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Abstract—With the rapid growth of Cloud Computing tech-
nologies, enterprises are increasingly deploying their services
in the Cloud. Dynamically priced cloud resources such as the
Amazon EC2 Spot Instance provides an efficient mechanism
for cloud service providers to trade resources with potential
buyers using an auction mechanism. With the dynamically priced
cloud resource markets, cloud consumers can buy resources at a
significantly lower cost than statically priced cloud resources such
as the on-demand instances in Amazon EC2. While dynamically
priced cloud resources enable to maximize datacenter resource
utilization and minimize cost for the consumers, unfortunately,
such auction mechanisms achieve these benefits only at a cost
significant of private information leakage. In an auction-based
mechanism, the private information includes information on
the demands of the consumers that can lead an attacker to
understand the current computing requirements of the consumers
and perhaps even allow the inference of the workload patterns
of the consumers. In this paper, we propose PADS, a strategy-
proof differentially private auction mechanism that allows cloud
providers to privately trade resources with cloud consumers in
such a way that individual bidding information of the cloud
consumers is not exposed by the auction mechanism. We demon-
strate that PADS achieves differential privacy and approximate
truthfulness guarantees while maintaining good performance in
terms of revenue gains and allocation efficiency. We evaluate
PADS through extensive simulation experiments that demonstrate
that in comparison to traditional auction mechanisms, PADS
achieves relatively high revenues for cloud providers while
guaranteeing the privacy of the participating consumers.

I. INTRODUCTION

With the rapid growth of Cloud Computing technologies,
enterprises are increasingly deploying their services in the
Cloud. The evolution of cloud computing and datacenter-
enabled technologies has significantly revolutionized the way
in which users and businesses use computing resources to-
day. The cumulative market for cloud computing services is
expected to increase to more than 100 billion in 2017 [1].
Dynamically priced cloud resources such as the Amazon EC2
Spot Instance [2] provides an effective mechanism for cloud
service providers to trade resources with potential buyers using
an auction mechanism. With the dynamically priced cloud
resource markets, cloud consumers can buy resources at a cost
much lower than statically priced cloud resources such as the
on-demand instances in Amazon EC2 [3]. Such spot instances
can reduce the cost of the computing resources by up to 50%

to 90% if the applications running on the spot instances can
deal with temporary interruptions during job execution [4].
Thus, Spot Instances are highly recommended for applications
such as data mining and batch processing that do not have a
real-time processing requirement [4].

While dynamically priced cloud resources enable to maxi-
mize datacenter resource utilization and minimize cost for the
consumers, unfortunately, such auction mechanisms achieve
these benefits only at a significant cost of private information
leakage. In an auction-based mechanism, private information
includes information on when and who has higher demands
on which types of Virtual Machine (VM). Such information
can lead an attacker to understand the current computing
requirements of the consumers and perhaps even allow the
inference of the workload patterns of the consumers. For
instance, if a consumer makes a higher bid for the spot
instance, an adversary may be able to infer that the requested
resources for the computing task are more important than the
other resources requested by the user. Such adversaries may
also infer other business secrets by combining the bidding
information with other background knowledge and break the
normal order through false-name bids [5] in the auction market
to disrupt the normal fair operation.

Protecting consumer privacy in an auction-based resource
allocation market is an important task. Earlier works have
addressed how to protect privacy in auctions [6] [7] [8] [9]
such that the auction achieves the desired outcomes with-
out revealing the private information of the bidders. While
there has been work on privacy-aware auctions in stock and
spectrum distribution [10] [11] [12] [13] [14] [15], privacy-
preserving auction design for dynamically priced cloud re-
source allocation has not yet received attention from the
research community. In this paper, we propose a privacy-
preserving auction design mechanism called PADS (privacy-
preserving auction design for spot and dynamically priced
cloud resources) that protects the private information in the
bids in the auction process through differential privacy [16]
guarantees.

Concretely, this paper makes the following contributions.
1) To the best of our knowledge, the work presented in this

paper is the first to design a differentially private and



strategy-proof solution for allocating dynamically priced
cloud resources through an auction mechanism.

2) We formally model and analyze the problem of dynam-
ically priced cloud resource allocation as a sealed-bid
auction problem and design two near optimal privacy-
preserving mechanisms. We demonstrate that both the
mechanisms achieve differential privacy guarantees and
hold the strategy-proof property.

3) We propose PADS-ADP, an (ε, δ)-differentially private
and truthful auction mechanism. Unlike existing so-
lutions, PADS-ADP has the ability to simultaneously
guarantee differential privacy and yet provide the de-
sired features of an auction mechanism. We improve the
performance of PADS-ADP by developing an enhanced
mechanism called PADS-DP which is an ε-differentially
private and an approximate truthful mechanism. The low
computational complexity of both PADS-ADP and PADS-
DP make it possible to calculate the auction outcome for
low latency real-time scheduling requests.

4) We experimentally evaluate PADS (both PADS-ADP and
PADS-DP) through an extensive simulation study. Our
evaluation results show that PADS achieves a closely sim-
ilar performance compared to traditional auction mecha-
nisms such as VCG [17]–[19] while providing the desired
differential privacy guarantees in the auction process.

The remainder of this paper is organized as follows. In
Section II, we briefly review the related work in the areas
of auction mechanism design and differential privacy. Section
III presents the problem model and reviews a few key concepts
related to auction design and differential privacy. Section
IV presents the design of a near optimal privacy-preserving
mechanism and its properties. In Section V and VI, we
introduce the design of PADS-ADP and PADS-DP and analyze
their properties. Section VII presents our evaluation results.
Finally, we conclude the paper in Section VIII.

II. RELATED WORK

In recent years, privacy becomes a significant concern to
users as innovations in technology often require private infor-
mation of users for processing. There are two kinds of privacy-
preserving techniques studied extensively in the literature: k-
anonymity [20] and differential privacy [16]. Many privacy-
preserving solutions are proposed based on the differential
privacy concept, which include two major techniques: the first
set of techniques is represented by perturbation algorithms
[21], [22] which adds noise to protect the privacy for in-
dividual’s contribution to the statistical output; the second
set of techniques include exponential mechanisms [9], [23]
that is used when the noise addition is not a reasonable
approach for guaranteeing privacy. Privacy-preserving auctions
also have been studied extensively in the recent years, and
some of the work has studied the problem in the context
of using differential privacy. For the theoretical aspect, there
are many research efforts trying to add new properties to
the previous basic auction mechanisms to make them more
efficient and effective, for example, McSherry and Talwar
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Figure 1. Spot Instance Illustration (Spot Instance Type: g2.8xlarge, Bid
Price: $1.95, Date: June 30, 2017)

[9] presents the basic idea of protecting the privacy of the
bids using an exponential mechanism and demonstrate several
critical properties including the approximate truthfulness and
differential privacy guarantees of the mechanism. Huang and
Kannan [23] proposed a nearly optimal differentially private
auction mechanism using the Gibbs Measure which is also
known as Boltzmann distribution in chemistry and physics [24]
to achieve a more effective optimization for the revenue and
social welfare compared to the techniques presented in [9].
For the application perspective, spectrum allocation auctions
are the most studied ones in the area of privacy-preserving
auctions. There are several research efforts implementing
privacy preserving mechanisms in spectrum auctions such as
[25], [26]. These techniques primarily address the spectrum
resource allocation problem in a privacy-preserving manner.
To the best of our knowledge, there is no prior work addressing
the privacy leakage problem in dynamically priced resource
allocation in clouds. The PADS privacy-preserving auction
mechanism proposed in this work is the first significant ef-
fort towards addressing the privacy-preserving cloud resource
allocation problem using privacy-aware auctions that provide
both differential privacy guarantees and efficiency in terms of
resource allocation.

III. CONCEPTS AND MODEL

In this section, we present the problem description for
privacy-preserving auction design of the dynamically priced
resource allocation and introduce the basic concepts of mech-
anism design and differential privacy.

A. Problem Model

We model the dynamically priced cloud resource allocation
problem as a sequence of auctions using discrete time slots.
In each time slot, we assume an auction mechanism that
determines the winning bids and allocates the resources to the
winners. As shown in Figure 1 which illustrates an example
of Spot Instance, when the bid of a user is higher than the
spot price, the user can run his/her job using a set of virtual
machines (VMs) during the time slot. In the cloud resource
allocation auction, we refer to the users as bidders or buyers



and the Cloud Service Providers (CSPs) as the sellers. The
entity performing the auction mechanism is referred to as the
auctioneer. There are K types of VMs used as the goods in
the auctions. In every time slot t, for each type-k VM, the
sealed-bid auction mechanism decides the users who can run
their jobs during the time slot t. For simplicity, we model each
round of auction in a time slot assuming only one type of VMs
used as goods in the auction. The objective of the seller (CSP)
is to allocate the VMs to the users such that it maximizes its
revenue. We assume that the CSP (seller) has m type-k VMs.
There are n users that want to use the type-k VM and each
user i ∈ N bids for the VMs with their bid value, bi. Here
N denotes the set of bidders N = {1, 2, ..., n} The bids are
represented by a vector ~b = {b1, b2, ..., bn}. Each user has a
per-VM valuation, which is private to the user, represented by
~v = {v1, v2, ..., vn}. Depending on the bidding strategy, the
bid may be equal or not equal to the real valuation of the
good for the user. The outcome of the auction is determined
by the auction mechanism which can be represented by a
vector ~x = {x1, x2, ..., xn} where xi is a binary indicator that
indicates whether the bid bi wins or not. The payments are
represented by ~p = {p1, p2, ..., pn} where pi is the payment
of user i to rent the type-k VM in the current time slot. The
objective of each user is to maximize the per-user utility which
can be represented by using the following utility function:

ui = (vi − pi)xi (1)

where ui is the utility of user i. The seller (CSP) also wants to
maximize its revenue in the auction mechanism. The revenue
of the seller (CSP) can be represented by the sum of the
payments:

REV =

n∑
i

pixi (2)

In a privacy-preserving auction mechanism, one of the
objectives is to protect the inference of the participation of
a bidder from the outcome of the auction. In addition, the
inference of private information such as the bid value, bi and
the user’s true valuations of the goods, vi need to be protected
from the outcome of the auction as well.

B. Auction Design Concepts

Before introducing the proposed PADS auction mechanism
, we review some important concepts related to auction mech-
anism designs and privacy-preserving mechanisms.

Mechanism Design
We first introduce Dominant Strategy [27] from game

theory that forms a fundamental solution concept for auction
mechanism designs.

Definition 1. (Dominant Strategy [28]) Strategy si is a player
i’s dominant strategy in a game, if for any strategy s′i 6= si
and any other players’ strategy profile s−i,

ui(si, s−i) ≥ ui(s′i, s−i). (3)

The concept of dominant strategy is related to truthfulness. In
an auction, truthfulness means that revealing truthful informa-
tion is the dominant strategy for every bidder.

Definition 2. (Truthfulness) “Truthfulness” is also called as
strategy-proof or incentive compatibility in auction literature.
In game theory, an asymmetric game where players have
private information is said to be strategy-proof (SP) if it is
a weakly-dominant strategy for every player to reveal his/her
private information.

If an auction mechanism is truthful, then the bidders will
tend to bid with their true valuation of the products. This is a
powerful feature for auction mechanism design as it ensures
that both the buyers and sellers can get maximum utility from
the auction without cheating.

Formally, we can define the truthfulness property as

E[ui(si, s−i)] ≥ E[ui(s
′
i, s−i)]

where the ui is the utility of bidder i, si is the strategy
that bidder i bids with the true value of the product. Here s−i
represents the strategies for the bidders other than bidder i and
s′i represents a strategy other than si. The function illustrates
that the strategy that bids with the true value will give the
bidder the highest utility compared to any other strategies. If
this function is true for all the bidders, it ensures that the
auction mechanism is truthful.

However, exact truthfulness sometimes turns out to be
too strict as a solution, and as an alternative, approximate
truthfulness, or γ-truthfulness [9], [29] has been proposed in
the literature.

Definition 3. (γ-truthfulness) An auction is γ-truthful in
expectation, or γ-truthful for short, if and only if for any
bidding strategy s′i 6= si and for any bid strategies of other
bidders s−i, there is:

E[ui(si, s−i)] ≥ E[ui(s
′
i, s−i)]− γ (4)

where γ is a small positive constant.

In auction mechanism design, there is another property
called Individual Rationality guaranteeing that every bidder
will not lose utility in the auction. It is defined as below:

Definition 4. (Individual Rationality) An auction is individual
rational if and only if ui ≥ 0 holds for every bidder i ∈ N .

Privacy Concepts and Definitions
We next introduce the concepts and definitions related to
privacy-preserving mechanism designs.

Definition 5. (Differential Privacy) Differential privacy is
a privacy-preserving mechanism that protects an individual
user’s contribution in a dataset. In a differentially private
auction mechanism, the actions of a trusted auctioneer can
be modeled as a randomized algorithm A. A randomized
algorithm A is ε-differentially private if for all datasets D1



and D2 that differ on a single element (i.e., a bid of one
person), and all S ⊆ Range(A):

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S]

In the literature, a relaxed definition of differential privacy
has also been introduced.

Definition 6. (Approximate Differential Privacy [21]) A ran-
domized algorithm A is (ε, δ)-differentially private if for all
datasets D1 and D2 that differ on a single element (i.e., a bid
of one person), and all S ⊆ Range(A):

Pr[A(D1) ∈ S] ≤ eε × Pr[A(D2) ∈ S] + δ

Exponential Mechanism is a key mechanism to achieve
differential privacy in a privacy-preserving auction design. An
exponential mechanism builds a distribution of probabilities
to choose the output based on an exponential function to
guarantee ε-differential privacy [9].

Exponential Mechanism
The exponential mechanism [9] is a general technique for

constructing differentially private algorithms over an arbitrary
range R of outcomes and for any objective function F (b, r).
The goal of the exponential mechanism is to map, randomly,
a set of n inputs each from a domain D to some output in
a range R and protect the individual privacy. It is defined as
follows:

Definition 7. (Exponential Mechanism [9]) For any function
F : (Dn ×R)→ R, and a base measure µ over R, define:

EεF (b) :=Choose r with probability ∝ eεF (b,r) × µ(r)

, b ∈ Dn, r ∈ R
(5)

The exponential mechanism guarantees 2ε∆-differential pri-
vacy, where ∆ = b̄− b is an upper-bound of the difference of
the feasible outcomes of two data sets which only differ in a
single data item. An immediate theorem can also be derived
as [29]:

Theorem 1. When used to select an output r ∈ R, the
exponential mechanism EεF (b) yields 2ε∆ differential privacy.
Let ROPT denote the subset of R achieving F (b, r) =
maxr F (b, r), then the exponential mechanism ensures that:

Pr[F (b, EεF (b)) < max
r
F (b, r)− ln(

|R|
|ROPT |

)/ε− t

ε
] ≤ e−t

(6)

In our problem, we want to design an auction mechanism
that can allocate the VMs to the users based on the bids
submitted by the users and achieve the strategy-proof property
while preserving privacy and maximizing the CSP revenue.
In the next section, we propose a near optimum mechanism
for solving the privacy-preserving auction design problem for
cloud resource allocation.

IV. STRAIGHT-FORWARD EXPONENTIAL MECHANISM

We first propose a near optimum privacy preserving mech-
anism which is straight-forward based on the exponential
mechanism proposed in [9] and [23]. The straight-forward
mechanism solves the privacy-preserving problem for the
dynamically priced resource allocation problem using the
exponential mechanism proposed in [9] and [23]. In an auction
mechanism for allocating the VMs,~b represents the bid profile,
and pi represents the bidder i’s payment. The objective for the
auction is to maximize the revenue of the CSP which can be
calculated as:

Objective:

maxREV =

n∑
i

pixi (7)

Subject to:
n∑
i

xi ≤ m (8)

As the exponential mechanism proposed in [23] achieves
approximate truthfulness, the expected revenue is equal to its
expected surplus:

E[REV ] = E[

n∑
i

vixi] (9)

The logic behind it is intuitive. In a truthful auction that the
bidders tend to bid with the true valuations, the expected
revenue of the auction is equal to the expected surplus.

With the above objective function and the expected surplus
analysis, the problem of designing the privacy-preserving
and near optimum resource allocation auction can be solved
through an exponential mechanism. Based on the principles
outlined in [23], the privacy-preserving auction mechanism
may assign each possible outcome a probability which is
proportional to the objective function and can be represented
by the revenue F (~b, ~x) =

∑n
i bixi. Then, based on the proba-

bilities, the mechanism can choose the outcome. The payment
for each winner is assigned using a VCG-like mechanism [23].

The detailed auction works as below:
1) Each bidder i submits its bid: bi;
2) The mechanism chooses the outcome with probability

proportional to e raised to the power of the objective function
and satisfies the Eq. (8):

Pr[~x] ∝ exp(
ε

∆

n∑
i

bixi) (10)

3) The payment for winner bid bi is assigned by the
mechanism proposed in [23].

A. Analysis

Next, we analyze the features of the near optimum privacy-
preserving resource allocation mechanism. In particular, we
analyze the revenue guarantee of the mechanism, the truthful-
ness property and the tractability of the mechanism. As we
know that the expected revenue is equivalent to the expected
surplus, here we just analyze the expected revenue.
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Theorem 2. The expected surplus:

E[

n∑
i

vixi] (11)

is maximized when the winning bids are chosen from the near
optimum privacy-preserving mechanism, EεF (~b).

Theorem 3. The near optimum privacy-preserving mechanism
is truthful, individually rational and ε-differentially private.

The proofs of the above-mentioned properties are discussed
in [23].

Theorem 4. The exponential mechanism which chooses the
outcome according to the objective function to decide the
winners for allocating the VMs is intractable.

Proof. The choosing function needs to calculate all the pos-
sible outcomes with the constraint defined in the Eq. (8). The
computation complexity can be represented by a combination
which chooses m from n, O(

(
n
m

)
). As the number of VMs

(which is represented by m) is usually a large number and
the number of users (which is represented by n) is also
large, it makes the straight-forward near optimum privacy-
preserving mechanism intractable in the dynamically priced
resource allocation problem.

V. PADS-ADP: PRIVACY-PRESERVING AUCTION DESIGN
WITH APPROXIMATE DIFFERENTIAL PRIVACY

GUARANTEES

The straight-forward near optimum privacy-preserving
mechanism introduced in the previous section can provide
near optimum revenue and ε-differential privacy. However,
the computation cost is prohibitively expensive to be used in
practice. In this section, we propose PADS-ADP, an alternate
privacy-preserving auction design that uses an iterative winner
decision algorithm and a payment scheme that forces the
bidders to bid with true valuations. We prove that PADS-
ADP can provide (ε, δ)-differential privacy while achieving
the truthfulness property in the auction.

In PADS, the auctions are conducted in discrete time slots
as described in Section III. As shown in Figure 2, similar to

the Spot Instances provided by Amazon EC2, PADS assumes
that each user has a client which takes care of the bidding
and job scheduling. The user submits the maximum price
he/she wants to pay for the VMs. The user client bids for
the required VMs in every time slot with the maximum price
set by the user. When the bid wins in a time slot, the user
client schedules the jobs to the VMs allocated to it. As shown
in Figure 2 PADS protects the private information of the users
in the auction including who are the winners and how much
they bid and pay for the resources from the adversaries. In
an auction performed using PADS to determine the winners
and payments, the adversaries cannot infer users’ information
from the published price data (provided by the CSP for the
potential customers to refer).

A. Design Details

We now describe the detailed design of PADS-ADP. The
iterative auction mechanism works in a sequence of four
steps: (i) it first calculates the probability distribution over
the set of current bids, R, (ii) then it randomly selects a bid
from the set as the winner in the current round based on
the probabilities calculated from the first step, (iii) next, it
calculates the payment scheme for the winner and (iv) finally,
it removes the winner from the set, R, in the current round
and checks the end condition. The above four steps repeat until
there are no bids in the set R or the VMs in the resource pool
has been exhausted.

The winners of the auction are determined as follows.
(i) Calculation of Probability Distribution: First, we need

to calculate the probability distribution of the bids which
needs to be used in the exponential mechanism. The difference
between the near optimum solution and PADS-ADP is that
instead of choosing the results from the all possible outcomes,
PADS-ADP chooses one winner for each iteration proportional
to e raised to the power of the bid value:

Pr[W ←W ∪ {i}]i =
exp(ε′bi)∑
i∈R exp(ε′bi)

(12)

where W is the set of winners’ bids such as W = {wi, w2, ...},
R is the current set of the bid, and:

ε′ =
ε

(e− 1)∆ ln(e/δ)
(13)

(ii) Winner Selection: After calculating the probabilities
of all the bids in set R to be chosen as winners, we get the
probability vector ~Pr = {Pr1, P r2, ...}. PADS-ADP randomly
selects a bid bi ∈ R as the winner in the current round
according to the probabilities for each bid, Pri,∀i ∈ R.

(iii) Payment Scheme: After selecting the winner for
the current iteration, PADS-ADP calculates the payment for
it. As we desire the truthfulness property from the auction
mechanism, the payment scheme is quite important to make
the auction truthful. Here, we use the results developed in [30]
to design the payment scheme. The immediate theorem can be
described as below:



Theorem 5. A mechanism is truthful in expectation if and
only if, for any bidder i and any fixed choice of bids by the
other bidders, ~b−i,

1) ~x is monotonically nondecreasing in bi;
2) pi = biyi(~b)−

∫ bi
0
yi(z)dz, where yi(z) is the probability

that bidder i is selected as a winner when his bid is z.

From the Theorem 5, for the first condition, as we already
conduct the exponential mechanism in the winner selection
step, the probability of choosing the bidder i is proportional
to exp(ε′bi). Here, ε′ is a constant which is a positive
number, and the exponential function exp() is monotonically
increasing. Hence the first condition is satisfied. Next, we set
the payment scheme as follows:

pi = biyi(~b)−
∫ bi

0

yi(z)dz (14)

to satisfy the second condition. Thus, the payment scheme
and the above winner selection algorithm together provide
truthfulness for the auction.

(iv) Post Processing: After calculating the payments, the
indicator of the winning bid bi is set to 1, xi = 1. And the bid,
bi, is removed from the set of current bids, R. Then, PADS-
ADP checks whether all the VMs are allocated, or all the bids
are removed from R. If any of the above two conditions are
met, the auction is ended.

Algorithm 1: PADS-ADP Mechanism
Input : Type of the VM : k;
# of VMs: n;
Buy bids: ~b = {b1, b2, ...};
Output: Auction decision: ~x = {x1, x2, ...};
Payment scheme: ~p = {p1, p2, ...};

1 Initially, the possibility vector as ~Pr = {Pr1, Pr2, ...} where Pri is set by
Eq. (12), R = ~b and the number of winners m = 0;

2 while R 6= φ or m < n do
3 for all bi ∈ R do
4 Pri =

exp(ε′bi)∑
i∈R exp(ε′bi)

;

5 end
6 Randomly select i according to the the probability vector ~Pr;
7 Set xi = 1;
8 pi = biyi(~b)−

∫ bi
0 yi(z)dz Remove bi from R;

9 m = m+ 1;
10 end

The overall algorithm is shown in Algorithm 1. The time
complexity of Algorithm 1 is O(n∗m) where n is the number
of users that bid for the VMs and m is the number of VMs
that can be allocated. The worst case time complexity can be
estimated by the accumulation of the computation times of the
probabilities, ~Pr. It can be calculated as: n+ (n− 1) + ...+

(n−m+1) = (n+n−m+1)∗m
2 = n∗m+ m2+m

2 . Generally, the
number of users is larger than the number of VMs: n > m.
Therefore the worst case time complexity of the algorithm is
O(n ∗m).

After proposing the mechanism, we analyze and prove the
differential privacy guarantee for PADS-ADP.

Theorem 6. For any δ ≤ 1/2, PADS-ADP provides (ε, δ)-
differential private.

Proof. Let ~b and ~b′ be two input bid vectors that differ in a
single bidder s’s bid. We show that PADS-ADP achieves bid
privacy preservation including revealing the order in which
the bidders are chosen for an arbitrary sequence of winners
selection W = W ′ = {w1, w2, ..., wl} of arbitrary length l for
~b and ~b′ respectively. The steps of the proof are inspired by the
results presented in [25]. We consider the relative probability
of PADS results for given bids inputs ~b and ~b′:

Pr[W = {w1, w2, ..., wl}]
Pr[W ′ = {w1, w2, ..., wl}]

=

l∏
i=1

exp(ε′bwi)/
∑
j∈(N−{πi}) exp(ε′bj)

exp(ε′b′wi)/
∑
j∈(N−{πi}) exp(ε′b′j)

=

l∏
i=1

exp(ε′bwi)

exp(ε′b′wi)

l∏
i=1

∑
j∈(N−{πi}) exp(ε′b′j)∑
j∈(N−{πi}) exp(ε′bj)

(15)

where πi = {w1, w2, ..., wi}. If bs > b′s, the first product is
less than exp(ε′∆):

exp(ε′(bs − b′s)) ≤ exp(ε′∆) (16)

and the second product is less than 1. If bs < b′s, the fist
product is less than 1. Then, we have

Pr[W = {w1, w2, ..., wl}]
Pr[W ′ = {w1, w2, ..., wl}]

≤
l∏
i=1

∑
j∈(N−{πi}) exp(ε′b′j)∑
j∈(N−{πi}) exp(ε′bj)

=

l∏
i=1

∑
j∈(N−{πi}) exp(ε′(b′j − bj)) exp(ε′bj)∑

j∈(N−{πi}) exp(ε′bj)

=

l∏
i=1

Ej∈(N−{πi})[exp(ε′(b′j − bj)]

(17)

Note that for all β ≤ 1, we have exp(β) ≤ 1 + (e − 1)β.
Therefore, for all ε′ ≤ 1, we have

l∏
i=1

Ej∈(N−{πi})[exp(ε′(b′j − bj)]

≤
l∏
i=1

Ej∈(N−{πi})[1 + (e− 1)ε′(b′j − bj)]

≤ exp((e− 1)ε′
l∑
i=1

Ej∈(N−{πi})[b
′
j − bj ])

(18)

If
∑l
i=1 Ej∈(N−{πi})[b

′
j − bj ] ≤ ∆ ln(e/δ), we have

Pr[W = {w1, w2, ..., wl}]
Pr[W ′ = {w1, w2, ..., wl}]

≤ exp((e−1)ε′∆ ln(e/δ)) = exp(ε)

(19)
By Lemma A.1 and A.2 in [29], we have
Pr[
∑l
i=1 Ej∈(N−{πi})[b

′
j − bj ] > ∆ ln(e/δ)] ≤ δ.

Thus, the theorem follows.



VI. PADS-DP: PRIVACY-PRESERVING AUCTION DESIGN
WITH DIFFERENTIAL PRIVACY

In the previous section, we presented PADS-ADP that can
provide (ε, δ)-differential privacy and truthfulness. A limiting
constraint of PADS-ADP is that it can only provide approx-
imate (ε, δ)-differential privacy which is relatively weaker
than the rigorous ε-differential privacy. In addition, as the
iterative winner selection makes the mechanism more random
with a smaller ε′ in each iteration, the mechanism is too
random to be efficient as demonstrated by our results in the
evaluation Section VII. Another weakness of PADS-ADP is
that the payment scheme is heterogeneous for the winners
as it uses a payment scheme which calculates the payments
by the probability distributions for each bidder to force the
mechanism to be truthful.

In this section, we propose PADS-DP which makes a trade-
off between differential privacy, the truthfulness property and
the revenue earned by the CSP. PADS-DP can provide ε-
differential privacy with little loss of truthfulness with a
grouping winner selection mechanism.

A. Design Rational

If we want to provide exact truthfulness similar to PADS-
ADP, we need to lose higher utility to achieve truthfulness.
On the contrary, if the mechanism can tolerate a little loss
of the truthfulness which is called “approximate truthfulness”
as defined in Definition 3, we can design a more efficient
mechanism with higher revenues and better privacy guarantees.

Without using the iterative method to choose the winners
one by one, PADS-DP chooses the winners using a grouping
method. The groups are calculated by the bid values which
makes the mechanism individual rational for every user (See
Definition 4). After that, PADS-DP chooses the winner group
from the candidates using the exponential mechanism. In the
next subsection, we will discuss the details of PADS-DP.

B. Design Detail

As shown in Figure 2, the mechanism needs to decide both
the winners and the payments for the winners by the bids
which is the input of the mechanism. Here, if we need to
choose a payment scheme ensuring that every winner pays the
same payment, pi = p,∀xi = 1, then the possible outcome of
the auction is not

(
n
m

)
but n which is the number of the bids

(each bid can be a possible outcome that p = bi).
The basic idea of PADS-DP is to group the bids by the

bid value. The mechanism is shown in Algorithm 2. First,
we sort the bids in the descending order to build a set to
denote the possible payment outcomes, P = {ρ1, ρ2, ..., ρn}
and ρ1 ≤ ρ2 ≤ ... ≤ ρn. Then, we group the bids by the
possible payments P . For each group, it has a payment scheme
p = ρi ∈ P . Next, based on the payments, we select the
winners from the highest bid until the lowest bid bj ≥ ρi or
until the number of winners is larger than or equal to m.

We use Si to represent the candidates in the group. There-
fore, in this condition, we have the following score function
for each group:

F (Si, ρi) = ρi|Si| (20)

For each group, based on the score function, we calculate the
probability:

Pri =
exp( ε

2∆ρi|Si|)∑
ρj∈P exp( ε

2∆ρj |Si|)
(21)

Finally, based on the probabilities, we randomly choose a
group as the winners. The candidates Si as the final winners
and the payment is set to ρi. The computational complexity

Algorithm 2: PADS-DP Mechanism
Input : Type of the VM : k;
# of VMs: m;
Buy bids: ~b = {b1, b2, ...};
Output: Auction winners: S;
Payment scheme: p;

1 Initially, sort ~b with descending order and generate P = ~b;
2 for ρi ∈ P do
3 while bj ≥ ρi and s.t. Eq.(8) do
4 Si ← Si ∪ {j};
5 end

6 Pri =
exp( ε

2∆
ρi|Si|)∑

ρj∈P exp( ε
2∆

ρj |Sj |)
;

7 end
8 Randomly select the winner group with probability ~Pr;
9 Assume the winner set is Si;

10 S ← Si;
11 p = ρi;

of Algorithm 2 is O(n ∗m) which is determined by the main
loop from line 2 to 7 in Algorithm 2. It calculates the possible
winners for each set Si. The maximum number of winners
is bounded by m and the number of the sets is n. So the
computational complexity is O(n ∗m).

After presenting the mechanism, we next provide the formal
theoretical analysis of the desirable properties of PADS-DP
mechanism. First, we prove that the PADS-DP mechanism is
ε-differentially private in Theorem 7.

Theorem 7. The PADS-DP auction is ε-differentially private.

Proof. We denote~b and~b′ as two bid profiles that differ in only
one bidder’s bid. We use M to denote PADS-DP mechanism,
∀p ∈ P , we have:

Pr[M(~b) = p]

Pr[M(~b′) = p]

=
exp( ε

2∆p|Si|)
exp( ε

2∆p|S
′
i|)

∑
ρj∈P exp( ε

2∆ρj |S
′
j |)∑

ρj∈P exp( ε
2∆ρj |Sj |)

≤ exp(
ε

2∆
p)

∑
ρj∈P exp( ε

2∆ρj(|Sj |+ 1))∑
ρj∈P exp( ε

2∆ρj |Sj |)

≤ exp(
ε

2
)

∑
ρj∈P exp(

ερj |Sj |+ε∆
2∆ )∑

ρj∈P exp( ε
2∆ρj |Sj |)

= exp(
ε

2
) exp(

ε

2
)

= exp(ε)

(22)
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Figure 3. Evaluation results for revenues
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Figure 4. Evaluation results for social welfares

Therefore, we have:

Pr[M(~b) = p] ≤ exp(ε)Pr[M(~b′) = p],∀p ∈ P (23)

and we arrive at the conclusion that the PADS-DP mechanism
is ε-differentially private.

Next, we prove that PADS-DP is ε∆-truthful.

Theorem 8. The PADS-DP auction is ε∆-truthful.

Proof. The step is similar to Theorem 7. We also use ~b and
~b′ as two bid profiles that differ in only one bidder’s bid.
We use the conclusion Eq.23 which can be transformed to
Pr[M(~b) = p] ≥ exp(−ε)Pr[M(~b′) = p]. Therefore, the
expectation of any bidder i’s utility satisfies:

Ep∼M(~b)[ui(p)] =
∑
p∈P

ui(p)Pr[M(~b) = p]

≥
∑
p∈P

ui(p) exp(−ε)Pr[M(~b′) = p]

= exp(−ε)Ep∼M(~b′)[ui(p)]

≥ (1− ε)Ep∼M(~b′)[ui(p)]

= Ep∼M(~b′)[ui(p)]− εEp∼M(~b′)[ui(p)]

(24)

As the maximum utility of an individual user is bounded by
∆ which is based on the utility function ui(p) = (vi−p)xi ≤
b̄− b = ∆, we can get

Ep∼M(~b)[ui(p)] ≥ Ep∼M(~b′)[ui(p)]− ε∆ (25)

Therefore, with the Definition 3, we can conclude that PADS-
DP is ε∆-truthful.

VII. EVALUATION

We have implemented PADS (both PADS-ADP and PADS-
DP) in a simulator, and extensively evaluate their performance.
On the CSP’s side, the evaluation results show that PADS-
DP can achieve relatively high revenues and social welfares
compared with PADS-ADP. On the users’ side, we analyze the
payments that are paid by the users to obtain the resources.
In addition, we measure the job completion rate showing that
PADS-DP can get near optimum result while maintaining a
relatively high privacy level.

A. Setup

The default setting of the experimental evaluation is de-
scribed below: In our experiments, we assume that each CSP

Table I
DEFAULT CONFIGURATION

# of bidders 5000 ε 0.1
# of VMs 200 δ 0.25

bids [0,1] time slot length 5 minutes
simulate time 1 hour job running time 10 minutes

provides one type of VMs to the users. The simulation time
is set to one hour for the default setting and the time slot
is set to be five minutes similar to the Amazon EC2 Spot
Instance. We generate the bids and the jobs for each user
to model the interactions between the users and the clients
as shown in Figure 2. We assume that the jobs are batch
processing jobs which can be interrupted during execution.
The bids are generated from a uniform distribution bi ∈ [0, 1]
and are equal to the true valuations of the VMs for the users
as the mechanisms we evaluate in our experiments are all
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Figure 5. Evaluation results for user payments

truthful or approximately truthful mechanisms. The users do
not change their bids during the one hour simulation period.
The length of the jobs is set to be ten minutes, and therefore
each job requires at least two time slots to complete. If a job
is completed, the user client stops to bid for the VMs. All the
experiment results are averaged for 100 trials. The error bar
of each result represents the 95% confidence interval of the
100 trials.

B. Methodology

In our experiments, we compare PADS-DP and PADS-ADP
with the VCG auction mechanism [17]–[19] (denoted as OPT
in the results) which provides truthfulness but not differential
privacy guarantees. The VCG mechanism is implemented in
the simulator to satisfy the objectives and constraints in the
dynamically priced resource allocation problem in clouds.

To evaluate the performance of PADS, we use the following
four metrics:

1) Revenue: The revenue is calculated from the sum of all
the payments from the users during the overall simulation time.
We conduct three sets of experiments by increasing the number
of users and the number of servers for different settings of ε.

2) Social Welfare: The social welfare is computed as the
sum of the values of the users [27] which can be calculated
as
∑n
i vixi. It is the basic metric to measure the economic

efficiency of the auction mechanisms.
3) User’s Payment: The user’s payment is calculated as the

average payment of each winner for each time slot.
4) Completion Rate: The completion rate of the jobs

measures the fraction of the jobs that complete within their
deadline.

C. Experiment Results

First, we measure the revenue earned by the CSPs in the
auction process. We conduct three sets of experiments to
evaluate the performance of PADS-ADP and PADS-DP. In our
experiments, we study (i) the impact of the number of users,
(ii) the influence of the number of the resources (VMs) on the
auction performance and (iii) the impact of the ε parameter in
the auction outcome.

From Figure 3a and 3b, we can see that PADS-DP achieves
nearly the same revenue as OPT. In contrast, PADS-ADP
attains only half the revenue of OPT. This observation reflects
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Figure 6. Evaluation results for completion rate

the fact that PADS-ADP chooses the winners in a more random
iterative manner compared to PADS-DP and hence its revenue
is lower than PADS-DP. As shown in Figure 3a, we can also
observe that when the number of bidders (users) is increased,
the OPT and PADS-DP schemes can get higher revenue, but
PADS-ADP maintains the same revenue. This is also due
to the fact that PADS-ADP chooses winners more randomly
compared to the other two mechanisms. In Figure 3b, we
analyze the performance by increasing the number of VMs.
We observe that all the three schemes namely OPT, PADS-
DP and PADS-ADP obtain higher revenue as resources are
increased. We study the influence of the ε parameter on the
revenue in Figure 3c. We observe that for ε (from 0.1 to
1), the influence is perceptible for PADS-DP. However, it is
insignificant for PADS-ADP as PADS-ADP uses an iterative
process to achieve differential privacy, and in each iteration,
the ε′ = ε

(e−1)∆ ln(e/δ) is calculated based on ε. Since it is
usually tenfold smaller than ε, it makes the scale of ε insen-
sitive. For PADS-DP, with larger ε, the revenue approaches
that of the OPT scheme with smaller variances (as shown by
smaller error bars in the figure).

Next, we evaluate social welfare which is one of the metrics
to measure the economic efficiency of the auction mechanisms
[27]. In Figure 4a, we observe that PADS-DP achieves nearly
similar social welfare as the number of users is increased. It
is significantly better than that of PADS-ADP which maintains
a constant social welfare irrespective of the number of users
who participate in the auction. The social welfare measured
in Figure 4b suggests that the schemes follow a similar trend
as Figure 4a when the number of VMs is increased. From the
results in Figure 4c for varying values of ε, we can observe
and conclude that PADS-DP can achieve nearly the same social



welfare as that of OPT even for smaller values of ε.
In Figure 5, we measure the payment made by the users in

the proposed schemes. We plot the average payment for each
user in each time slot. We observe that in PADS-DP, users
pay less than that of OPT ( Figure 5a and 5b) for a different
number of users and VMs. The trend in Figure 5c is also
similar to that of Figure 3c.

Finally, in Figure 6, we consider the users’ satisfaction
which can be represented by the completion rate. In an
auction-based resource allocation mechanism, if a user bids
higher, the user should have a higher probability to obtain the
resource. In Figure 6a and 6b, we plot the completion rate of
each user marked as blue “X” and the results of OPT marked
as solid lines. We can see that with higher ε, the completion
rate of PADS-DP is closer to that of OPT. Since ε = 0.1 is a
significantly large privacy protection with differential privacy,
the results demonstrate that PADS-DP can achieve relatively
high differential privacy and user satisfaction simultaneously.

VIII. CONCLUSION

In this paper, we propose a strategy-proof differentially
private auction mechanism for allocating dynamically priced
resources in a cloud. We propose three approaches for
the privacy-aware auction design problem using differential
privacy based on exponential mechanism design. The first
approach uses a straight-forward application of near opti-
mum exponential mechanism that provides truthfulness and
ε-differential privacy, but the mechanism is intractable for
large-scale resource allocations. The second approach, PADS-
ADP, uses an iterative algorithm to choose the winners of
an auction and achieves (ε, δ)-differential privacy and runs in
polynomial time. The third approach, PADS-DP, employs a
grouping algorithm to generate the possible outcome groups
and chooses the winner group using the exponential mecha-
nism. We demonstrate that PADS-DP can achieve ε-differential
privacy and ε∆-truthfulness. Experimental evaluation of the
performance of the proposed mechanisms shows that the
proposed techniques can guarantee differential privacy and
truthfulness property of the auction while achieving closely
similar performance in terms of revenue and social welfare as
compared to traditional auctions.
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