 5 respectively. In differential privacy, a smaller
privacy budget means the difference between query replies
from two datasets differing in at most one record is smaller,
which implies higher privacy requirement and requires more
noise to guarantee better privacy protection. For this part, we
fix the global sensitivity to be 1 to protect differential privacy
of individual stop point or the 76 weight-1 edges. When
ε = 1, Figure 4(a) and Figure 5(a) show that for most values
of k, MRk(A) and MRk(H) for all the three consistency
constraint schemes are larger than 80%. If we keep choosing
the consistency constraint scheme giving the best results, the
match rates can even be larger than 90%. As ε = 1 is typical in
most differential privacy settings [12], [13], the 90% accuracy
shows that our differentially private bipartite graph analysis
algorithm for travel recommendation is practical and effective.
In Figure 4(a), we can see that zero-CC provides best match
rate when k ≤ 20, which is defeated by down-CC for k > 20.
In Figure 5(a), although down-CC is very close to zero-CC,
zero-CC gives best results for nearly all the values of k. In
both the two figures, up-CC shows worst performance. All the
above observations can be explained by the principles of the
three consistency constraint schemes and the features of the
dataset. The matrix M (input of HITS algorithm) is sparse
because most of its entries are 0, indicating no edge between
corresponding user and location. In Figure 3, we see that most
edges have very small weights and only a small number of
edges have outstanding weights. Therefore, the entries in M
can be divided into three classes, entries with high weights,
entries with low weights and entries with 0 weights. After
adding noise to each entry, the perturbed low-weight entries
(e.g. w = 1 + noise) are almost indistinguishable from the
perturbed 0-weight entries (e.g. w = 0 + noise), but the
perturbed high-weight entries (e.g. w = 100 + noise) still
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(d) 4f = 591

Fig. 6: Recommended authority list A with varying sensitivity 4f
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(b) 4f = 5
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(c) 4f = 18
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Fig. 7: Recommended hub list H with varying sensitivity 4f

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35

m
a

tc
h

 r
a

te

top-k

zero-CC
up-CC

down-CC

(a) MRk(A), 100 days
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(b) MRk(H), 100 days
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(c) MRk(A), 90 users
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Fig. 8: Varying scalability

have outstanding weights. In noise suppression, the zero-CC
tends to make w = 0−noise to w = 0 and has little influence
to the high-weight entries, low-weight entries and difference
between low-weight entries and 0-weight entries. Both the up-
CC and down-CC have greater influence to the high-weight
entries and low-weight entries (makes their order changed).
Also, the up-CC reduces the difference between low-weight
entries and 0-weight entries while down-CC increases the
difference by making w = 0 + noise to w = 0. In HITS,
if a user or location is linked by more edges with high
weights, it has more chance to be recommended. In Figure
4(a), the locations can be divided into two sets. The first
set of locations has higher scores determined by high-weight
entries and low-weight entries while the second set of locations
have lower scores determined by low-weight entries and 0-
weight entries. Therefore, zero-CC, which has little influence
to the high-weight entries and low-weight entries, dominates
the first set while down-CC, which makes low-weight entries
distinguishable from 0-weight entries, dominates the second
set. The handover point between zero-CC and down-CC grad-
ually decreases from 20 when ε = 1 to 9 when ε = 0.1
as shown in Figure 4(b) to 4(d). In Figure 5(a), unlike the
locations, most users visited the very popular locations, so
their scores are mainly affected by the high-weight entries
and low-weight entries, which makes zero-CC to dominate the
entire set. The reduction of ε from Figure 5(b) to 5(d) only
makes the advantage of zero-CC more transparent. To sum
up, we recommend zero-CC as default consistency scheme
for 4f = 1 case.

In the second set of experiments, we adjust the global
sensitivity 4f from 2 to 5, 18 and 591 and show the results
with varying k of MRk(A) and MRk(H) in Figure 6 and
Figure 7 respectively. The selected sensitivities are the first
quartile, median, third quartile and max of weight w in its
distribution, shown in Table II and Figure 3, which can protect
1/4, 1/2, 3/4 and all edges in the bipartite graph respectively. In
this part, the objective is to evaluate the algorithm performance
with varying sensitivity and fixed ε = 1. As can be seen, we
can achieve about 80%, 60%, 50% and 40% match rate for all
values of k to protect 1/4, 1/2, 3/4 and all edges. Surprisingly,
our algorithm still achieves 40% match rate for our ultimate
privacy goal. However, in most cases, we recommend setting
4f = 1 to protect the 23.4% weight-1 edges and have match
rate higher than 90%. In addition, we find that when 4f
is large in Figure 6(c), 6(d), 7(c) and 7(d), the down-CC
beats zero-CC. A big sensitivity results in a huge injected
noise, which makes the perturbed high-weight entries start to
be indistinguishable from the perturbed low-weight entries.
The zero-CC has little influence to this while the down-
CC can again make the perturbed high-weight entries start
distinguishable from the perturbed low-weight entries start,
thus dominating the entire set. To sum up, for very large
sensitivity 4f , we recommend the down-CC.

Finally, in the last set of experiments, we change the scale
of the dataset to evaluate the performance of our algorithm
over databases with different size. We first limit the timestamp
of trajectory data from 5 years to the first 100 days and
show the results of MRk(A) and MRk(H) with ε = 1 and



4f = 1 in Figure 8(a) and Figure 8(b) respectively. The
new user-location bipartite graph contains 123 users and 39
locations. As can be seen, both the MRk(A) and MRk(H)
become worse, compared with Figure 4(a) and 5(a). Then,
we limit the user number from 182 to 90 and show the
results of MRk(A) and MRk(H) with ε = 1 and 4f = 1
in Figure 8(c) and Figure 8(d) respectively. The new user-
location bipartite graph contains 78 users and 31 locations.
As can be seen, compared with Figure 4(a) and 5(a), the
MRk(A) becomes worse while MRk(H) becomes slightly
better. From the results, we can see that the data volume
does impact the accuracy of recommendation. Specifically, the
track of individuals for a longer period of time can help to
improve the accuracy of recommendation in terms of both
users and locations. However, a dataset with more users can
only enhance the accuracy for location recommendation, but
reduce the accuracy for user recommendation.

VI. CONCLUSION

In this paper, we propose a differentially private trajectory
analysis algorithm for travel recommendation that aims at
increasing the accuracy of the recommendation results while
protecting the differential privacy of the trajectory data. The
proposed approach transforms the raw trajectory dataset into a
user-location bipartite graph and injects a carefully calibrated
noise to meet the required differential privacy guarantees. We
propose three consistency constraint schemes to suppress the
noise added in the process which improves the accuracy of the
obtained recommendation results. Our extensive experiments
on a real trajectory dataset show that our algorithm is efficient,
scalable and demonstrates good recommendation accuracy
while meeting the required differential privacy guarantees.
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