
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

1

Integrating Concurrency Control in n-Tier
Application Scaling Management in the Cloud

Qingyang Wang, Member, IEEE, Hui Chen, Member, IEEE, Shungeng Zhang, Member, IEEE,
Liting Hu, Member, IEEE, Balaji Palanisamy, Member, IEEE,

Abstract—Scaling complex distributed systems such as e-commerce is an importance practice to simultaneously achieve high
performance and high resource efficiency in the cloud. Most previous research focuses on hardware resource scaling to handle
runtime workload variation. Through extensive experiments using a representative n-tier web application benchmark (RUBBoS), we
demonstrate that scaling an n-tier system by adding or removing VMs without appropriately re-allocating soft resources (e.g., server
threads and connections) may lead to significant performance degradation resulting from implicit change of request processing
concurrency in the system, causing either over- or under-utilization of the critical hardware resource in the system. We build a
concurrency-aware model that determines a near optimal soft resource allocation of each tier by combining some operational queuing
laws and the fine-grained online measurement data of the system. We then develop a dynamic concurrency management (DCM)
framework that integrates the concurrency-aware model to intelligently reallocate soft resources in the system during the system
scaling process. We compare DCM with Amazon EC2-AutoScale, the state-of-the-art hardware only scaling management solution
using six real-world bursty workload traces. The experimental results show that DCM achieves significantly shorter tail latency and
higher throughput compared to Amazon EC2-AutoScale under all the workload traces.

Index Terms—scalability, soft resources, configuration, web application, parallel processing, cloud computing

F

1 INTRODUCTION

A N important feature of cloud computing platforms is scala-
bility, the ability to scale system resources for both high

performance and high resource efficiency. Such ability is es-
pecially important for web applications such as e-commerce
because of two reasons. First, web applications in general adopt
the n-tier architecture (e.g., web tier, application server tier,
and the database tier; other tiers such as load balancer and
Memcached [1] are also common), the capacity of each tier is
supposed to be easily scaled by adding or removing server VMs.
Second, workload for web applications is naturally bursty. For
example, the number of users accessing an e-commerce website
(e.g., Amazon.com) can be over 10X larger in rush hours (e.g.,
black Friday) than that in normal periods. The traditional strategy
of static provisioning always for peak workload will lead to
significant waste of computing resources and power consumption.
So to achieve both high performance and high resource efficiency,
it is extremely important for web applications to be able to scale
during run time to match the workload variations.

Scaling a web application requires careful matching of system
resources and the runtime workload. Such matching is chal-
lenging because web applications usually have strict Quality
of Service (QoS) requirement such as bounded response time.
Since the workload for web application has large fluctuation
in both micro-level (within minutes) and macro-level (hours to
days), dynamically matching system resources and the runtime
workload in order to always satisfy the QoS requirement is very

• Q. Wang, H. Chen, S. Zhang are with the Division of Computer Science
and Engineering, Louisiana State University, Baton Rouge,LA, 70803. L.
Hu is with Computing and Information Sciences, Florida International
University. B. Palanisamy is with the School of Information Sciences,
University of Pittsburgh, Pittsburgh, PA. E-mail: {qwang26, hchen46,
szhan45}@lsu.edu, lhu@cs.fiu.edu, and bpalan@pitt.edu. Q. Wang and
H. Chen contributed equally to this work.

 200

 600

 1000

 1400

 1800

 1000  2000  3000  4000  5000  6000  7000  8000

> 40% 

T
h

ro
u

g
h

p
u

t 
[r

e
q

u
e

s
ts

/s
]

Workload [# Users]

1/1/1 w/ default conf
1/2/1 w/ default conf

1/2/1 w/ optimized conf

Fig. 1: System throughput comparison as a 3-tier system scales out
from 1-1-1 to 1-2-1. Here 1-1-1 means one Apache web server,
one Tomcat server, and one MySQL server in the system. In this
experiment, Tomcat is the bottleneck server and we scale out Tomcat
from 1 server to 2 as the system workload increases. Surprisingly,
the maximum achievable throughput of the system decreased signifi-
cantly after Tomcat scaling out.

challenging. Previous work [2], [3], [4], [5], [6], [7] has proposed
various scaling mechanisms by adding/removing server VMs to
handle workload variations. However, these previous research
efforts mainly focus on how (e.g., virtual machine live migra-
tion [3]) and when (e.g., pro-active and re-active scaling based
on workload prediction [2]) to add or remove hardware resources
such virtual machines to change the system capacity. Little has
been discussed about how to reconfigure software components
to match the hardware resource changes in the system. On the
other hand, soft resources such as server threads and database
connections that control the concurrency of request processing in
the system have been shown to have significant impact on n-tier
web application performance [8].

In this paper we show that effective scaling of an n-tier
application needs intelligent coordination of both hardware and



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

(a) Software Stack

Type

Small (S)

# vCPU

1

CPU limit

1.60GHz

CPU 
shares

Normal

VM Configuration

CPU

Memory

2* Intel Xeon E5-2603 v3, 
1.6 GHz Hexa-Core

16GB

Model Dell Power Edge R430  

ESXi Host Configuration

Storage 7200rpm SATA local disk

vRAM

2GB

vDisk

20GB

(b) Hardware Specification

HTTP 
Requests

(c) 1-1-1 Sample Topology

Fig. 2: Detailed experimental setup

soft resources scaling. Figure 1 shows one of our experimen-
tal results using a representative benchmark web application
(RUBBoS) to demonstrate the importance of hardware and soft
resources coordination during system scaling. After adding one
more Tomcat application server VM to the original 3-tier system
(one Apache web server, one Tomcat application server, and one
MySQL), the maximum achievable throughout of the system
unexpectedly reduced 40%. The detailed explanation of this
case will be in Section 2.2. The main reason is because of the
complex dependencies among the hardware and soft resources
of component servers in the system; adding or removing servers
in any tier of the system will change the level of the concurrent
requests flowing to the downstream tiers, which may either under-
or over-utilize the critical hardware resources in the downstream
tiers, causing significant system performance degradation.

Concretely, we build a dynamic concurrency management
(DCM) framework that takes intelligent control of soft resource
allocation into the management of system scaling. DCM exploits
a novel concurrency aware model that can decide a near-optimal
soft resource allocation of each server in the system by combin-
ing some operational queuing laws and fine-grained monitoring
data collected from each server’s request processing log. We
implement DCM as a two-level control framework. The first
level is scaling hardware resources (e.g., VMs) of the system
based on the workload variation similar as previous hardware-
only scaling mechanisms. The second level is reallocating soft
resources of each related server based on the concurrency-aware
model recommendation after the scaling of hardware resources.

The first contribution of the paper is a sensitivity analysis
of the performance impact of soft resource allocation on typical
servers in an n-tier application. Through extensive benchmark
experiments using realistic workload traces, we observed that
the optimal soft resource allocation for different type of servers
can be very different. For example, a Tomcat application server
achieves the best performance when 20 threads are allocated
while the optimal number is 36 for a MySQL database server
in our experimental environment. We also observed that under
the same hardware resource configuration a sub-optimal (but typ-
ical) allocation of threads can degrade the maximum achievable
throughput of Tomcat up to 70% and 64% for MySQL (Figure 3).

The second contribution is the concurrency-aware model that
determines a near-optimal soft resource allocation of each server
in an n-tier system. This model takes the non-linear multi-
threading overhead into account, thus the performance of each
component server can be correctly characterized under high
concurrency workload (Section 3). Our experimental evaluation
using a representative 3-tier web application benchmark (RUB-
BoS) show that the optimal soft resource allocation predicted

by the model actually enable the system to achieve the highest
throughput compared to other typical allocation cases, validating
the accuracy of the model.

The third contribution is a dynamic concurrency management
(DCM) framework that exploits the concurrency-aware model
to coordinate the hardware and soft resources provisioning in
system scaling management (Section 4). Using six realistic bursty
workload traces, our experiment results show that DCM achieves
significantly better performance and higher resource efficiency
than Amazon EC2-autoScale, the state-of-the-art hardware-only
scale solution in a commercial cloud (Section 5).

We outline the rest of this paper as follows. Section 2 illus-
trates the impact of request processing concurrency on represen-
tative server performance. Section 3 introduces our concurrency-
aware model. Section 4 introduces the design of our DCM frame-
work. Section 5 shows evaluation results. Section 6 discusses
related work and Section 7 concludes the paper.

2 BACKGROUD AND MOTIVATION

2.1 Experiment Environment
In our experiments we use a standard n-tier benchmark RUB-
BoS [9]. RUBBoS benchmark application is a mini-version of
the popular news website Slashdot [10]. It is typically deployed
as a 3-tier (web tier, application tier, and database tier) or 4-tier
(with an additional load balancer for databases). The benchmark
application has 24 servlets providing different web interactions.
Based on the characteristics of each servlet, RUBBoS provides
two workload modes: browse-only CPU intensive or read/write
mix workload. We use the former mode of workload in this paper.

Figure 2 shows the experimental setup of our private VMware
ESXi cluster. We adopt #W-#A-#D, a 3-digit notation to represent
the number of Apache web servers, Tomcat application servers,
and MySQL database servers of our benchmark application.
For each #W-#A-#D, we use #WT /#AT /#AC to represent three
representative soft resources in the system: Apache server thread
pool, Tomcat server thread pool, and Tomcat server database (DB)
connection pool. They control the maximum request processing
concurrency in Apache, Tomcat, and MySQL, respectively. Each
servlet uses one dedicated DB connection pool in the original
RUBBoS implementation. We changed the implementation to let
every servlet share a global DB connection pool. The purpose is
to limit precisely the number of concurrent database queries sent
to the downstream MySQL. In addition, we developed monitoring
tools to enable runtime monitoring and scaling of the three types
of soft resources, with more details in Section 4.2.2.

We use three types of workload generators in our experiments:
Jmeter [11], the original RUBBoS workload generator, and the

2



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

 200

 400

 600

 800

 1000

 1200

5 10 20 40 60 80 100 200 300 600

 0

 600

 1200

 1800

 2400

 3000

 3600

T
h

ro
u

g
h

p
u

t 
[r

e
q

u
e

s
ts

/s
]

R
e

s
p

o
n

s
e

 [
m

s
]

Request Processing Concurrency

Throughput Response Time

(a) Tomcat achieves the “best” performance when the re-
quest processing concurrency is 20.

 3000

 4000

 5000

 6000

 7000

 8000

5 10 20 40 60 80 100 200 400 600

 0

 50

 100

 150

 200

 250

 300

T
h

ro
u

g
h

p
u

t 
[Q

u
e

ri
e

s
/s

]

R
e

s
p

o
n

s
e

 [
m

s
]

Request Processing Concurrency

Throughput Response Time

(b) MySQL achieves high throughput when the request pro-
cessing concurrency is between 20 to 80.

Fig. 3: Throughput of typical servers in an 3-tier system at increasing request processing concurrency. (a) and (b) show that improper
concurrency settings in Tomcat and MySQL cause poor performance, suggesting the importance of concurrency control in the system.

revised RUBBoS workload generator. Jmeter is to generate work-
load with precisely controlled request concurrency 1, enabling a
quantitative analysis of the impact of request processing concur-
rency on n-tier application performance. The original RUBBoS
workload generator creates HTTP requests to interact with the
benchmark application, the request rate of which follows a
Poisson distribution with the mean determined by the number
of concurrent users. The revised RUBBoS workload generator
generates HTTP requests with realistic burstiness level based on
a trace file from a production environment.

2.2 Performance Degradation with Sub-Optimal Con-
currency Setting

E-commerce web applications such as Amazon.com typically
process high concurrent HTTP requests from clients ranging from
hundreds to thousands per second. The request processing con-
currency inside the system is usually controlled by the allocation
of soft resources such as worker threads or database connections
of each component server. Here we use concrete experiments to
show that request processing concurrency controlled by the allo-
cation of soft resources has significant impact on the performance
of typical component servers in an n-tier web application. The
results help explain the unexpected performance degradation after
the system scaling out as we have observed in Figure 1.

We conduct a quantitative evaluation on the performance of
MySQL and Tomcat under different concurrency settings of re-
quest processing as shown in Figure 3. In this set of experiments,
we use Jmeter to extract the HTTP requests recorded in a standard
RUBBoS workload trace and sends the requests with precisely
controlled concurrency to stress either the Tomcat (Figure 3(a))
or the MySQL (Figure 3(b)) server. For each controlled request
concurrency level, we set the same number of threads in the
corresponding server to avoid the queue overflow problem. In
this case, the workload concurrency equals the request processing
concurrency inside the server. Figure 3(a) shows the impact of
request processing concurrency on the Tomcat server throughput.
We can see that Tomcat achieves the highest throughput as the
request processing concurrency equals 20; either lower or higher
concurrency could lead to significant throughput degradation. We
also observed the similar phenomenon for MySQL as shown in

1. Jemeter uses threads to simulate real-world users. We set zero think time
between consecutive requests sent from the same thread, then we can precisely
control the workload concurrency for the system as the # of Jmeter threads.

Figure 3(b). The only difference is that MySQL achieves high
throughput at a different request processing concurrency range
(between 20 to 60). Such experimental results indicate that the
performance of both Tomcat and MySQL is very sensitive to the
request processing concurrency.

The sensitivity of request processing concurrency in compo-
nent servers also explains the unexpected performance degra-
dation after the system scales from 1-1-1 to 1-2-1, shown in
Figure 1. In that case, the 3-tier system has one Apache web
server, one Tomcat server, and one MySQL server (1-1-1) at the
beginning, with the default soft resource allocation 1000/100/80,
which means there are 1000 Apache threads, 100 Tomcat threads,
and 80 database connections. With this soft resource allocation,
the maximum request processing concurrency level in MySQL
is limited to 80. Our measurements show that Tomcat is the
bottleneck server at the beginning, so we add one more Tomcat
into the system (now becomes 1-2-1) as the workload exceeds the
initial system capacity. Since we still use the default soft resource
allocation for the second Tomcat, the maximum number of con-
current requests that can flow to the downstream MySQL doubles
(from 80 to 160). As a result, MySQL CPU efficiency degrades
significantly due to the increased request processing concurrency
(see Figure 3(b)), causing unexpected system throughput drop. To
truly scale the original system and fully utilize the newly added
Tomcat, the database connection pool size of each Tomcat server
needs to be adapted to 20. In this case, MySQL achieves the peak
throughput since the maximum request processing concurrency
in MySQL is limited to 40 (see Figure 3(b)).

The previous experimental results show the significant impact
of soft resource allocation on the n-tier application scaling man-
agement; only scaling hardware resources without appropriate
adaption of soft resource allocation could lead to significant
performance degradation. Considering the common practice of
system scaling in the face of naturally bursty workload for n-tier
applications, smart runtime adaptation of soft resource allocations
should be integrated into system scaling management.

3 CONCURRENCY-AWARE MODEL

In this section we introduce our concurrency-aware model that
determines the optimal allocation of soft resources in each com-
ponent server of an n-tier system. The model is an extension
of the classic queuing network model, with two additional en-
hancements: first, it captures the realistic request processing flow

3



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

Symbol Description
M Number of application tiers
Tm The mth tier in the system (1 ≤ m ≤M )
Km Number of servers in tier Tm
Um Server utilization in tier Tm
X Throughput of the whole system
Xm Throughput of the mth tier
Vm Visit ratio for tier Tm
Vb Visit ratio for the bottleneck tier
Sm Service time of the mth tier
Sb Service time of the bottleneck tier
S?
b Adjusted service time of the bottleneck tier

Nm Number of threads in tier Tm
Nb Number of threads in bottleneck tier b

α, β, γ Correlation coefficients

TABLE 1: Descriptions of parameters in our model

within an n-tier system, for example, the processing of one HTTP
request for a Apache web server may trigger multiple sub-queries
to the downstream MySQL; second, the model considers the non-
trivial multithreading overhead of each server in the system when
facing high concurrency workload (see Section 2.2). Our goal is
to achieve the highest system throughput through optimizing soft
resource allocation in each tier of the system, in case of potential
hardware configuration changes due to system scaling.

3.1 Concurrency-Aware Queue Model

Assume there are M tiers in an n-tier application, where each tier
is denoted by T1,...,TM . We use Km to represent the number of
servers in tier Tm, where 1 ≤ m ≤M . To simplify the analysis,
we start with one server in each tier at the beginning, so Km

equals 1. Assume Um denotes the server utilization in tier Tm,
then based on the Utilization Law and Forced Flow Law [12], for
each tier we have the following equations:

Um = Xm ∗ Sm and Xm = X ∗ Vm (1)

In the above equations, Xm and Sm represent the throughput
and average request service time of the tier Tm, respectively.
X means the overall system throughput and Vm means the
visit ratio of Tm. The visit ratio Vm depends on the workload
characteristics. For example, Figure 4 shows that one sample
HTTP arriving to Apache triggers one AJP request to Tomcat,
which in turn issues two database queries to the downstream
MySQL. In this case, the visit ratio V2 = 1 and V3 = 2.
Equation 1 can be further transformed to:

X =
Um

Vm ∗ Sm
(2)

Considering that Sm denotes the average request service time
of the tier Tm, then Vm∗Sm means the overall service demand of
an HTTP request for the tier Tm. Since we only have one server
in each tier at the beginning, the bottleneck tier of the system
can be easily figured out: it is the tier that has the highest service
demand max

1≤m≤M
(Vm ∗ Sm). Let Tb be the bottleneck tier, then

we get the maximum system throughput Xmax when Ub = 1,
indicating 100% utilization of the bottleneck tier resource. Xmax

can be expressed in the following equation:

Xmax =
1

Vb ∗ Sb
(3)

In reality we may have Kb servers in the bottleneck tier, thus
we transform the above equation to

Xmax =
γ ∗Kb

Vb ∗ Sb
(4)

where γ is the correction parameter when multiple servers
in the bottleneck tier is considered. This is because the system
throughput will likely not to double if we double the number
of servers in the bottleneck tier (e.g., from one server to two)
because of many practical factors, including the load imbalance
problem among servers in the bottleneck tier or the resource
sharing of the downstream tiers.

When a system with a fixed configuration has stable workload
characteristics, both Kb and Vb are determined. So based on
Equation 4, we can predict Xmax once the bottlneck tier service
time Sb is determined. However, determining the real service time
of each tier is non-trivial, especially when one HTTP request
triggers several interactions between different components in the
system. For example, Figure 4 shows the processing of one
request in Tomcat involving two waiting periods for the response
from the downstream MySQL, which breaks the real computation
time for the request into three segments (the three blue boxes
under Tomcat). The situation becomes more complicated when
multithreading is involved. In a multi-threaded case, multiple
threads may contend for shared resources, in which the original
service time in a single-threaded environment may change be-
cause of the impact of resource contention as discussed in many
previous work [13], [14], [15]. So to estimate the average service
time of each tier in a realistic multithreading environment, we use
a different method as we will discuss in the next subsection.

3.2 Service Time in Multithreading Environment
Assume the bottleneck tier has a single-threaded server and
its service time is S0

b . Now we want to know the impact of
multithreading on the service time S0

b . There are two factors
that may delay the original single-threaded service time: thread
contention and crosstalk penalty. The second factor is also known
as coherence or consistency penalty.

Thread contention is caused by the sharing of limited soft-
ware (e.g., lock) or hardware resources (e.g., CPU core) during
multithreading. Thread contention may lead to the switch between
threads on fine-grained time granularity (e.g, each clock), causing
the interleaved execution of instructions from multiple threads.
The most common switch pattern between threads is round-robin.
As a result, we can model the delay caused by thread contention
as linear growth with the number of threads.

Computation
Time

Fig. 4: Illustration of inter-tier interactions for processing one HTTP
request in a 3-tier system.

4



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

Crosstalk penalty is because of the coherence or consistency
requirements in a multithreading or a multi-processor environ-
ment. Hennessy and Patterson [16] (Chapter 5.2 in the Fifth
Edition) has a detailed discussion about the crosstalk penalty in
a centralized shared-memory architecture. In a multi-processor
environment, if each processor has a thread operate on a shared
variable, the crosstalk penalty is related to the number of proces-
sors in the machine because of the cache coherence requirement.
Additionally, from the soft resource perspective, if each of N
threads wants to obtain a mutex lock, the worst case involves
N*(N-1) notification messages, since each time one thread needs
to notify the other N-1 threads when it releases the mutex lock.
This means that the crosstalk penalty may grow quadratically as
the number of threads increases.

Based on the above two factors that affect S0
b under Nb

threads, we can derive the adjusted service time as follows:

S∗
b = S0

b + αb(Nb − 1) + βbNb(Nb − 1) (5)

where αb, βb are coefficients that depend on many factors
such as hardware specification and workload characteristics. This
equation also shows that when S∗

b reverses back to S0
b when

Nb = 1, the single-threaded case. We note that Gunther et al. [17]
have provided a formal proof of a different form of Equation 5
when they derive their Universal Scaling Law (USL). Interested
readers can refer their paper for more details.

The above analysis shows that multithreading may cause
longer delay for individual request processing because of thread
contention and crosstalk penalty, however, multithreading enables
full utilization of CPU resource and increases system throughput
by taking advantage of the pipeline design of modern CPU
architecture. As Figure 5 illustrates, the Nb threads use CPU
cycles in an interleaved manner; one thread finishing one request
takes S∗

b time, which also includes the waiting time for other (Nb
- 1) threads. Assuming each of Nb threads shares the CPU fairly,
then the adjusted average service time for each thread is:

Sb =
S∗
b

Nb
=
S0
b + αb(Nb − 1) + βbNb(Nb − 1)

Nb
(6)

By combining Equestion 4 and 6, we can derive the system’s
maximum throughput as a function of the concurrency in the
bottleneck tier as shown below:

Xmax =
γ ∗Kb ∗Nb

S0
b + αb(Nb − 1) + βbNb(Nb − 1)

(7)

T1

T2

TN

Nm

CPU  
CYCLES

TN

T1

T2

Fig. 5: Pipeline processing of requests with multi-threads

3.3 System Throughput Maximization
Equation 4 shows that to get the maximum throughput of the
whole system, the bottleneck tier service time Sb needs to be
minimized. Thus we transform Equation 6 as follows:

Sb =
S0
b − αb
Nb

+ βbNb + (αb − βb)

≥ 2
√
(S0
b − αb)βb + (αb − βb)

We get the minimum Sb when Nb =
√

S0
b−αb

βb
. Then we

take Min(Sb) back to Equation 4, and get the maximum system
throughput as follows:

Max(Xmax) =
γ ∗Kb

Vb(2
√
(S0
b − αb)βb + αb − βb)

(8)

The above derivation process of the model shows that to
maximize the whole system throughput, we need to set the
number of threads in the bottleneck tier server to be Nb. The
value of Nb depends on the parameters S0

b , αb, and βb. S0
b can

be measured through system profiling. The other two parameters
can be determined via regression analysis based on the online
measurement of system throughput and the allocation of threads
in each server of the bottleneck tier. Section 3.4 will show
concrete parameter training and validation for different bottleneck
servers in the system.

We note that setting the optimal concurrency Nb of the
servers in the bottleneck tier does not guarantee the maximum
system throughput; we also need to set proper number of threads
and connections in the upstream tiers in order to allow enough
concurrent requests flowing to the bottleneck tier and fully
utilize the bottleneck resource. Interested readers can refer to our
previous paper [18] that characterizes the relationship between
soft resource allocations between different tiers.

3.4 Model Training and Validation
To fast train the parameters of the model and determine the
optimal soft resource allocation for each component server, we
use Jmeter to generate workload (i.e., HTTP requests) with
different concurrency levels extracted from the real RUBBoS
workload trace. Because we set the user think time between
consecutive HTTP requests from the same user (thread) to be
zero, we can control the exact request concurrency to the target
system by specifying the number of users (threads) in Jmeter.
Then we return back to the original RUBBoS workload gen-
erator in the validation phase since it simulates the realistic
production workloads. Our goal is to validate whether the model
recommended optimal soft resource allocation could achieve the
maximum system throughput under realistic workload scenarios.

Model training for Tomcat: The concurrency-aware model
is to build the correlation between the request processing concur-
rency in Tomcat and the system throughput in order to determine
the optimal concurrency setting in Tomcat. To build such a model,
we use the 1-1-1 configuration (with the default soft resource
allocation 1000/100/80) because Tomcat is the bottleneck tier
of the system. Then we increase the workload concurrency for
the system from 1 to 100 and record the system throughput (see
Figure 3(a)). We take the <concurrency, throughput> pairs 2

2. Concurrency and throughput correspond to Nb and Xmax.

5



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 1000  2000  3000  4000  5000  6000  7000  8000

T
h

ro
u

g
h

p
u

t 
[r

e
q

u
e
s
ts

/s
]

Workload [# Users]

1000/10/80

1000/20/80

1000/50/80

1000/80/80

1000/100/80

(a) Model validation of Tomcat threads in the
1-1-1 case

 0

 300

 600

 900

 1200

 1500

 1800

 2100

 2400

 1000  2000  3000  4000  5000  6000  7000  8000

T
h

ro
u

g
h

p
u

t 
[r

e
q

u
e
s
ts

/s
]

Workload [# Users]

1000/100/5

1000/100/10

1000/100/18

1000/100/50

1000/100/80

(b) Model validation of Tomcat DB connec-
tions in the 1-2-1 case

Fig. 6: Model validation for Tomcat and MySQL using realistic system configuration. (a) and (b) show that the model recommended optimal
concurrency setting (20 for Tomcat while 36 for MySQL according to Table 2) indeed outperforms other four representative allocations. We
note that the 1-2-1 case has two Tomcat servers, thus 1000/100/18 can make sure the optimal concurrency (36) in MySQL.

as the input to the model as shown in Equation 7. By applying
the Least-Square Fitting analysis we estimate the values of the
parameters of the model and also the optimal concurrency setting
(Nb = 20) in Tomcat as shown in Table 2. The statistical R-
Squared value is 0.960 according to our additional measurement
data, indicating high accuracy of the model in predicting system
throughput under different Tomcat concurrency.

We further ran experiments using the original RUBBoS work-
load to validate the model generality. The RUBBoS workload
simulates the realistic workload scenario in which a user within
the same session sends every follow-up HTTP request after a
certain amount of “think” time. Figure 6(a) shows the exper-
imental results for the 1-1-1 case with five representative soft
resource allocations. 1000/20/80 is recommended by the model.
This figure shows that the system with the “optimal” soft resource
allocation indeed outperforms the other cases. For example, the
“optimal” allocation case outperforms the default configuration
case (100 Tomcat threads) 30% in throughput.

Model training for MySQL: To train the model for MySQL,
we scale the system from the previous 1-1-1 configuration to 1-2-
1 since MySQL is the bottleneck server under the new configura-
tion. Then we conduct the similar experiments of model training
for MySQL as for Tomcat previously. The estimated values of the
model parameters are shown in the third column of Table 2. After
resolving the model we conclude that the system achieves the
maximum throughput when MySQL threads allocation Nm = 36
(Figure 3(b) shows partial<concurrency, throughput> pairs). We
note that in our experiments we use the DB connection pool
size in Tomcat to control the request processing concurrency
in MySQL and there are two Tomcat servers in the system,
thus the optimal allocation of DB connections in each Tomcat
should be 18. We further conduct experiments using the more
realistic RUBBoS workload to validate the generality of the
model. Figure 6(b) shows that the model recommended allocation
(1000-100-18) indeed outperforms the other four representative
cases, including the default case with 80 DB connections. We
note that 100 threads in Tomcat is chosen because we want avoid
Tomcat thread pool being the bottleneck that limits the number
of concurrent requests flowing to the downstream MySQL.

Model retraining to keep prediction accuracy: In the above
experiments we have validated the accuracy of our model in
realistic workload scenarios. We need to point out that the model
is based on two assumptions. First, the characteristics of the

TABLE 2: Model training and prediction result. S0
b is measured

through system profiling.

Parameter Tomcat Model MySQL Model

S0
b 2.84e-02 7.19e-03

αb 9.87e-03 5.04e-03
βb 4.54e-05 1.65e-06
γ 11.03 4.45

R2 0.960 0.97
Nb 20 36

Xmax 946 865

workload (e.g., read/write ratio) in the training phase and in
the production phase (i.e., the realistic workload scenarios) keep
the same. Second, the new servers added into the bottleneck
tier are homogeneous to the other servers in the same tier.
This is because according to Equation 8, both the maximum
achievable throughput and the optimal concurrency setting of a
server Nb is related to the basic service time S0

b , which depends
on two factors: the workload characteristics and the hardware
provisioning (e.g., # of CPU cores and frequency) of the server.
S0
b will change if any of these two factors changes, thus the

optimal concurrency setting Nb of the server predicted by the
model will change and no longer be the optimal in the production
phase. To always keep the model accuracy, we need to retrain
the model of each server based on the online monitoring data
collected from real production environment from time to time,
assuming that the workload characteristics may change over time
or the system scales using heterogeneous hardware provisioning.

4 DYNAMIC CONCURRENCY MANAGEMENT DE-
SIGN AND IMPLEMENTATION

The previous section describes a concurrency-aware model for
the optimal concurrency setting of the bottleneck tier in the
system based on measurement data. Since system scaling in/out
potentially changes the request processing concurrency in the sys-
tem, to always maintain the high performance of the system, we
describe a dynamic concurrency management (DCM) framework
which is to dynamically adjust soft resources allocation in related
servers based on the model prediction.

6



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

Process

HostDCM:
Dynamic Concurrency 
Management

Optimization 
Controller

Fine-Grained
Monitor 

APP-Agent 

Actuators

VM-Agent Server 
join in/exit

APP JMX 
Interface

vCenter
Interface

Resource
Monitoring

Application
+ VM

Online 
Model

Fig. 7: The DCM framework

Figure 7 shows the DCM framework. It includes three key
components: Fine-Grained Resource Monitor, Optimization Con-
troller, and Actuators.

Fine-Grained Resource Monitor: Each VM installs a mon-
itoring agent to collect both the application-level metrics (e.g., #
of active threads, average server response time and throughput)
and system-level metrics (e.g., CPU, Memory, network I/O). Then
monitoring agents send the measured data at every second back to
a storage server (Kafka [19]). The controller will consume these
data for runtime performance analysis. The purpose of Kafka
is to serve as an intermediate storage server to coordinate the
distributed monitoring agents that produce data and the controller
that consume data since the controller may need to operate on
collective data over a period of time (e.g., 1 minute).

Optimization Controller: The controller makes adaptation
decisions based on the analysis of the data from Kafka and
the concurrency-aware model as we present in Section 3. Two
decisions need to be made at the moment of burst workload: VM-
level scaling and soft resources re-allocation. VM-level scaling is
to decide when to launch new VMs to improve the bottleneck tier
performance or turn off idle ones to avoid wasting computing
resources. Soft resources re-allocation is to make them best
suit the concurrency requirement of servers in the system after
the VM-level scaling finishes. In our current implementation,
the controller adopts the resource-usage driven approach in the
VM-level scaling, meaning that the controller will trigger the
execution of Actuators once the resource usage of any tier exceeds
a predefined threshold (e.g., 80%).

Actuators: The DCM has two actuators. the VM-agent ac-
tuator is to start or turn off VMs in a specific tier. The APP-
agent actuator is to re-allocate soft resources in the system based
on the concurrency-aware model recommendation. Usually the
APP-agent actuator follows right after the VM-agent actuator.

In the following section we outline the control algorithm of
how the above three components interact with each other for
intelligent system scaling management.

4.1 Dynamic Concurrency Management Algorithm

Our algorithm makes the following three assumptions:

1) There is only one bottleneck tier at a time in the system.
2) Our monitoring tools are able to identify the bottleneck

hardware resource as system performance deteriorates.
3) We are able to dynamically adjust the soft resource

allocation in each server during run time.

The first assumption is to make sure that the system does not
encounter the complex multi-bottleneck scenario [20], [21]. A

Algorithm 1: Pseudo-code for DCM scaling control
1 procedure DCMScalingControl
2 scaleOutStep = 1, scaleInStep = -1;
3 slowTurnOffFactor = 3, SystemRunning = true;
4 while (SystemRunning) do
5 / ∗Record hardware resources beyond util. threshold ∗ /
6 (Rh,Rl) = ResourceMonitor();
7 if (Rh 6= φ) then
8 / ∗ hardware resource util. exceeds upperbound ∗ /
9 bottleneckT ier = Rh → k;

10 VMScale(bottleneckT ier, scaleOutStep);
11 SoftResourceScale(bottleneckT ier, scaleOutStep);
12 else if (Rl 6= φ && counter > slowTurnOffFactor) then
13 / ∗ hardware resource util. cont. below lowerbound ∗ /
14 counter = 0;
15 scaleInT ier = Rl → k;
16 if (nTier[scaleInT ier] > abs(scaleInStep)) then
17 VMScale(scaleInT ier, scaleInStep);
18 SoftResourceScale(scaleInT ier, scaleInStep);
19 else if (Rl 6= φ && counter < slowTurnOffFactor) then
20 counter++;
21 else
22 counter = 0;
23 end
24 end

25 procedure VMScale (scaleT ier, scaleStep)
26 if (scaleStep > 0) then
27 TurnOnVMs(scaleT ier, scaleStep);
28 nTier[scaleT ier] = nTier[scaleT ier] + scaleStep;
29 else if (scaleStep < 0 && (nTier[scaleT ier] + scaleStep) > 0)

then
30 TurnOffVMs(scaleT ier, abs(scaleStep));
31 nTier[scaleT ier] = nTier[scaleT ier] - abs(scaleStep);

32 procedure SoftResourceScale (scaleT ier, scaleStep)
33 if (scaleStep > 0) then
34 /∗get optimal concurrency of each downstream server∗/
35 optAlloc = ModelPredict(scaleT ier + 1);
36 soft[scaleT ier] = (optAlloc * nTier[scaleT ier + 1])
37 /(nTier[scaleT ier] + scaleStep);
38 AppActuator(scaleT ier, soft[scaleT ier]);
39 else if (scaleStep < 0) then
40 / ∗ get optimal concurrency of scaleT ier server ∗ /
41 optAlloc = ModelPredict(scaleT ier);
42 soft[scaleT ier] = optAlloc;
43 AppActuator(scaleT ier, soft[scaleT ier]);

multi-bottleneck scenario refers to the case where the bottleneck
shifts rapidly among different system components because of
complex resource dependencies in the system. In such a case, the
system performance may deteriorate while the average utilization
of each component is far from saturation, which disables the trig-
gering conditions (e.g.,CPU utilization higher than 80%) of the
control framework. Handling complex multi-bottleneck cases still
remains a significant challenge and needs our further research.
The second assumption assumes that we have proper monitoring
tools such as collectl and sysstat to enable bottleneck detection.
The third assumption assumes that we have management tools
which are able to scale soft resources of each component server
on the fly. While there are many existing monitoring tools to sat-
isfy the second assumption, we implement our own management
tools for soft resource scaling, with more details in Section 4.2.2.

Algorithm 1 shows the pseudo-code for the interaction of the
three components in our control framework. We explain the key
procedures in more detail in the following:

DCM Scaling Control. This procedure details the control
logic of the Optimization Controller. The controller exploits
resource monitors to measure the runtime system status such as
CPU utilization and application performance metrics and make

7



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

scaling decisions. We define two resource utilization thresholds:
upper bound for scaling-out and lower bound for scaling-in. For
each control period, the resource with average utilization higher
than the upper bound (e.g., 80%) is recorded in Rh while the one
lower than the lower bound (e.g., 40%) is recorded in Rl (line 6).

To make the system performance stable under bursty work-
load, the controller adopts the “quick start but slow turn off”
scaling policy learned from the AutoScale work of Gandhi et
al. [2]. Concretely, if the utilization of any concerned resource
during one control period exceeds the pre-defined upper bound,
the controller will ask the VM-agent actuator to launch new
VM(s), which will spend certain amount of preparation time
(e.g., 15 seconds) before joining the system and ready to serve
requests. On the other hand, the controller will turn off VMs
where the utilization of all the concerned resources is below the
lower bound continuously for three control periods (line 12).

Virtual Machine Scaling. This procedure is to turn on/off
virtual machines similar as all the other scaling frameworks in
the cloud (e.g., Amazon EC2 AutoScale). While turning on VMs
is relatively easy, turning off VMs needs to check whether the
number of VMs to turn off (requested by controller) is less than
the number of running servers (line 30).

Soft Resource Scaling. This procedure is to scale the soft
resource allocation of the system based on the concurrency-
aware model after the VM level scaling. Theoretically, the optimal
concurrency setting in each VM does not change with the number
of VMs, however, the actual request processing concurrency in
a server is also affected by the size of connection pools of
the servers upstream tier, which may change when the server’s
upstream tier scales out or in. In this procedure, we simply
make the size of connection pools in one tier the same as that
of the thread pools in its successive downstream tier after the
VM-level scaling. Nevertheless, this procedure shows that the
soft resource scaling is different between VM scaling out and
in. For VM scaling out, we need to consider the impact of
the increased request concurrency (due to newly added VMs)
on the performance of the downstream tier servers. Assuming
that the optimal concurrency (based on our concurrency-aware
model) for each downstream server is optAlloc and the num-
ber of downstream servers is nTier[scaleT ier + 1], so the
optimal total concurrency of the downstream tier is optAlloc *
nTier[scaleT ier+1]. Thus the new allocation of soft resources
(connection pool size) of each server in the scaleT ier tier is
shown in line 38. On the other hand, in a VM scaling-in case,
the number of VMs in the scaleT ier tier is reduced while the
maximum concurrent requests from its upstream tier keep the
same. To avoid high overhead caused by high concurrent requests
from its upstream tier, the soft resource allocation (thread pool
size) of the scaleT ier tier needs to be re-adjusted based on the
concurrency-aware model recommendation (line 44).

4.2 Implementation Details

4.2.1 VM-Agent for VM-level Scaling
Launching or turning off VMs is easy in the cloud because the
underlying hypervisor provides corresponding APIs that can be
called remotely. The complexity of VM level scaling comes from
the servers that run inside VMs. For example, it is relatively easy
to add VMs that run stateless servers (e.g., Apache web servers)
because they can serve new requests seamlessly right after they
join the system. However, adding VMs that run stateful servers

(e.g., database servers) is non-trivial because they need to resolve
data or state consistency problem, for example, a newly added
database server may need to synchronize with other running
databases in the system, thus may require more preparation
time to be ready to serve new requests. We set the preparation
period of each VM to be 15 seconds after VM-agent actuator
launches the VM, which is enough for the VM to be ready in our
benchmark experiments. More preparation time may be needed in
real production environment. We also use HAproxy [22] as a load
balancer to dynamically balance workload among servers after the
system scaling, where we adopt the least pending request (LPR)
scheduling policy to dispatch requests to downstream servers.

4.2.2 APP-Agent for Soft Resource Re-Allocation
Once the VM-level scaling is done, we use APP-agent to
control the request processing concurrency in each component
server through re-allocating soft resources in the system. Two
approaches exist to limit the request processing concurrency level
of a server: adjusting the servers thread pool (STP) size or con-
trolling the upstream tier’s connection pool size. The second one
is possible because the connection pool size in the upstream tier
can limit the maximum number of concurrent requests flowing
to the server. We use the first approach (i.e., adjusting the STP
size) to control the request processing concurrency in Tomcat
because Tomcat may directly serve HTTP requests from clients,
thus no connection pool from upstream tiers to control with. On
the other hand, we use the second approach to control the request
processing concurrency in MySQL. This is because we are able
to control the DB connection pool size of Tomcat, which is the
direct upstream tier of MySQL.

The runtime adjustment of the STP size of Tomcat is sup-
ported by the latest Tomcat implementation. Tomcat registers STP
as an MBean in the hosting Java Virtual Machine (JVM), which
allows a remote Java program (e.g., our APP-agent) to fetch or
change the STP size through remote method invocation (RMI).
However, the DBConnP parameter is not included in Tomcat
server MBeans. We need to find a way to expose the capabilities
of managing this parameter dynamically.

There are two methods to manage the DBConnP size in
Tomcat. The first method is to dynamically change and load
the Tomcat JDBC connection pool configuration file, however,
this method requires change of the DB connection pool imple-
mentation of the original application. The second method is to
implement our own MBean exposing the management interface
of the DBConnP parameter, which is similar to the management
of STP in Tomcat. Since the second method is less intrusive and
can be easily applied to other Java-based servers, we choose
the second method to implement the management module of
DBConnP in Tomcat as part of our APP-agent component.

5 EXPERIMENTAL EVALUATION

Here we evaluate how effectively does DCM perform when
comparing to other state-of-the-art system scaling solutions under
six realistic bursty workload scenarios. Concretely, we compare
the performance of a 3-tier application equipped with two system
scaling management frameworks: DCM and the hardware-only
scaling framework “EC2-AutoScale” [23] provided by Amazon
AWS. The latter one has been widely used in academic re-
search [24], [25], [26] and industry practices. We will show
that DCM outperforms “EC2-AutoScale” in both the system tail

8



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

U
se

rs
(a) Large variations

U
se

rs

(b) Quickly varying

U
se

rs

(c) Slowly varying
U

se
rs

(d) Big spike

U
se

rs

(e) Dual phase

U
se

rs

(f) Steep tri phase

Fig. 8: Workload Traces We Use for Experiments

latency and throughput because of intelligent control of request
processing concurrency during the system scaling process.

5.1 DCM Evaluation with Concurrency-Aware Models

We have implemented both DCM and EC2-AutoScale in our
VMware ESXi 6.0 cluster environment. With EC2-AutoScale,
customers can set threshold values (usually the CPU utilization)
to dynamically add or remove VMs from an Auto Scaling
group, which specifies the type and the upper bound of VMs to
scale [27]. Amazon CloudWatch is used to monitor resource uti-
lization. Concretely, EC2-AutoScale uses Amazon CloudWatch
to monitor resource utilization and trigger the scaling activities
once the monitored resources exceeds the predefined threshold.
We set the control period for both controllers to be 15-second,
which has been used in other state-of-the-art control policies [14],
[28]. To avoid performance instability caused by bursty workload,
we also adopt the “quick start but slow turn off” VM scaling
policy learned from Gandhi’s et al. AutoScale work [2], as
described in more detail in Section 4.1.

We evaluate the effectiveness of the two controllers using six
realistic workload traces (Figure 8) collected from the real-world
production systems [29], [30]. These traces are categorized by
Gandhi et al. in their AutoScale paper [2]. To fit the capacity of
our experiment environment, we scale these workload traces such
that the maximum number of concurrent users is 7500, and the
duration of each trace is 12 minutes.

Figure 9 shows the timeline comparison between the DCM
and the EC2-AutoScale cases under the same “Large variations”
workload (see Figure 8(a)). The four subfigures in the left column
show the DCM case and those in the right column show the
EC2-AutoScale case. In both cases the system has the same
initial hardware configuration 1-1-1, with the default soft resource
allocations 1000/100/80. Comparing Figure 9(a) and 9(b), the
DCM case shows relatively stable performance all the time while
the EC2-AutoScale case has three obvious performance dete-
rioration periods (50s∼90s, 227s∼259s, and 530s∼560s). The
interesting observation is that all the three periods of performance
degradation are the periods when the bottleneck tier of the system
is about to scale (see Figure 9(d) 9(f)).

Taking the first period 50s∼90s in Figure 9(b) for example,
EC2-AutoScale presents a large response time spike and sig-
nificant throughput drop. During this period, we observe that
the original one Tomcat server scales to two at 67s because
the Tomcat CPU utilization exceeds the scaling threshold (see
Figure 9(d)). We note that the system performance already starts

to deteriorate before the second Tomcat adding in. This is because
the scale-out activity is triggered only after the 15-second control
period. Interestingly, the system performance degrades even fur-
ther when the second Tomcat adds into the system. This is be-
cause of the increased request processing concurrency in MySQL
after the Tomcat scaling out. Once the second Tomcat adds in,
MySQL becomes the new bottleneck tier. Due to the newly added
Tomcat, the Tomcat tier now is able to send doubled concurrent
requests to the downstream MySQL (from the default 80 DB
connection pool size to 160) (see Figure 9(h)). High concurrent
requests in MySQL cause low efficiency of MySQL CPU (see
Figure 3(b)) and thus low Queries-Per-Second (QPS, throughput
of MySQL) as shown in Figure 9(h). The system performance
eventually returns to normal after the second MySQL instance
added to the system at time mark 90s as shown in Figure 9(f). The
second performance deterioration during the period 227s∼259s
is similar as the first one when the third Tomcat and MySQL are
added to the system due to the continual increase of workload.
The third performance deterioration period 530s∼560s is more
interesting. The MySQL tier scales in from two instances to
one at 528s due to the decreased workload. Then in the next
control period high workload suddenly floods to the MySQL tier,
and the only left-over MySQL instance encounters high request
processing concurrency (160), causing low QPS (see Figure 9(h)).

On the other hand, there is only moderate performance
degradation in the DCM case during the three periods mentioned
above under the same workload (see Figure 9(a)). This is because
DCM dynamically reallocates soft resources in both Tomcat and
MySQL to the “optimal” level based on the model prediction,
thus both of them perform efficiently during the temporarily
overloaded periods, thus achieves much more stable performance
compared to the EC2-AutoScale case.

Readers may find out that the fundamental problem of the per-
formance deterioration in the EC2-AutoScaling case is because
of the scaling-out activities lagging of the workload increase,
which leads to temporary high concurrency of the servers with
degraded efficiency in the bottleneck tier. A simple solution is to
reduce the control period to let the system respond fast, however,
too small a control period will make the system unstable under
bursty workload [31]. Even if we reduce the control period, the
preparation period for a newly added VM taking effect still takes
time. For example, Gandhi et al. report 30s∼1min for launching
a KVM-based VM [32]. In our experimental environment, a
ESXi host needs 15s to launch a VM. Some more advanced
approach may scale out the system proactively based on the
prediction of workload [3], [28], however, predicting n-tier ap-
plication workload such as e-commerce is a well-known research
challenge because of the bursty nature of the workload (e.g.,
Slashdot effect [10]). So temporary overloading of the system
is unavoidable in practice and DCM can help stabilizing system
performance during the temporary overloading periods.

Figure 9 also shows that DCM achieves higher resource
efficiency than EC2-AutoScale because DCM achieves better
performance while using the same (if no less) amount of hardware
resources. For example, both the Tomcat and MySQL tier in
DCM and EC2-AutoScale scales up to 3 server instances during
the 700 seconds experimental period. The fundamental reason is
because DCM is able to dynamically adjust the software resource
allocations of the servers in the system to more efficiently utilize
the underlying hardware resources (e.g., CPU).

9



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

 0

 600

 1200

 1800

 2400

 0  100  200  300  400  500  600  700

 0

 1000

 2000

 3000

 4000

 5000

R
e
s
p

o
n

s
e
 T

im
e
 [

m
s
]

T
h

ro
u

g
h

p
u

t

Time [s]

The DCM Case

Throughput Response time

(a) System response time is low and stable under the “Large
Variation” workload. System throughput matches the work-
load variation (Figure 8(a)), suggesting no throughput loss.

 0

 600

 1200

 1800

 2400

 0  100  200  300  400  500  600  700

 0

 1000

 2000

 3000

 4000

 5000

R
e
s
p

o
n

s
e
 T

im
e
 [

m
s
]

T
h

ro
u

g
h

p
u

t

Time [s]

The EC2-AutoScale Case

Throughput Response time

(b) System encounters frequent response time spikes under
the same workload trace as in (a). System throughput drops
during each response time spike period at 70s, 230s, and 530s.

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
e
a
g

e

T
o

m
c
a
t 

S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

Tomcat Tier Avg CPU Server Number

(c) The Tomcat tier scales out/in along with the CPU util.
variation. The scaling-out actions at 80s, 100s, and 560s cause
only minor variation of system response time as shown in (a).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
e
a
g

e

T
o

m
c
a
t 

S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

Tomcat Tier Avg CPU Server Number

(d) In the EC2-AutoScale case, Tomcat scaling-out actions at
80s and 230s coincide with response time spike periods and
throughput drops as shown in (b).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
a
g

e

M
y
S

Q
L

 S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

MySQL Tier Avg CPU Server Number

(e) The MySQL tier scales out/in along with the CPU util.
variation. MySQL scaling-out actions at 80s, 230s, and 540s
coincide with minor response time variation as shown in (a).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
a
g

e

M
y
S

Q
L

 S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

MySQL Tier Avg CPU Server Number

(f) In the EC2-AutoScale case, MySQL scaling-out actions at
90s, 250s, and 550s coincide with response time spike periods
and throughput drops as shown in (b).

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700

 0

 2000

 4000

 6000

 8000

A
c
ti

v
e
 T

h
re

a
d

s

Q
P

S

Time [s]

MySQL1 threads MySQL1 QPS

(g) Runtime request processing concurrency and Queries-Per-
Second (QPS) of the first MySQL. MySQL concurrency limit
is controlled to the “optimal” level at the scale-out periods
80s, 230s, and 540s (see (e)), thus produces high QPS.

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600  700

 0

 2000

 4000

 6000

 8000

A
c
ti

v
e
 T

h
re

a
d

s

Q
P

S

Time [s]

MySQL1 threads MySQL1 QPS

(h) MySQL runtime concurrency is high at the scaling-out
periods 90s, 250s, and 550s. Suboptimal high concurrency in
MySQL leads to low QPS, which in turn causes response time
spikes and throughput drops as shown in (b).

Fig. 9: Performance degradation of EC2-AutoScale compared to DCM under the same “Large Variation” workload. The left side figures are
for DCM while the right side are for EC2-AutoScale. The system in both cases starts with the 1-1-1 configuration and the default 1000/100/80
soft resource allocation, however, DCM outperforms the EC2-AutoScale case once system scaling actions occur.

5.2 Performance Comparison Under Other Traces

The experiments in Figure 9 are conducted when the target
system starts with the default configuration 1000/100/80, showing
that DCM outperforms EC2-AutoScale significantly. What if the
system starts with initially optimal concurrency setting? Here
we show that, static concurrency setting, even optimal at the
beginning, may cause significant performance degradation when
the target system scales to a different size. We show this case by

conducting the experiments using the “Steep tri phase” workload
trace, where the system starts with initially optimal allocation
of software resources in both DCM and EC2-AutoScale. We
changed the initial system hardware configuration from 1-1-1 to
1-4-1, meaning that the system initially consists of one Apache
web server, four Tomcat servers, and one MySQL database server.
Such initial configuration makes sense because the number of
application servers (Tomcat here) is usually larger than that of the

10



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

 0

 300

 600

 900

 1200

 1500

 1800

 0  100  200  300  400  500  600  700

 0

 500

 1000

 1500

 2000

 2500

 3000
R

e
s
p

o
n

s
e
 T

im
e
 [

m
s
]

T
h

ro
u

g
h

p
u

t

Time [s]

The DCM Case

Throughput Response time

(a) System achieves stable response time under the “Steep Tri
Phase” workload (see Figure 8(f)). System throughput matches
the workload variation, suggesting no throughput loss.

 0

 300

 600

 900

 1200

 1500

 1800

 0  100  200  300  400  500  600  700

 0

 500

 1000

 1500

 2000

 2500

 3000

R
e
s
p

o
n

s
e
 T

im
e
 [

m
s
]

T
h

ro
u

g
h

p
u

t

Time [s]

The EC2-AutoScale Case

Throughput Response time

(b) System encounters response time spikes under the same
bursty workload trace as in (a). System throughput also drops
significantly during the response time spikes at 320s and 550s.

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
e
a
g

e

T
o

m
c
a
t 

S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

Tomcat Tier Avg CPU Server Number

(c) The Tomcat tier scales out/in along with the CPU util.
variation. Tomcat scaling-out actions at 370s and 590s cause
only minor variation of system response time as shown in (a).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
e
a
g

e

T
o

m
c
a
t 

S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

Tomcat Tier Avg CPU Server Number

(d) In the EC2-AutoScale case, the Tomcat tier does not scale
out because the CPU utilization is always below the triggering
threshold (80%).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
a
g

e

M
y
S

Q
L

 S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

MySQL Tier Avg CPU Server Number

(e) The MySQL tier scales out/in along with the CPU util.
variation. The MySQL tier scaling-out actions at 340s and 560s
coincide with minor response time variation as shown in (a).

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600  700

 0

 1

 2

 3

 4
Trigger Line

 A
v
e
ra

g
e
 C

P
U

 U
s
a
g

e

M
y
S

Q
L

 S
e
rv

e
r 

N
u

m
b

e
r

Time [s]

MySQL Tier Avg CPU Server Number

(f) In the EC2-AutoScale case, the MySQL tier does not scale
out because the CPU utilization is always below the triggering
threshold (80%).

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700

 0

 2000

 4000

 6000

 8000

A
c
ti

v
e
 T

h
re

a
d

s

Q
P

S

Time [s]

MySQL1 QPS MySQL1 threads

(g) Measured runtime concurrency and Queries-Per-Second
(QPS) of the first MySQL. MySQL concurrency limit is always
controlled to the “optimal” level (40) during the scaling-out
periods at 340s and 560s (see (c)), thus produces high QPS.

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700

 0

 2000

 4000

 6000

 8000

A
c
ti

v
e
 T

h
re

a
d

s

Q
P

S

Time [s]

MySQL1 QPS MySQL1 threads

(h) In the EC2-AutoScale case, MySQL runtime concurrency
is low all the time. But the QPS is lower than that of the DCM
case (g) during the peak client workload period at 340s and
560s.

Fig. 10: Performance degradation of EC2-AutoScale compared to DCM under the same “Steep tri phase” workload. The 1-4-1 system initially
starts with the optimal allocation of software resources in both cases, however, the DCM case shows much more stable performance than the
EC2-AutoScale case by comparing (a) and (b).

database servers in a typical n-tier system since database is more
likely to be the system bottleneck. Based on our concurrency-
aware model, the optimal software resource allocation for the sys-
tem should be 1000/20/9 (1000 threads in the Apache web server,
20 threads and 9 database connections in a Tomcat server). Such
a setting is optimal because: (1) MySQL is the bottleneck server
at the beginning, thus we should optimize the request processing

concurrency in MySQL, which is 36 based on our model (2) there
are four Tomcat servers, thus the optimal database connection
pool size of each Tomcat should be 9, so the maximum number
to concurrent requests that are allowed to flow to the downstream
MySQL is 9*4=36. Figure 10 shows that DCM performs much
better than EC2-AutoScale under the workload trace Steep tri
phase. This is because the system scales-in to 1-1-1 due to the

11



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

TABLE 3: Response Time Performance Comparison Between Autoscale and DCM Under Different Traces

Percentile Response Time (ms) Large
Variation

Quick
varying

Slowly
varying Big Spike Dual Phase

Steep Tri
Phase

RT95

EC2-
AutoScale 1027 904 1087 525 622 485

DCM 125 28 206 111 57 56

RT99

EC2-
AutoScale 3566 2229.99 3228 1777 1378 1710

DCM 226 105 352 198 223 136

 0

 1000

 2000

 3000

 4000

 5000

 0  100  200  300  400  500  600  700

T
h

ro
u

g
h

p
u

t

Time [s]

Quickly Varying Trace

The EC2-AutoScale Case
The DCM Case

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0  100  200  300  400  500  600  700

T
h

ro
u

g
h

p
u

t

Time [s]

Slowly Varying Trace

The EC2-AutoScale Case
The DCM Case

 0

 1000

 2000

 3000

 4000

 5000

 0  100  200  300  400  500  600  700

T
h

ro
u

g
h

p
u

t

Time [s]

Big Spike Trace

The EC2-AutoScale Case
The DCM Case

 0

 1000

 2000

 3000

 4000

 5000

 0  100  200  300  400  500  600  700

T
h

ro
u

g
h

p
u

t

Time [s]

Dual Phase Trace

The EC2-AutoScale Case
The DCM Case

Fig. 11: Throughput comparison between DCM and EC2-AutoScale under the other four realistic bursty workload traces

low workload at the beginning. As the workload starts to increase
at the period around 300s, EC2-AutoScale can not scale-out either
Tomcat or MySQL because the static small database connection
pool size (9) becomes the new system bottleneck, causing low
utilization of Tomcat and MySQL CPU, thus can not trigger any
scaling-out activities to handle the increased workload.

Figure 11 shows the throughput comparison results between
DCM and EC2-AutoScale under the other four representative
workload traces (see Figure 8). In most cases DCM has more
stable throughput performance than EC2-AutoScale, the root
cause has been explained before and we do not repeat here.
The only exception is the “slowly varying” workload trace case.
Although DCM does not have long sharp throughput drop as
EC2-AutoScale during the system scaling out phase (between
380s to 420s), its throughput has large variation between 420s
to 510s. This is because the system under control reaches the
scaling out limit here. The EC2-AutoScale framework has a
scaling policy in which a user has to set a scaling out limit of
VMs in the Auto Scaling group [27]. To compare DCM and EC2-
AutoScale in realistic scenarios, we set the scaling out limit of
both the Tomcat tier and the MySQL tier to be 3 VMs each. Under
the “slowly varying” workload trace case, the system already
reaches the scaling out limit between 420s to 510s because
of the steady high workload period (see Figure 8(c)), and the
system performance starts to become unstable during this period
as shown in Figure 11(b).

We further summarize the the system response time compari-
son results under all the workload traces in Table 3. We choose the
RT95 and RT99 as the comparison metrics, which represent 95th
and 99th percentile response time, respectively. The DCM case

outperforms the EC2-AutoScale case uniformly under different
workload traces. Even for RT99, we can see that the DCM case
still keeps the response time below 500ms, which (or even lower)
is a common Service Level agreement (SLA) requirement for
most modern e-commerce websites [28], [33], [32].

Discussion. Although DCM has been demonstrated to work
effectively when scaling a small-scale 3-tier application, DCM
also applies to large scale web applications where each tier
has tens to hundreds of VMs. As long as the concurrency of
components/tiers changes resulting from the system scaling, we
need to re-adjust the concurrency setting after the system scaling
in order to efficiently utilize the underlying hardware resources.
For large systems, the effectiveness of DCM highly depends on
the workload variation pattern; for example, if the ratio of the
turned-on/off VMs over the total number of VMs in one tier
is large after the system scaling, then DCM should work more
effectively since the concurrency change to downstream tiers is
also large. On the other hand, if the ratio of the turned-on/off VMs
is small, then our DCM should be less effect since the change of
request processing concurrency in the system is also small.

6 RELATED WORK

Feedback Control Based Resource Adaption. Most previous
research in this category [2], [4], [6], [32], [34], [35], [28]
shares the similar goal: meet the QoS requirements such as
bounded response time while minimize the cost (either operation
or infrastructure). These research efforts can be further classified
into two groups: reactive approaches and predictive approaches.

Reactive approaches [5], [28], [2] use either system-level
(e.g., CPU utilization) or application level (e.g., system response

12



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

time, queue length) feedback signals to determine when to scale
the system. Due to the reactive nature, the system usually already
suffered the performance damage before the newly added VMs
starting to share load due to the unavoidable and sometimes very
long setup time (e.g., up to minutes [32]).

Predictive approaches [3], [36], [26], [4] works well for
workloads with periodic patterns. The long setup time could be
avoided once the controller accurately predicts the workload and
takes scaling actions upfront. However, n-tier web applications
naturally have bursty workload in both macro level (see Figure 8)
and micro level [31]; it is non-trivial to make accurate prediction
and add new VMs into the system ahead of the long setup time.
In fact our work complements both the reactive and predictive ap-
proaches. No matter which approach is chosen, when a controller
decides to scale out/in, reallocating soft resources is necessary to
maximize the efficiency of underlying hardware resources.

Queuing Model for Performance Prediction. Modeling of n-
tier applications has been studied for performance prediction and
system management. Urganonkar et al.[37] propose a queue-
based model to capture the performance characteristics of each
tier and application idiosyncrasies. This model focuses on the
relationship between number of sessions and average response
time, while our work focuses on the concurrency management
in each tier. Newell et al.[38] present a latency oriented model,
which is applied in the SEDA-based single server environment.
Their main focus is to optimize the threads allocation among
different stages in one server while our problem domain is in n-
tier application scaling management in cloud. Franks et al. [39],
[40] propose a layered queuing network model which character-
izes the dependencies of software and hardware resources across
nodes in different tiers of a distributed system. However, their
model does not take the impact of workload concurrency on the
sensitivity of server performance into account. Our research focus
is to ensure the optimal request processing concurrency in the
system to efficiently utilize the critical hardware resource even
after system scaling.

Software Performance Engineering. Software Engineering ap-
proaches has been explored for system performance optimization.
For example, Zheng et al. [41] proposed an auto-generation
technique of configuration files for Internet services such as n-tier
applications. Their focus is to remove various mis-configuration
caused by manual operations. On the other hand, our objective is
to optimize performance through soft resources on-line adaptation
in the system scaling management. Gunther et al.[17] proposed
a methodology to characterize the relationship between server
performance and threads concurrency in a single server envi-
ronment. Maji et al.[42] investigated some important parameters
(e.g., MaxClients and KeepaliveTimeout) of an Apache web server
and see how they affect the server’s performance in a shared cloud
environment. Their focus is to reduce the interference from the
co-hosted VMs by reconfiguring those parameters.

7 CONCLUSION

In this paper we show the importance of soft resource allocations
in scaling n-tier applications in the cloud. Through extensive
experiments using a representative n-tier web application bench-
mark (RUBBoS), we demonstrate that scaling an n-tier system
by adding or removing VMs without appropriately re-allocating
soft resources (e.g., server threads and connections) may lead to
significant performance degradation of the system (Section 2.2).

We build a concurrency-aware model that combines some op-
erational queuing laws and the fine-grained measurement data
of the system to determine a near optimal concurrency setting
of each tier in the system (Section 3). We integrate the model
into our dynamic concurrency management (DCM) framework to
intelligently reallocate soft resources of each tier during the sys-
tem scaling process (Section 4). Our experiments using six real-
world bursty workload traces demonstrate that DCM can achieve
significantly shorter tail latency while higher resource efficiency
compared to hardware-only scaling solutions (Section 5).

REFERENCES

[1] “memcached - a distributed memory object caching system,” ”https:
//memcached.org//”.

[2] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Transactions on Computer Systems (TOCS), vol. 30,
no. 4, p. 14, 2012.

[3] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic
distributed resource scaling for infrastructure-as-a-service,” in Proceed-
ings of the 10th International Conference on Autonomic Computing
(ICAC 13), 2013, pp. 69–82.

[4] C. Z. Xu, J. Rao, and X. Bu, “URL: A unified reinforcement learning
approach for autonomic cloud management,” Journal of Parallel and
Distributed Computing, vol. 72, no. 2, pp. 95–105, 2012.

[5] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource
scaling for cloud applications,” in Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on. IEEE,
2012, pp. 644–651.

[6] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement learning
towards automating resource allocation and application scalability in
the cloud,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 12, pp. 1656–1674, 2013.

[7] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling
techniques for elastic applications in cloud environments,” Department
of Computer Architecture and Technology, University of Basque Coun-
try, Tech. Rep. EHU-KAT-IK-09-12, 2012.

[8] Q. Wang, S. Malkowski, D. Jayasinghe, P. Xiong, C. Pu, Y. Kanemasa,
M. Kawaba, and L. Harada, “The impact of soft resource allocation on
n-tier application scalability,” Proceedings - 25th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2011, pp.
1034–1045, 2011.

[9] OW2, “Rubbos,” http://forge.ow2.org/projects/rubbos/.
[10] S. Adler, “The slashdot effect: An analysis of three internet publica-

tions,” http://ldp.dvo.ru/LDP/LG/issue38/adler1.html, Mar. 1999.
[11] Apache, “Jmeter,” http://jmeter.apache.org/.
[12] P. J. Denning and J. P. Buzen, “The operational analysis of queueing

network models,” ACM Comput. Surv., vol. 10, no. 3, 1978.
[13] J. Dilley, R. Friedrich, T. Jin, and J. Rolia, “Measurement tools and

modeling techniques for evaluating web server performance,” in Inter-
national Conference on Modelling Techniques and Tools for Computer
Performance Evaluation. Springer, 1997, pp. 155–168.

[14] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center,” in 2010 IEEE
3rd International Conference on Cloud Computingofol. IEEE, 2010,
pp. 370–377.

[15] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra,
“Controlling quality of service in multi-tier web applications,” in
26th IEEE International Conference on Distributed Computing Systems
(ICDCS’06). IEEE, 2006, pp. 25–25.

[16] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[17] N. J. Gunther, S. Subramanyam, and S. Parvu, “A methodology for
optimizing multithreaded system scalability on multi-cores,” CoRR, vol.
abs/1105.4301, 2011.

[18] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong, C. Pu,
M. Kawaba, and L. Harada, “The impact of soft resource allocation
on n-tier application scalability,” in Proceedings of the 25th IEEE
International Parallel & Distributed Processing Symposium (IPDPS
2011), 2011, pp. 1034–1045.

[19] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.

13

"https://memcached.org//"
"https://memcached.org//"


1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2871086, IEEE
Transactions on Parallel and Distributed Systems

[20] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,
M. Kawaba, and C. Pu, “Detecting transient bottlenecks in n-tier
applications through fine-grained analysis,” in Proceedings of the 6th
International Conference on Cloud computing (Cloud 2013), 2013.

[21] S. Malkowski, M. Hedwig, and C. Pu, “Experimental evaluation of n-
tier systems: Observation and analysis of multi-bottlenecks,” in IISWC
’09.

[22] “Haproxy,” http://www.haproxy.org/.
[23] Amazon, “Ec2 autoscaling,” https://aws.amazon.com/autoscaling/.
[24] A. H. Mahmud and S. Ren, “Online capacity provisioning for carbon-

neutral data center with demand-responsive electricity prices,” SIGMET-
RICS Perform. Eval. Rev., vol. 41, no. 2, pp. 26–37, Aug. 2013.

[25] S. Ren and Y. He, “Coca: Online distributed resource management for
cost minimization and carbon neutrality in data centers,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New York, NY, USA:
ACM, 2013, pp. 39:1–39:12.

[26] L. Zhang, Y. Zhang, P. Jamshidi, L. Xu, and C. Pahl, “Workload
patterns for quality-driven dynamic cloud service configuration and
auto-scaling,” in Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, ser. UCC ’14. Washing-
ton, DC, USA: IEEE Computer Society, 2014, pp. 156–165.

[27] “Amazon auto scaling group limits,”
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-account-
limits.html.

[28] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic pro-
visioning of multi-tier internet applications,” in Second International
Conference on Autonomic Computing (ICAC’05), 2005, pp. 217–228.

[29] ITA., “The internet traffic archives:wordcup98,”
http://ita.ee.lbl.gov/html/contrib/WorldCup.html, 1998.

[30] NLANR, “National laboratory for applied network research.
anonymized access logs,” ftp://ftp.ircache.net/Traces/., 1995.

[31] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proceedings of
the 6th international conference on Autonomic computing, 2009.

[32] A. Gandhi, T. Zhu, M. Harchol-Balter, and M. A. Kozuch, “Softscale:
Stealing opportunistically for transient scaling,” in Proceedings of the
13th International Middleware Conference, ser. Middleware ’12. New
York, NY, USA: Springer-Verlag New York, Inc., 2012, pp. 142–163.

[33] H. Jayathilaka, C. Krintz, and R. Wolski, “Response time service level
agreements for cloud-hosted web applications,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, 2015, pp. 315–
328.

[34] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena,
L. Arantes, and P. Sens, “Towards qos-oriented sla guarantees for online
cloud services,” in Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on. IEEE, 2013, pp. 50–57.

[35] E. B. Lakew, E. Elmroth et al., “Service level and performance aware
dynamic resource allocation in overbooked data centers,” in Cluster,
Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM Interna-
tional Symposium on. IEEE, 2016, pp. 42–51.

[36] L. Wang, J. Xu, H. A. Duran-Limon, and M. Zhao, “Qos-driven
cloud resource management through fuzzy model predictive control,”
in Autonomic Computing (ICAC), 2015 IEEE International Conference
on. IEEE, 2015, pp. 81–90.

[37] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,”
in ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1.
ACM, 2005, pp. 291–302.

[38] A. Newell, G. Kliot, I. Menache, A. Gopalan, S. Akiyama, and M. Sil-
berstein, “Optimizing distributed actor systems for dynamic interactive
services,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. ACM, 2016, pp. 38:1–38:15.

[39] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno, “Layered
bottlenecks and their mitigation,” in Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on. IEEE, 2006, pp.
103–114.

[40] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “En-
hanced modeling and solution of layered queueing networks,” IEEE
Transactions on Software Engineering, vol. 35, no. 2, pp. 148–161,
2009.

[41] W. Zheng, R. Bianchini, and T. D. Nguyen, “Automatic configuration
of internet services,” ACM SIGOPS Operating Systems Review, vol. 41,
no. 3, p. 219, 2007.

[42] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating
interference in cloud services by middleware reconfiguration,” Proceed-

ings of the 15th International Middleware Conference on - Middleware
’14, pp. 277–288, 2014.

Qingyang Wang is an Assistant Professor in
the Department of EECS at Louisiana State
University-Baton Rouge. His research is in dis-
tributed systems and cloud computing with a
current focus on performance and scalability
analysis of large-scale web applications (e.g.,
Amazon.com). He has led research projects
at LSU on cloud performance measurements,
scalable web application design, and auto-
mated system management in clouds. He grad-
uated from the College of Computing, Georgia

Institute of Technology with a Ph.D. degree in 2014, and has previously
received his MSc and BSc degrees in computer science and engineer-
ing from Chinese Academy of Sciences and Wuhan University in 2007
and 2004, respectively. He is a recipient of the Best Student Paper
award in IEEE Cloud 2011.

Hui Chen Hui Chen received the Bachelors
and the PhD degrees from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2006 and 2012, respectively. He is currently a
research staff in the 2012 Lab of Huawei Com-
pany. Before joining Huawei, he has worked
as an assistant researcher in Louisiana State
University, Auburn University and Shenzhen
Institutes of Advanced Technology, Chinese
Academy of Sciences for totally five years. His
research interests include cloud computing, en-

ergy efficiency management of data center and big data processing.

Shungeng Zhang is a Ph.D. student in the
Department of EECS at Louisiana State
University-Baton Rouge. Currently, he is
presently working in the cloud computing lab as
a research assistant under Dr. Qingyang Wang.
His research interest lies in performance and
scalability analysis of asynchronous Internet
server architecture, with the aim of achieving
highly responsive web applications running at
high utilization in cloud. He graduated from the
School of Software Engineering, HuaZhong

University of Science & Technoogy with a B.Eng. degree in 2014.

Liting Hu got her PhD degree in Computer Sci-
ence at Georgia Institute of Technology. Before
that, she completed her undergraduate degree
in Computer Science at Huazhong University of
Science and Technology in China. Her research
is in the general area of distributed systems and
its intersection with big data analytics, resource
management, power management and system
virtualization. She spent summers interning at
IBM T.J. Watson Research Center, Intel Sci-
ence and Technology Center for Cloud Comput-

ing, Microsoft Research Asia, VMware, and has been working closely
with them.

Balaji Palanisamy Balaji Palanisamy received
the MS and PhD degrees in computer sci-
ence from the College of Computing, Georgia
Tech, in 2009 and 2013, respectively. He is
an assistant professor at the School of Infor-
mation Science, University of Pittsburgh. His
primary research interests lie in scalable and
privacy-conscious resource management for
large-scale distributed and mobile systems. At
University of Pittsburgh, he codirects research
in the Laboratory of Research and Education

on Security Assured Information Systems (LERSAIS). He received
the Best Paper Award at the Fifth International Conference on Cloud
Computing, 2012. He is a member of the IEEE and is currently the
chair of the IEEE Communications Society Pittsburgh Chapter.

14


